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Abstract. We study theself-directed(SD) learningmodel. In this model a learner chooses examples, guesses
their classification and receives immediate feedback indicating the correctness of its guesses. We consider several
fundamental questions concerning this model: the parameters of a task that determine the cost of learning, the
computational complexity of a student, and the relationship between this model and theteacher-directed(TD)
learning model. We answer the open problem of relating the cost of self-directed learning to the VC-dimension by
showing that no such relation exists. Furthermore, we refute the conjecture that for the intersection-closed case,
the cost of self-directed learning is bounded by the VC-dimension. We also show that the cost of SD learning may
be arbitrarily higher that that of TD learning.

Finally, we discuss the number of queries needed for learning in this model and its relationship to the number
of mistakes the student incurs. We prove a trade-off formula showing that an algorithm that makes fewer queries
throughout its learning process, necessarily suffers a higher number of mistakes.
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1. Introduction

Since defined by Littlestone (Littlestone, 1988, 1989), themistake-boundmodel of learning
has attracted a considerable amount of attention (e.g., Littlestone, 1988, 1989; Littlestone
& Warmuth, 1994; Blum, 1990, 1992; Maass, 1991; Chen & Maass, 1994; Helmbold,
Littlestone, & Long, 1992; Goldman, Rivest, & Schapire, 1993; Goldman & Sloan, 1994;
Ben-David, Kushilevitz, & Mansour, 1995; Rivest & Yin, 1995; Yin, 1995; Frances &
Litman, 1995). In this model the learner has to make predictions on the next instance based
on the previous instances that it has already seen and their labels. The quantity that the
learner should try to minimize is the number of mistakes it makes along this process.

Several variants of this model were considered, allowing the learner various degrees of
freedom in choosing the instances presented to him. These variants include (in increasing
power of the learner):

Some of the results in this paper appeared in Ben-David, Eiron, & Kushilevitz (1995).
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• Theon-linemodel (Littlestone, 1988, 1989), in which the sequence of instances is chosen
by an adversary (the teacher) and the instances are presented to the learner one-by-one.
• The worst sequence(off-line) model (Ben-David, Kushilevitz, & Mansour, 1995), in

which the sequence of instances is still chosen by the adversary but the whole sequence
(without the labels) is presented to the learner before the prediction process starts.
• Thebest sequence(off-line) model (Ben-David, Kushilevitz, & Mansour, 1995), in which

the whole sequence of instances is chosen by the learner before the prediction process
starts.1

• Theself-directedmodel (Goldman, Rivest, & Schapire, 1993; Goldman & Sloan, 1994),
in which the learner may choose the sequence of instancesadaptively; i.e., each instance
is chosen only after seeing the labels of all previous instances.

Another related model that was studied (Goldman, Rivest, & Schapire, 1993; Goldman
& Kearns, 1995; Rivest & Yin, 1995) is theteacher-directedmodel. In this model, a helpful
teacher, who knows the target function, presents labeled examples to the learner. The
teaching process is over once only a single concept inC is consistent with the examples
presented.

Denote byMon-line(C), Mworst(C), Mbest(C), Msd(C) andMtd(C) the number of mistakes
made by the best learning algorithm in the on-line, worst sequence, best sequence, self-
directed and teacher-directed models, respectively, on the worst target concept in a concept
classC.

Goldman & Sloan (1994) consider the relations betweenMsd and the VC-dimension.
They give examples where the VC-dimension is 2 andMsd = 3 (this is generalized in
Ben-David, Kushilevitz, & Mansour (1995) where examples of classes with VC-dimension
d and Msd = d + 1 are presented). They ask as an open problem whether there exists a
constantα such thatMsd≤ α ·VCdim, for all concept classes. We answer this open problem
by showing that no such constant exists. In fact, we prove a much stronger statement: For
anyd andn, there exists a concept classCd

n having VC-dimensiond and self-directed learn-
ing complexityMsd(Cd

n ) = Ä(n). Furthermore, Goldman & Sloan (1994, Conjecture 11)
conjectured that for so-called “intersection-closed” concept classesMsd(C) ≤ VCdim(C).
We disprove this conjecture by presenting for every evend an intersection-closed concept
class with VC-dimensiond, andMsd= 3

2d.
Previous work (Goldman, 1990; Goldman & Kearns, 1995; Goldman, Rivest, & Schapire,

1993; Goldman & Sloan, 1994) presented many classes for which self-directed learning is
more efficient than teacher-directed learning. We show that there are some classes,Cd

n , which
are hard for the self-directed learner to learn, yet easy to teach by a helpful teacher in the
teacher-directed model. We will show that whileMsd(Cd

n ) = Ä(n), Mtd(Cd
n ) = d+1. This

result improves upon the results of (Rivest & Yin, 1995), where cryptographic assumptions
and constraints on the computational power of the self-directed learner are required to obtain
similar results.

