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Abstract. We study theself-directed SD) learningmodel. In this model a learner chooses examples, guesses
their classification and receives immediate feedback indicating the correctness of its guesses. We consider sev
fundamental questions concerning this model: the parameters of a task that determine the cost of learning, 1
computational complexity of a student, and the relationship between this model arehther-directedTD)
learning model. We answer the open problem of relating the cost of self-directed learning to the VC-dimension b
showing that no such relation exists. Furthermore, we refute the conjecture that for the intersection-closed ca:
the cost of self-directed learning is bounded by the VC-dimension. We also show that the cost of SD learning me
be arbitrarily higher that that of TD learning.

Finally, we discuss the number of queries needed for learning in this model and its relationship to the numbe
of mistakes the student incurs. We prove a trade-off formula showing that an algorithm that makes fewer queric
throughout its learning process, necessarily suffers a higher number of mistakes.
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1. Introduction

Since defined by Littlestone (Littlestone, 1988, 1989) rnthstake-boundhodel of learning
has attracted a considerable amount of attention (e.g., Littlestone, 1988, 1989; Littlestor
& Warmuth, 1994; Blum, 1990, 1992; Maass, 1991; Chen & Maass, 1994; Helmbold,
Littlestone, & Long, 1992; Goldman, Rivest, & Schapire, 1993; Goldman & Sloan, 1994;
Ben-David, Kushilevitz, & Mansour, 1995; Rivest & Yin, 1995; Yin, 1995; Frances &
Litman, 1995). In this model the learner has to make predictions on the next instance basi
on the previous instances that it has already seen and their labels. The quantity that t
learner should try to minimize is the number of mistakes it makes along this process.
Several variants of this model were considered, allowing the learner various degrees
freedom in choosing the instances presented to him. These variants include (in increasi
power of the learner):

Some of the results in this paper appeared in Ben-David, Eiron, & Kushilevitz (1995).
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e Theon-linemodel (Littlestone, 1988, 1989), in which the sequence of instances is chose
by an adversary (the teacher) and the instances are presented to the learner one-by-o

e The worst sequencéoff-line) model (Ben-David, Kushilevitz, & Mansour, 1995), in
which the sequence of instances is still chosen by the adversary but the whole sequer
(without the labels) is presented to the learner before the prediction process starts.

e Thebest sequendeff-line) model (Ben-David, Kushilevitz, & Mansour, 1995), in which
the whole sequence of instances is chosen by the learner before the prediction proce
starts!

o Theself-directednodel (Goldman, Rivest, & Schapire, 1993; Goldman & Sloan, 1994),
in which the learner may choose the sequence of instatagsivelyi.e., each instance
is chosen only after seeing the labels of all previous instances.

Another related model that was studied (Goldman, Rivest, & Schapire, 1993; Goldma
& Kearns, 1995; Rivest & Yin, 1995) is titeacher-directednodel. In this model, a helpful
teacher, who knows the target function, presents labeled examples to the learner. T
teaching process is over once only a single conceptimconsistent with the examples
presented.

Denote byMonriine(C), Mworst(C), Mpes{C), Mgg(C) and M (C) the number of mistakes
made by the best learning algorithm in the on-line, worst sequence, best sequence, se
directed and teacher-directed models, respectively, on the worst target concept in a conc
classC.

Goldman & Sloan (1994) consider the relations betwig and the VC-dimension.
They give examples where the VC-dimension is 2 amg = 3 (this is generalized in
Ben-David, Kushilevitz, & Mansour (1995) where examples of classes with VC-dimensior
d andMgy = d + 1 are presented). They ask as an open problem whether there exists
constantr such thaMgy < o - VCdim for all concept classes. We answer this open problem
by showing that no such constant exists. In fact, we prove a much stronger statement: F
anyd andn, there exists a concept claghaving VC-dimension and self-directed learn-
ing complexityMsd(Cg) = Q(n). Furthermore, Goldman & Sloan (1994, Conjecture 11)
conjectured that for so-called “intersection-closed” concept claggg®) < VCdim(C).

We disprove this conjecture by presenting for every evam intersection-closed concept
class with VC-dimensiod, andMsq = 3d.

Previous work (Goldman, 1990; Goldman & Kearns, 1995; Goldman, Rivest, & Schapire
1993; Goldman & Sloan, 1994) presented many classes for which self-directed learning
more efficientthan teacher-directed learning. We show that there are some dssbich
are hard for the self-directed learner to learn, yet easy to teach by a helpful teacher in tt
teacher-directed model. We will show that wmved(cg) =Q(n), Mtd(Cﬁ) =d+ 1. This
resultimproves upon the results of (Rivest & Yin, 1995), where cryptographic assumption
and constraints on the computational power of the self-directed learner are required to obte
similar results.

In Section 5 we offer a generic algorithm for the self-directed learning task. This algo-
rithm is a natural adaptation of Littlestone’s Halving Algorithm. We discuss the mistake-
bound performance of this algorithm and then refine it and define a family of generic
self-directed algorithms having increasingly better mistake-bound performance. Thes
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algorithms have polynomial running time (jG|) and for many natural concept classes,
including classes for which self-directed learning is strictly better than best sequence of
line learning, they achieve the optimal self-directed bound. On the other hand, we sho
that there are concept classes for which the number of mistakes these algorithms make ¢
be arbitrarily higher than the optimum.