In Section 5 we offer a generic algorithm for the self-directed learning task. This algo-
rithm is a natural adaptation of Littlestone’s Halving Algorithm. We discuss the mistake-
bound performance of this algorithm and then refine it and define a family of generic
self-directed algorithms having increasingly better mistake-bound performance. These
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algorithms have polynomial running time (in|C|) and for many natural concept classes,
including classes for which self-directed learning is strictly better than best sequence off-
line learning, they achieve the optimal self-directed bound. On the other hand, we show
that there are concept classes for which the number of mistakes these algorithms make can
be arbitrarily higher than the optimum.

We conclude, in Section 6, with a preliminary discussion of the issue of the number
of queriesmade by a self-directed algorithm. We prove a trade-off formula showing that
lowering the mistake bound of a self-directed algorithm necessarily results in an increase
in the number of queries it has to go through. Loosely speaking, if the learner wishes to
reduce the number of mistaken guesses it makes in the process of learning, it inevitably has
to pay by asking many questions for which it already has a pretty good idea of what the
answers will be.

2. Preliminaries

2.1. Basic definitions

In this section we formally present the mistake-bound learning model in all its variants. We
follow definitions given in (Littlestone, 1988, 1989; Goldman, Rivest, & Schapire, 1993;
Goldman & Sloan, 1994; Ben-David, Kushilevitz, & Mansour, 1995).2 We restrict our
definitions to finite instance spaces. However, it should be noted, that these definitions may
be extended to infinite instance spaces.

Let X be any finite set, and letC be a collection of boolean functions defined overX
(i.e.,C ⊆ {0, 1}X ). We refer toX as theinstance spaceand toC as theconcept class. An
on-line learning algorithm with respect to a concept classC is an algorithmA that works
in steps as follows: In thei th step the algorithm is presented with a new elementxi ∈X .
It then outputs its predictionpi and in response it gets the true valuect (xi ), wherect ∈ C
denotes thetarget function. The predictionpi may depend on the values it has seen so far
(i.e., ct (x1), . . . , ct (xi−1)) and, of course, on the concept classC. The process continues
until all the elements ofX have been presented. Letσ = x1, x2, . . . , xn denote the order in
which the elements ofX are presented to the learning algorithm. Denote byM(A, σ, ct )

the number of mistakes made by the algorithmA on a sequenceσ and target functionct ∈ C
(i.e., the number of elements for whichpi 6= ct (xi )). Define the mistake bound of the
on-line algorithm as

M(A) 4= max
σ,ct∈C

M(A, σ, ct ).

Finally, let

Mon-line(C)
4= min

A
M(A) = min

A
max
σ,ct∈C

M(A, σ, ct ).

An off-line learning algorithmis an algorithmA that is given (in advance) the actual se-
quenceσ as an input. The learning process remains unchanged (except that each prediction
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pi can now depend onσ and not only onC). Denote byM(A[σ ], ct ) the number of mistakes
made by an off-line algorithmA on a sequenceσ and a targetct . Define

M(A[σ ])
4= max

ct∈C
M(A[σ ], ct ).

We are interested in thebestandworstsequences. We would like to view theMbest(C) as
letting the learner optimally choose (without knowing the target concept) the sequence of
instances presented to it. That is, we define:

Mbest(C)
4= min

A
min
σ

M(A[σ ]).

Similarly, the worst sequence model can be thought of as letting an adversary choose the
sequence, so we may define:

Mworst(C)
4= min

A
max
σ

M(A[σ ]).

A self-directed learning algorithmA is one that chooses its sequence adaptively; hence,
the sequence may depend on the classifications given to previous instances (and so, indi-
rectly, on the target function). Denote byMsd(A, ct ) the number of mistakes made by a
self-directed learning algorithmA on a target functionct ∈ C. Define

Msd(A)
4= max

ct∈C
Msd(A, ct )

and

Msd(C)
4= min

A
Msd(A) = min

A
max
ct∈C

Msd(A, ct ).

The teacher-directed model(Goldman, Rivest, & Schapire, 1993) is concerned with
a different setting. In this model, a teacher presents labeled examples (i.e., pairs of the
form (x, ct (x))) to a student. The teaching is said to be successful once only a single
concept in the concept classC is consistent with the labeled examples presented by the
teacher.

For the teacher-directed model, letA denote the teacher’s strategy for choosing examples.
Denote byMtd(A, ct ) the number of examplesA will present when attempting to teach the
conceptct . We define:

Mtd(A)
4= max

ct∈C
Mtd(A, ct )

and

Mtd(C)
4= min

A
Mtd(A) = min

A
max
ct∈C

Mtd(A, ct ).
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(Alternatively, for everyc ∈ C let n(c) be the minimal size of a subset of the domain on
which no other concept inC agrees withc. It is easy to see thatMtd(C) = maxc∈C n(c)).