We conclude, in Section 6, with a preliminary discussion of the issue of the numbe
of queriesmade by a self-directed algorithm. We prove a trade-off formula showing that
lowering the mistake bound of a self-directed algorithm necessarily results in an increas
in the number of queries it has to go through. Loosely speaking, if the learner wishes t
reduce the number of mistaken guesses it makes in the process of learning, it inevitably h
to pay by asking many questions for which it already has a pretty good idea of what th
answers will be.

2. Preliminaries
2.1. Basic definitions

In this section we formally present the mistake-bound learning model in all its variants. We
follow definitions given in (Littlestone, 1988, 1989; Goldman, Rivest, & Schapire, 1993;
Goldman & Sloan, 1994; Ben-David, Kushilevitz, & Mansour, 1995)Ve restrict our
definitions to finite instance spaces. However, it should be noted, that these definitions m:
be extended to infinite instance spaces.

Let X be any finite set, and l&t be a collection of boolean functions defined ovér
(i.e.,C € {0, 1}*). We refer toX as theinstance spacand toC as theconcept classAn
on-line learning algorithm with respect to a concept cldsis an algorithmA that works
in steps as follows: In thith step the algorithm is presented with a new elemertX’.

It then outputs its predictiop; and in response it gets the true valyéx;), wherec; € C
denotes théargetfunction. The predictiorp; may depend on the values it has seen so far
(i.e., c(x1), ..., c(Xi—1)) and, of course, on the concept classThe process continues
until all the elements ok’ have been presented. let= X3, X, . . ., X, denote the order in
which the elements ok’ are presented to the learning algorithm. DenotdvbyA, o, ¢;)

the number of mistakes made by the algoritdron a sequence and target function; € C
(i.e., the number of elements for whigh # c:(x)). Define the mistake bound of the
on-line algorithm as

M(A) 2 maxM(A, o, ¢).
0,ceC
Finally, let
Mon-iine(C) £ min M(A) = min max M (A4, o, ).
A A o,ceC

An off-line learning algorithnis an algorithmA that is given (in advance) the actual se-
guencesr as an input. The learning process remains unchanged (except that each predicti
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pi can now depend an and not only or). Denote byM (A[o], ¢;) the number of mistakes
made by an off-line algorithni on a sequence and a target;. Define

M(Alo]) = maxM (Alo]. c).

We are interested in theestandworstsequences. We would like to view tihdy,es(C) as
letting the learner optimally choose (without knowing the target concept) the sequence «
instances presented to it. That is, we define:

Mpes(C) = minmin M (A[o]).

Similarly, the worst sequence model can be thought of as letting an adversary choose t
sequence, so we may define:

Mworst(C) é mf{n maxM (A[o]).

A self-directed learning algorithmt is one that chooses its sequence adaptively; hence,
the sequence may depend on the classifications given to previous instances (and so, ir
rectly, on the target function). Denote Bsq(A, ¢;) the number of mistakes made by a
self-directed learning algorithod on a target functiorw; € C. Define

MsalA) = MaxMsg(A, )

and

Mgq(C) £ min Mgg(A) = minmaxMgq(A, G).
A A ceC

The teacher-directed moddlGoldman, Rivest, & Schapire, 1993) is concerned with
a different setting. In this model, a teacher presents labeled examples (i.e., pairs of tf
form (x, ¢ (x))) to a student. The teaching is said to be successful once only a single
concept in the concept clagsis consistent with the labeled examples presented by the
teacher.

For the teacher-directed model, Jétlenote the teacher’s strategy for choosing examples.
Denote byM(A, ¢;) the number of exampled will present when attempting to teach the
concept;. We define:

M&MémngAQ)

and

M (C) £ min Mig(A) = minmaxM (A, ).
A A el
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(Alternatively, for everyc € C let n(c) be the minimal size of a subset of the domain on
which no other concept i@ agrees wittt. It is easy to see thadtly(C) = max.c n(c)).

Note that, unlike the previous models, in this model the teacher is considered to be ‘hel;
ful’ rather than ‘adversarial’. That is, the learning complexity is defined as the numbel
of examples needed for learning using the teacherrtiaimizeshe the sample size (al-
though we still use the worst-case measure over all the possible targets and all the possil
consistent learners).

The following is a simple consequence of the definitions:

Observation 1 For any finiteX’, C,

Msd(C)
< Mpes(C)
< Muorst(C)
=

Mon—line(c)-

There are no such immediate relations betwikpand Myg. On one hand, as thelqy
parameter counts the number of needezdmplesieeded to allovany consistent student
to find the target, and thilsy counts onlymistakesnade by theptimalstudent, there are
classes for whictMgg(C) < M (C) (such as Monotone Monomials). On the other hand,
as the agent that drives the learning process in the teacher-directed model knows what 1
targetis, it may get an advantage over the self-directed learning process. In Section 4 belc
we construct an example of a clag$or which Mgg(C) > M(C).

2.2. Labeled trees and their rank

Each of the first four models presented above has a combinatorial characterization
terms of therank of a certain family of trees. Littlestone (1988, 1989) investigates this
characterization for the original on-line model, while Ben-David, Kushilevitz, & Mansour
(1995) give similar results for the worst-sequence and best-sequence models.

In this subsection we review these characterizations and provide a similar characteriz
tion of the Mgy parameter. A variant of this characterization appears in Goldman & Sloan
(1994).

We start with the definition of theank of a binary tree (see, e.g., Cormen, Leiserson,
& Rivest, 1990; Ehrenfeucht & Haussler, 1989; Blum, 1992), and later present similal
characterization for the self-directed model.

Forabinary tred , if T is empty then ranl’) = —1. Otherwise, leT be its left subtree
andTg be its right subtree. Then,

max{rank(T.), rank(Tg)} if rank(T,) # rank(Tgr)

rank(T) =
KT) rankT, ) + 1 otherwise

For example, the rank of a leaf is 0.
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Next, we define the relevant types of trees.
Definition 1  Let X denote some domain set afidc {0, 1}* be as above.

e An X-labeled tree is a paiT, F), whereT is a binary tree ané a function labeling
the nodes ofl by elements oft’. We require the labeling to be unique on any path,
i.e., on any path from the root of the tree to a leaf, no two nodes are labeled with the san
point from X'.

e Abranch(ty,...,t,) realizes a function

h:{F(y),...,F(ty)}~ {0,1}

if for all 1<i<n, tj,1 is a left son oft; if and only if h(F(tj))) =1. Note that
the values ofF on leaves ofT do not affect the realization di, and therefore, for
the purposes of this work, may be ignored.

e An X-labeled tree is &-tree if the set of functions it realizes is exaatly

e Let7¢ denote the set of all-trees.

e For asequence = (xy, ..., X,) of elements oft, let TGC denote the labeled tree that is
defined by starting with a complete binary tr@é, with n + 1 levels, setting-(t) = x
for every node on thekth level of T/, and restricting the tree to the branches that are
consistent wittC.

Note, that using this notation, a cladshatters the set of elements of a sequeacH,
and only if T is a complete binary tree. We can therefore conclude that, for any@&lass

VCdimC) = max{rank(TS) : T¢ e 7y andTY is a complete binary trde
(We shall usually omit the superscriptwhen it is clear from the context.)
With the above notation it is now easy to state the combinatorial characterization of thi
mistake-bound models:
Theorem 1 (Littlestone, 1988, 1989). For all X andC as above
Morriine(C) = max{rank(T): T e 75 }.
Theorem 2 (Ben-David, Kushilevitz, & Mansour, 1995). For all X andC above
Muworst(C) = max{rank(T): T = T¢, o is an ordering ofY}.
Theorem 3 (Ben-David, Kushilevitz, & Mansour, 1995). For all X andC as above
Mbes(C) = min{rankT): T = T¢, o isan ordering ofx}.

Finally, we get a characterization in similar terms of #ey(C) parameter. A variant of
this characterization appears in Goldman & Sloan (1994).
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Theorem 4. Forall X andC as above
Msg(C) = min{rankT): T € 75 }.

Proof: Consider the tred whose rank is the minimal one ifit. We will show that
Msd(C) is at most the rank of . For this, we present an appropriate algorithm that makes
use of this tree. At each point, the learner asks for the instance which is the current node
the tree. In addition, he predicts according to the subtree of the current node whose ral
is higher (arbitrarily, if the ranks of the two subtrees are equal). The true classificatior
determines the child of the current node from which the learner needs to proceed. It follow
from the definition of rank that whenever the algorithm makes a mistake the remainin
subtree has rank which is strictly smaller than the previous one.

For the other direction, given a strategy for the learner that makes atiggst) mistakes
we can construct a tree that describes this strategy. Namely, at each point the instances
that the learner will ask at the next stage given the possible classifications of the curre
instance determine the two children of the currentnode. Now, if the rahkafs more than
Msd(C) then this gives the adversary a strategy to fool the learner: at each node classify tt
current instance according to the subtree with higher rank. If the ranks of both subtrees a
equal then on any answer by the algorithm the adversary says the opposite. By the definiti
of rank, this gives ranld ) mistakes. Hence, ra@kK) is at mostMsq4(C) and certainly the
minimum over all trees can only be smaller. a

3. Self-directed complexity and the VC-dimension

We now turn our attention to the relationship between the self-directed complexity and th
VC-dimension. We follow the following standard definition:

Definition2 A conceptclas€ C 2% is said toshattera setA C X if the following holds:
Yac AdceC sta=AnNc.

The VC-dimension(or VCdim for short) ofC is defined as the cardinality of the largest
subset oft’ thatC shatters, orc if C shatters sets of unbounded cardinality.

Experience in other learnability models leads one to expect that the information com
plexity of learning a concept class is closely related to the combinatorial complexity of
that class as measured by the VC-dimension. Goldman & Sloan (1994) showed that t
VC-dimension of a concept class does not impose any lower bounds on its self-directe
complexity. They presented concept classes of arbitrarily large VC-dimension that could b
learned by a self-directed algorithm making only one mistake (in fact, Mg of these
classes is just 1). They asked whether an upper bound on the self-directed complexity ¢
be derived from the VC-dimension of a class alone. We show that no such upper bour
exists. Namely, there are concept classes of arbitrarily large self-directed complexity, ye
their VC-dimension may be fixed at ady> 3.
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3.1. Arbitrary concept classes

Definition 3 A concept clas§ over adomair’ is said to contain a copy of a claGsover
a domainX” if there exist functionsf : X’ — X andg:C’ — C such that for alk € X",
cel’,cx)=g@fx).