Note that, unlike the previous models, in this model the teacher is considered to be ‘help-
ful’ rather than ‘adversarial’. That is, the learning complexity is defined as the number
of examples needed for learning using the teacher thatminimizesthe the sample size (al-
though we still use the worst-case measure over all the possible targets and all the possible
consistent learners).

The following is a simple consequence of the definitions:

Observation 1. For any finiteX , C,

Msd(C)
≤ Mbest(C)
≤ Mworst(C)
≤ Mon-line(C).

There are no such immediate relations betweenMsd andMtd. On one hand, as theMtd

parameter counts the number of neededexamplesneeded to allowanyconsistent student
to find the target, and theMsd counts onlymistakesmade by theoptimalstudent, there are
classes for whichMsd(C) < Mtd(C) (such as Monotone Monomials). On the other hand,
as the agent that drives the learning process in the teacher-directed model knows what the
target is, it may get an advantage over the self-directed learning process. In Section 4 below,
we construct an example of a classC for which Msd(C) > Mtd(C).

2.2. Labeled trees and their rank

Each of the first four models presented above has a combinatorial characterization in
terms of therank of a certain family of trees. Littlestone (1988, 1989) investigates this
characterization for the original on-line model, while Ben-David, Kushilevitz, & Mansour
(1995) give similar results for the worst-sequence and best-sequence models.

In this subsection we review these characterizations and provide a similar characteriza-
tion of theMsd parameter. A variant of this characterization appears in Goldman & Sloan
(1994).

We start with the definition of therank of a binary tree (see, e.g., Cormen, Leiserson,
& Rivest, 1990; Ehrenfeucht & Haussler, 1989; Blum, 1992), and later present similar
characterization for the self-directed model.

For a binary treeT , if T is empty then rank(T) = −1. Otherwise, letTL be its left subtree
andTR be its right subtree. Then,

rank(T) =
{

max{rank(TL), rank(TR)} if rank(TL) 6= rank(TR)

rank(TL)+ 1 otherwise.

For example, the rank of a leaf is 0.
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Next, we define the relevant types of trees.

Definition 1. LetX denote some domain set andC ⊆ {0, 1}X be as above.

• An X -labeled tree is a pair,(T, F), whereT is a binary tree andF a function labeling
the nodes ofT by elements ofX . We require the labelingF to be unique on any path,
i.e., on any path from the root of the tree to a leaf, no two nodes are labeled with the same
point fromX .
• A branch(t1, . . . , tn) realizes a function

h : {F(t1), . . . , F(tn)} 7→ {0, 1}

if for all 1≤ i < n, ti+1 is a left son of ti if and only if h(F(ti ))= 1. Note that
the values ofF on leaves ofT do not affect the realization ofh, and therefore, for
the purposes of this work, may be ignored.
• An X -labeled tree is aC-tree if the set of functions it realizes is exactlyC.
• Let T CX denote the set of allC-trees.
• For a sequenceσ = (x1, . . . , xn) of elements ofX , let TCσ denote the labeled tree that is

defined by starting with a complete binary tree,T ′, with n+ 1 levels, settingF(t) = xk

for every nodet on thekth level of T ′, and restricting the tree to the branches that are
consistent withC.

Note, that using this notation, a classC shatters the set of elements of a sequence,σ , if
and only ifTCσ is a complete binary tree. We can therefore conclude that, for any classC,

VCdim(C) = max
{
rank

(
TCσ
)

: TCσ ∈ T CX andTCσ is a complete binary tree
}
.

(We shall usually omit the superscriptC when it is clear from the context.)
With the above notation it is now easy to state the combinatorial characterization of the

mistake-bound models:

Theorem 1 (Littlestone, 1988, 1989). For all X andC as above,

Mon-line(C) = max
{
rank(T) : T ∈ T CX

}
.

Theorem 2 (Ben-David, Kushilevitz, & Mansour, 1995). For all X andC above,

Mworst(C) = max
{
rank(T) : T = TCσ , σ is an ordering ofX

}
.

Theorem 3 (Ben-David, Kushilevitz, & Mansour, 1995). For all X andC as above,

Mbest(C) = min
{
rank(T) : T = TCσ , σ is an ordering ofX

}
.

Finally, we get a characterization in similar terms of theMsd(C) parameter. A variant of
this characterization appears in Goldman & Sloan (1994).
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Theorem 4. For all X andC as above,

Msd(C) = min
{
rank(T) : T ∈ T CX

}
.