It is immediate to see that if a clascontains a copy of another clagsthenMgy(C) >
Msd(c/)-

Lemma 1. For every pair(d, n) of natural numbers such that @3, there exists a

concept class¢ such that

1. ¢Yis a class of subsets ¢f, . . ., (3")d}.

2. |CY =329,

3. VCdim(?) = d.

4. For every point x in the domain 6f, and for every label of xthe set of concepts i&f
which are consistent with this labeling of x contains a copg®f,.

Proof: Letus start by constructing the clasgesWe shallrepresent class€sas matrices
over {0, 1} whose columns stand for the elementst{C’s domain) and rows stand for
the concepts of. The entry(i, j) of this matrix is 1 iff thejth element of the domain is a
member of theth concept irC.

Let A be any 3x 3 matrix over binary matrices. We requifeto have, in each row and
each column, a matrix that is all 1's and a matrix that is all 0’s. In the following example,
such a matrix is shown, where the matrices used on the diagonal will be defined later.

?11|0
0| 2?1
1,107

Let cg be a 2 x d matrix whose rows are all thi®, 1}-valued vectors of lengtt. For
everyn > 0, the matrixC¢ is obtained by taking the matriA over matrices that are the
same size a€?_; and usingC?_, for the diagonal ofA. We later refer ta’¢ as either a
matrix of 3x 3 blocks (denoted\(i, j)) or as a 23" x d3" binary matrix.

That is,

1 1]0 0
cd :

1 1]0 0

0 0 1 1
: Cia

0 0 1 1
1 1[0 0

: Cia
1 1|0 0
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Let us show that property (4) holds. Assume tkhdtelongs to columrjy of blocks in
the matrix. By the definition oA, one of the blocksA(, jx) has the same label asin
each entry (sincé had a 1 and a 0 off théiagonal in every column). This implies that all
concepts that fall within theth row of blocks in the matrix are consistent with the labeling
for x, but these include the blodk(i, i) which contains a copy af? .

To prove property (3), define thRobust VC-dimensionf a setC of subsets oft,
rvCdim(C), as the VC-dimension af’ whereC’ =C U {#, X'}. Observe that, for every
concept clasg, rvCdim(C) > VCdim(C), andrVCdim(C) =rvVCdim(’). We now show,
by induction om, thatrvVCdim(C9) < d.

Cd is defined over a domain of sizkso it cannot have a robust VC-dimension that is
greater thard. Now, examine a subsgt of sized + 1 > 4 of the domain o’d. By the
induction hypothesis, if all the elements¥ffall within the same column of blocks in the
matrix then)’ is not shattered. Otherwisg, contains elements from at least two different
columns of blocks in the matrix. Sing®’| > 4, at least two of these elemenyg,andys,
belong to the same column of blocks,(1 < jy < 3). For every concept where the labeling
of yy is different from that ofy,, the concept must come from thgth row of blocks, but
that forces a single label for each elemenyithat is not in thejyth column of blocks, and
so) cannot be shattered. Furthermore, adding the rows of all 1's and all 0’s will not make
Y shattered, as the missing subset¥’@fre those where the labeling yfis different from
that of y,. Note that the last argument cannot be stated for the standard definition of th
VC-dimension, as the row of all 1's and the row of all 0's was added. a

Corollary5. The self-directed complexity of aconceptclassis notbounded by any functiol
of its VC-dimension. Namelyor every n and d> 3, there exist a concept class whose
VC-dimension is dyet its Myy exceeds n.

Proof: Apply Lemma 1. Note that property (4) of the lemma implies that, fonall 1
andd, Mgy(CY) > Msg(CY ) + 1. It can be easily verified for al, Msg(C$) = d, as for
Msd(Cg) an adversary can force the learner to err on every poitt'. It follows that, for
all n andd, Msg(C9) > d + n. The corollary is now established by recalling property (3)
of the lemma, namely that for everyandd > 3, VCdimC9) = d. ]

3.2. Intersection-closed classes

We also consider Conjecture 11 of (Goldman & Sloan, 1994) which states thisttefrsec-
tion-closedconcept classes, Mgy(C) < VCdim(C).2 We provide a counterexample to this
conjecture by showing the existence of concept claSg#sat are intersection-closed, yet,
VCdim(Cq) = 2d and Mgq(Cq) = 3d.

Example 1 For every integed, we show a concept cla€g so thatvCdim(Cq) = 2d, Cqy
is intersection-closed, andsy(Cq) = 3d.

We start withd = 1. LetC; be the set of all segments on the circumference of a discrete
circle (i.e.,n many points equally spaced on the circumference of a two-dimensional circle
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with n > 6), where the length of each segment is less than half of the circumference. It i
clear thatC; is intersection-closed, andCdim(C;) = 2.

Let us show an adversary strategy that will force any algorithm to make at least thre
mistakes or€;. The first time the algorithm makes a prediction, the adversary will declare
a “mistake”. We now show that the concepts that are consistent with that answer have a p:
of points that they shatter. Moreover, the adversary can force the algorithm to err befor
having to determine the label of each of these points. If the learner predictéy (for
some poink on the circle), then the two neighboring pointsxdbne on each side) are such
a pair (since the target may be a segment of 1, 2 or 3 points). If the learner predicied
then the adversary (now committed to a Oxmmarks to itself the point that is antipodal to
X as being in the target. The same argument implies that the two neighbours of this marke
point constitute a pair as required. (It is easy to seethaan indeed be learned with three
mistakes.)

We constructy by usingd disjoint copies of’y, i.e.,d circles with a concept being a set
that contains one segment on each circle. It is easy to se¥@dtn(Cy) = 2d and that
the above strategy, when duplicatimes, once for each circle, will forced3nistakes.

4. Teacher-directed complexity

As stated in Rivest & Yin (1995), most “natural” concept classes are easier to learn in th
self-directed model than in the teacher-directed model. This raises the question of wheth
the teacher’s knowledge of the target function may be of any help to a “smart” self-directe
learner. Rivest & Yin (1995) give an example whélgy(C) < Msq4(C) for the case where

the self-directed learner is limited, in each step, to polynomial time in the size of eacl
example (not in the size of the concept class). Their example relies on some cryptograph
assumptions. We present here an example where teacher-directed learning will require le
examples than the number of mistakes self-directed learner will make, without imposin
any limitations on the self-directed learner.

Lemma 2. Forthe classeé,’g of Lemmal, Mtd(Cﬂ) =d+1

Proof: We present a strategy for the teacher that will allow any consistent learner to infe
the target functions after receiving no more tlthr 1 examples. Let the teacher use the
following algorithm:

e For a target; present thal coordinates on the diagonal of the matrix (the coordinates
for which concepts in the same block@snay have any behavior).

o If the target concept labels all thedepoints identically (all 0’s or all 1's), present one
more example from another block of the same innermost matrix as the one the target
in (i.e., another block that is in the same cop;C@fas thed examples already given to
the learner) that will differentiate it from the case where the firekamples were taken
from a block that is all 1's or all 0’s (for example, if the target is taken from the first
third of a copy ofc¢, and for the first coordinates its values are all 0's, the teacher will
present an example that falls into the third block column of the same cogfjwhose
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value will be 0, as rows whose first third is all 0's and belong to the second block-row of
¢ will have a 1 inthat position).

It is immediate that there will be only one conceptCfhthat is consistent with the first
d + 1 examples presented according to the above strategy. |

Corollary 6. The self-directed complexity of a concept class is not bounded by any
function of its teacher-directed complexity. Namdtyr every n and ¢ 3, there exist a
concept class whose teacher-directed complexity yetlits M,y exceeds n.

5. Generic self-directed learning algorithms

In this section we address the existence of generic learning algorithms for a given famil
of learning problems. Do there exist efficient algorithms that, given a concept class as ¢
input, output a ‘good’ learning algorithm for it?

The meaning of ‘efficiency’ is not immediately clear in the context of such algorithms.
Usually, a learning algorithm is considered to be efficient if its running time is polynomial
in the size of an example and in the size of the description of the target concept. The
is, an algorithm for a finite clags over a finite domaint is efficient if its running time
is polynomial in(log(|X'|), log(|C])). In the ‘generic learning’ task, the cla€sis also a
part of the input, so we expect the running time of the algorithm to depend upon the siz
of a description o” as well. Clearly, the choice of representation for the input concept
classes plays a crucial role. One simple option is to represent each input concept class &
binary matrix. More precisely, a concept class corresponds to a binary matrix in which th
@, j)th entry is 1 if and only if thejth element oft’ is labeled 1 by théth concept irC.
Papadimitriou & Yannakakis (1993) provide evidence that, using this matrix representatior
the problem of finding the VC-dimension of a class cannot be decided in polynomial time
Frances & Litman (1995) show that the VC-dimension problem is reducible to any generi
mistake-bound-optimal On-Line learning algorithm. In other words, any generic On-Line
learning algorithm, that makes the optimal number of mistakes on every concept class, ru
in time that is, up to a polynomial factor, larger than that of some algorithm for the VC-
dimension search problem (when the whole concept class, as a binary matrix, is consider
a part of the algorithm’s input). Regretfully, we do not have similar results concerning the
complexity of generic self-directed learning algorithms. On the other hand, we cannot offe
an efficient generic self-directed learning algorithm that will make the optimal number of
mistakes on any concept class. We conjecture that such algorithms do not exist.

In this section we present an efficient generic algorithm for self-directed learning. Thic
algorithm follows the basic ideas of the Halving algorithm (Littlestone, 1988, 1989). Our
algorithm receives as input the concept class from which the target is chosen and then ru
as a learning algorithm for this class. Our generic algorithm is efficient in the sense the
its running time for a clas§€ over some domait’ (and any target € C) is polynomial in
(IC1, 1X]). While we show that for some classes it does achieve optimal learning complexity
we also show that there exist classes on which it does make more than the optimal possit
number of mistakes.
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Algorithm 1.
1. Initialization: Set i < 0 andCcons < C.
2. Let R
X' = {x € X|Ced # 0 A CGeS # 0

Find x € X’ such that

[ICeons” | = 1CcBns” || = man|Ceans’| — [Ceors’ |

Set p such thaC&=" > cot ™.
3. Predict p on %.
4. After being given @X;), SetCeons < C=4%)) and seti< i + 1.
5. If |Ccond = 1 thenCeons= {Ct}, and we are done. Otherwisgo to stef?.

This algorithm is based on the same principal as the Halving algorithm (Littlestone,
1988, 1989), that is, keeping the set of all concepts that are consistent with the exampl
received so far and predicting a value that most of the concepts are consistent with. Tl
only difference is that this algorithm also chooses the next point on which to predict by
choosing a poink; for which the difference between the number of consistent concepts tha
havex; € c and those who haveg ¢ cis the greatest. This is a heuristic that is based on
the hope that making a mistake on such a sample point will be very profitable to the learne
as it will shrink the set of consistent concepts by as much as possible in a single step.

It is easy to see that the running time of this algorithm is polynomial in the size of its
input (the input i< and each step requir€(|C| - | X|) time).

While in the worst case this algorithm performs no better than the Halving algorithm, for
many “natural” problems it gives optimal performance, even for classes WhggC) >
Msd(C). We present here two examples for which Algorithm 1 is optimal. These include
the class of monotone monomials and the concept class presented in (Ben-David, Eiron,
Kushilevitz, 1995, Theorem 9), for which self-directed learning is better than best sequenc
learning.

Example 2Monotone monomiajs It is known thatMs4(Cum) = 1 (Goldman & Sloan,
1994).

Thatresultis achieved by predicting negative on all assignmentednables, starting with
the assignment that assigns false to every variable, moving to all assignments that assi
true to a single variable, then to those that assign true to two variables, etc.

Claim 1. Algorithm1 will make one mistake af\y .

Proof: Allthere isto show s that at every stage there is a varigbserch thatCs =V | = 1.
This will ensure that the algorithm will predict false on tixatand if mistaken, the target
will be known to it.

Let x be an assignment that assigns “true” to a minimal nurkbef variables, among
all assignments that still satisfy some conceptSifas It is clear that such an assignment
satisfies a single monotone monomialians (if there are two monotone monomials thxat
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satisfies, at least one of them contains less theariables, as there is surely just a single
concept withk variables that is satisfied by. This contradicts the assumption that all
assignments that assign true to less thaariables do not satisfy any conceptdgg). It
follows thatx satisfies the above condition, and Algorithm 1 will make just one mistake on
Cwvm - O

Note that for the class of monotone monomials, an optimal Best Sequence algorithm wi
also make a single mistake. This proof can be easily extended to the class of monomia
where the optimal mistake bound is 2.

The following example shows that Algorithm 1 exploits the power of self-directed learn-
ing, showing that it is sometimes optimal even for classes whigg > Mgg.

Example 3(Power of Adaptiveneks In the proof of (Ben-David, Eiron, & Kushilevitz,
1995, Theorem 9) a set of concept classes for WMGh(C) = 2 but Mpest= 2 (logn) is
introduced.

These concept classes are defined as follows: The conceptatassists of 2 24 func-
tionsC = {fq,..., fxa, 01,..., g} defined ovetX = {z, Xy, ..., Xx, V1, ..., Yod}. Each
function f; is defined as follows:fi(z) = 0; fi(x)) = 1; fi(x;) = O0forall j #i (i.e.,
there is a single; which is assigned 1 and hence can be observed as an indicator for th
corresponding functiorf;). The variableg, ..., Y« are partitioned inta “blocks” each

of size 2'/d, where variables in the same block are equivalent with respefgt to. , fu.

Each of the 2 functions f; gets one of the ®possible behaviors on thedeblocks. The

functionsg;, ..., gx are defined similarly by switching the roles % andy’s. More
precisely,gi(z2) = 1; gi(yi) = 1; gi(y;) = Oforall j # i (i.e., this timey; serves as an
indicator for the corresponding functigy). Again, the variableg, ..., X« are partitioned

into d “blocks” of 2¢/d equivalent variables. Each of thé finctionsg; gets one of the®
possible behaviors on thedeblocks.

Claim 2. For this class. Algorithnd will make at most My(C) = 2 mistakes.

Proof: At first, Algorithm 1 will pick any of thex;’s or they;’s (but notz) and predict
0 for it (because exactly 2 291 of the concepts include each of these points, and the
majority does not). This will continue until the algorithm is first mistaken. Note that if the
algorithm make a correct prediction on a poknt the part of the concept class that will
remain consistent will have all the targets of the foffn except for f;, and exactly half
of the concepts of the forrg;. The algorithm will now continue to predict on points of
the formx; (not y;) until being mistaken, as most of the concepts that were found to be
inconsistent had an equal number of 1's and O’s for each ofjtise(so the number of 1's
was cut by almost a half), while having only a single 1 for gny

Without loss of generality, let us assume that Algorithm 1 makes its first mistake on
Now, the concepts that are still consistent with Algorithm 1’s observationsfasgid some
of theg;’s. Note that forz, there is only a single consistent function that ligg) = 0.
This means that if Algorithm 1 will make a mistake before predictingzoih will be its
last mistake (as the point on which it will predict will have just one concept that assigns
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the “wrong” value to it, or Algorithm 1 would have tried before). Once Algorithm 1
predicts onz, and is not mistaken (again, if it is mistaken, the only consistent function
that will remain isf;, and no more mistakes will be made), the only functions that remain
consistent are of the form;. For all these functions there are now poigjsthat have a
single function that assigns 1 to them, so Algorithm 1 will predict on all these points before
trying any others, and it will, finally, be mistaken on one of them, leaving, once again, &
single consistent function.

All'in all, Algorithm 1 will make no more than two mistakes: One gnand the other
one, either orz or on one of they;’s. This shows that Algorithm 1 actually exploits the
power of adaptiveness. ]

However, it can also be easily shown that Algorithm 1 is not always optimal.

Theorem 7. For every integer k> 1 and d > 3 + k there exists a concept cIaS,% such
that Msg(C) = d while Algorithm1 can be forced to make ¢ k mistakes oG¢.

Proof: Let us describe the concept clasgds These concept classes are defined over
an instance spac# of k + n - 2¥ points, wheren = £ 238+l and X = (Y1, ooy Vs X1, - ey
Xn.ok}.

cd is constructed as follows: The firsf Zoncepts assign O tg;, while the other
n> —n-+2 concepts assign 1 tg. Thex’s are set to be duplicated blocks of afl 2
binary vectors of lengtl for the first 2 concepts, and are set to the class of all segments
on the circumference of a discretecircle for the rest of the concepts (there afe- n+ 2
segments on the circumference of a discretarcle).

It can be easily verified that the class of segments of a discrete circle can be learned |
a self-directed algorithm with at most three mistakes. It is also clear that the class of a
29 binary vectors of lengtkl cannot be learned in less thdrmmistakes. This implies that
an optimal self-directed algorithm fdijj will first predict 0 ony,. Ifitis correct, it can be
forced to makeal more mistakes, and if it is wrong, it will make no more than three more
mistakes, for a maximum total af mistakes. Algorithm 1 on the other hand, will also
guess first ory; (as allx’s have an equal number of O’s and 1's), but it will predict 1 (as
there are just®= ”72 concepts for whicly; is 0, while there ar@®> — n + 2 concepts for
which it is 1). This will force up tal + 1 mistakes ord’j’ as required.

GivenC{ we constructy, ; as follows:

e The first part oka+1 will assign O toyk+1, be the same acs‘f for all othery’s, and will
have two exact duphcates of eaghrom C¢ for its x’s (there are twice as manys now).

e The second part dtk+l will assign 1 toyk1, assign 0's and 1's arbitrarily to the rest of
they’s, making sure that on the total, eachyaf ..., yx has an equal number of 0's and
1's (since this part is more than double in size than the first part, such an assignment c:
be found), and will assign to thes all segments on a discrete 2<~1-circle.

It can be easily verified that under the assumptiongdfandk, this construction leaves
Msd(CkH) = d but Algorithm 1 will first pred|ct 1 onyk.1, and if mistaken, will make one
more mistake for the clagy , than it did forCg. O
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Having demonstrated classes for which Algorithm 1 is not optimal, it is only natural to
try to improve it. The first step that comes to mind is to enhance the algorithm’s look-ahea
capability. We thus go on and define a family of algorithms based on the same heuristics
Algorithm 1. Each of these algorithms is based on approximating the number of mistake
it will do for any remaining subset of the concept class by using the previous algorithm tc
learn the subset. More formally, we define the following sequence of algorithms:

Algorithm 2. Let.A; be Algorithml. DefineA,,; as follows
1. Initialization: Set i <~ 0 andCeons < C
2. Find x € X and p € {0, 1} such that

xi=1-pi)) _ i X=38)
Msd(An’ C'éons; P ) - xeXngler?O 1) Msd(An» Céons )

Predict p on the above x After being given €X;), setCeons < C&i%™*) and set
i <~i+1
3. If |Ccond = 1 thenCeons= {Ct}, and we are done. Otherwisgo to ste?.

Considering the class&¥ used in the proof of Theorem 7, it is immediate to realize
that the algorithmd,,, 1 will be optimal for all the classe@f(‘ for whichk < n. It follows
that the sequence of algorithnisi,, : n € N} is of strictly increasing self-directed learning
capabilities (in the sense that for everythe algorithmA, 1 makes on every class at most
the number of mistakes made on this classfayand on some classed; . ; makes strictly
fewer mistakes thaul,,).

6. On thequery complexityof self-directed learning

The information complexity of on-line learning tasks is commonly measured by either the
number of student’s queries or by the number of mistakes made by the student. The que
complexity measure is usually used in models in which the learning communication i
student-driven, while the mistake bound measure is more common in models with teache
driven learning communication.

The self-directed learning model may be viewed as a mixture of these two types of model
On one hand, it is naturally presented in terms of a student-driven learning scenario; ye
on the other hand, it uses mistake counting for its definition of learning complexity.

A fully student-driven version of the self-directed learning model may be obtained by
changing its complexity measure to the number of student queries (rather than mistake:
The resulting model may be viewed as a restricted version of the Maass-FPartal
Equivalence Quer(PEQ) model (Maass & Turan, 1992). Inthat model, the student presents
hypotheses that ajgartial functions fromX’ to {0, 1}. In response to its partial-function
query, the student gets a counterexample from the query’s domain (that is, x poift
on which the query function is defined and its value differs from that of the target function).
By restricting the student to asking only hypotheses whose domains are singletons, one g
the self-directed learning scenafio.
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Another way to view this model is as Membership Queries Only learning (MQ). In the
MQ model the student queries the teacher by presenting a point of the domain set ar
gets, in response, the value of the target function on that point. The student is charged |
the number of queries it makes. This is exactly the model one gets by the restriction t
singletons of the PEQ model (and ignoring the value that the student’s hypothesis assig
to the domain point). The main difference between the MQ (or the restricted PEQ) mode
and the self-directed model is in their definition of learning complexity. On one hand, by
charging for queries, rather than mistake, the SD model becomes the restricted PEQ or t
MQ model, while on the other hand, it is not hard to see that as far as the mistake bour
measure is concerned, the (restricted or unrestricted) PEQ and the self-directed learni
models are equivalent.

Therefore, it is natural to investigate the query complexity of self-directed learning, in
addition to its mistake-bound complexityAs a first step in this direction, we have the
following trade-off formula between the number of queries and the number of mistakes o
any self-directed learning algorithm. Yin (1995) addressed this issue independently (and
the same time with the conference version of our work (Ben-David, Eiron, & Kushilevitz,
1995)). She proves a similar trade-off formula and provides several examples of class
for which there exist learning algorithms that almost meet the query complexity bound:
implied by the formula. Our proof below is much simpler than the one in Yin (1995).

Definition 4 (Self-directed query complexjty Given a self-directed learning problem
(C, X) and an algorithmA for it, let q4 denote the maximum, over all possible targets
t € C, of the number of queries made by the algoritdnduring the learning protocol when
applied to the target

Theorem 8. Forall X, C and for every self-directed learning algorithih let my denote
Msa(A) then

1. log(IC]) < M4 -10g(q.a).

2.|Cl = Eo(ﬁA)

Proof: Note that part 1 of the theorem follows from part 2 (uSeas an upper bound

to Zid:o(?) and take the logarithm of both sides of the inequality). Part 2 of the theorem
is implied by the following simple argument: Given a self-directed learning algorithm
for a classC, each concept i€ is uniquely determined by the set of queries on which
the algorithm errs when the teacher’s responses correspond to this concept. The theor
follows by noting that this set of queries is, in turn, determined by the set of their indices ir
the sequence ofl’s queries. ]

7. Conclusions and open problems

In this paper we discussed some combinatorial problems related to the information con
plexity of self-directed learning. We have fully resolved the question of the relation betweer
the self-directed complexity of a class and its VC-dimension by showing that none of thes
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parameters imposes any bound on the other. We have also obtained a similar result conce
ing the relation between the self-directed and the teacher-directed complexity of a conce
class. Concerning the family of intersection-closed classes, we have shown that there ex
such classes for which the self-directed complexity can exceed the VC-dimension by a rat
of 3/2. We do not know whether this result is the best possible, namely,

Open Problem 1. Is it true that for every intersection-closed clags Msy(C) < 3/2
(VCdim())?

Ratherthan addressing the computational complexity of the self-directed learning proble
for specific classes, we discussed, in Section 5, the existence of a fixed ‘generic’ algorithi
that will learn every concept class. Frances & Litman (1995) addressed the analogol
problem for the On-Line learning model and showed that the problem of computing the
VC-dimension of a class is reducible, via the problem of computing the On-Line mistake
bound of a class, to the existence of a generic On-Line algorithm that is mistake-bounc
optimal for all classes. This results is a strong indication to the computational hardness
generic mistake-bound-optimal On-Line learning algorithms. Regretfully, we do not have
a similar result for self-directed learning. It is quite easy to see that, like the case fo
On-Line learning, self-directed generic optimal learning is poly-time equivalent to the tas}
of calculatingMgy(C) (on inputC in its matrix representation). The main open problem
along this line of research is whether a result like the Frances-Litman reduction holds fc
self-directed learning, namely,

Open Problem 2. Does there exist an algorithm thabn inputC, calculates the VC-
dimension ofC in polynomial time(in the binary matrix representation @f) using an
oracle that provides the self-directed mistake bound of cl&sses

Notes

1. In fact, the models defined in Ben-David, Kushilevitz, & Mansour (1995) allow restricting the instances to
some subse$ of the instance space. To simplify the presentation we omit this generalization from this paper.

2. Ben-David, Kushilevitz, & Mansour (1995) restrict the learner to a subsetX’ of the instance space. For
clarity, our definition follows the more standard definition of Littlestone (1988, 1989). However, it can easily
be extended to include this additional ingredient.

3. AClas<C is calledintersection-closed for every two conceptss, ¢; € C alsoc; N ¢z € C.

4. Note that, without this restriction, the PEQ model is strictly stronger than the SD model. For an example
consider a concept classmfmany singletons. Clearly, both a PEQ and a self-directed learning algorithm can
learn it with only one mistake. As for queries, PEQ can settle for only one query, while for any self-directed
learning algorithm there is a concept in the class on which it will be forced to makd queries. When
Goldman & Sloan (1994, Section 7) discuss the relation of the SD model to the PEQ model, they state th
converse statement, namely, that the self directed learning model is more powerful than the PEQ model. O
should note, however, that their claim is only due to the bias inflicted by using a different complexity measure fo
each of these models (they compare the numbaenisfakesnade by an SD learner to the numbegokries
made by a PEQ learner).

5. Goldman & Sloan (1994) state, in the definition of the self-directed model, that the student should eventuall
ask every single member of the domain. For the purposes of our discussion, we adopt the approach of Mace
& Turan (1992) and view the learning process as complete once only one member of the concept class remal
consistent with the data collected so far.
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