Proof: Consider the treeT whose rank is the minimal one inT CX . We will show that
Msd(C) is at most the rank ofT . For this, we present an appropriate algorithm that makes
use of this tree. At each point, the learner asks for the instance which is the current node in
the tree. In addition, he predicts according to the subtree of the current node whose rank
is higher (arbitrarily, if the ranks of the two subtrees are equal). The true classification
determines the child of the current node from which the learner needs to proceed. It follows
from the definition of rank that whenever the algorithm makes a mistake the remaining
subtree has rank which is strictly smaller than the previous one.

For the other direction, given a strategy for the learner that makes at mostMsd(C)mistakes
we can construct a treeT that describes this strategy. Namely, at each point the instances
that the learner will ask at the next stage given the possible classifications of the current
instance determine the two children of the current node. Now, if the rank ofT was more than
Msd(C) then this gives the adversary a strategy to fool the learner: at each node classify the
current instance according to the subtree with higher rank. If the ranks of both subtrees are
equal then on any answer by the algorithm the adversary says the opposite. By the definition
of rank, this gives rank(T) mistakes. Hence, rank(T) is at mostMsd(C) and certainly the
minimum over all trees can only be smaller. 2

3. Self-directed complexity and the VC-dimension

We now turn our attention to the relationship between the self-directed complexity and the
VC-dimension. We follow the following standard definition:

Definition 2. A concept classC ⊆ 2X is said toshattera setA ⊆ X if the following holds:

∀a ⊆ A∃c ∈ C s.t.a = A∩ c.

The VC-dimension(or VCdim for short) ofC is defined as the cardinality of the largest
subset ofX thatC shatters, or∞ if C shatters sets of unbounded cardinality.

Experience in other learnability models leads one to expect that the information com-
plexity of learning a concept class is closely related to the combinatorial complexity of
that class as measured by the VC-dimension. Goldman & Sloan (1994) showed that the
VC-dimension of a concept class does not impose any lower bounds on its self-directed
complexity. They presented concept classes of arbitrarily large VC-dimension that could be
learned by a self-directed algorithm making only one mistake (in fact, evenMbest of these
classes is just 1). They asked whether an upper bound on the self-directed complexity can
be derived from the VC-dimension of a class alone. We show that no such upper bound
exists. Namely, there are concept classes of arbitrarily large self-directed complexity, yet
their VC-dimension may be fixed at anyd ≥ 3.
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3.1. Arbitrary concept classes

Definition 3. A concept classC over a domainX is said to contain a copy of a classC ′ over
a domainX ′ if there exist functionsf :X ′ 7→ X andg : C′ 7→ C such that for allx ∈ X ′,
c ∈ C ′, c(x) = g(c)( f (x)).

It is immediate to see that if a classC contains a copy of another classC′ thenMsd(C) ≥
Msd(C ′).

Lemma 1. For every pair (d, n) of natural numbers such that d≥ 3, there exists a
concept classCd

n such that:
1. Cd

n is a class of subsets of{1, . . . , (3n)d}.
2. |Cd

n | = 3n2d.
3. VCdim(Cd

n ) = d.
4. For every point x in the domain ofCd

n , and for every label of x, the set of concepts inCd
n

which are consistent with this labeling of x contains a copy ofCd
n−1.

Proof: Let us start by constructing the classesCd
n . We shall represent classes,C, as matrices

over {0, 1} whose columns stand for the elements ofX (C’s domain) and rows stand for
the concepts ofC. The entry(i, j ) of this matrix is 1 iff the j th element of the domain is a
member of thei th concept inC.

Let A be any 3× 3 matrix over binary matrices. We requireA to have, in each row and
each column, a matrix that is all 1’s and a matrix that is all 0’s. In the following example,
such a matrix is shown, where the matrices used on the diagonal will be defined later.

? 1 0
0 ? 1
1 0 ?

Let Cd
0 be a 2d × d matrix whose rows are all the{0, 1}-valued vectors of lengthd. For

everyn > 0, the matrixCd
n is obtained by taking the matrixA over matrices that are the

same size asCd
n−1 and usingCd

n−1 for the diagonal ofA. We later refer toCd
n as either a

matrix of 3× 3 blocks (denotedA(i, j )) or as a 2d3n × d3n binary matrix.
That is,

1 . . . 1 0 . . . 0

Cd
n−1

...
. . .

...
...

. . .
...

1 . . . 1 0 . . . 0
0 . . . 0 1 . . . 1
...

. . .
... Cd

n−1

...
. . .

...

0 . . . 0 1 . . . 1
1 . . . 1 0 . . . 0
...

. . .
...

...
. . .

... Cd
n−1

1 . . . 1 0 . . . 0
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Let us show that property (4) holds. Assume thatx belongs to columnjx of blocks in
the matrix. By the definition ofA, one of the blocksA(i, jx) has the same label asx in
each entry (sinceA had a 1 and a 0 off thediagonal in every column). This implies that all
concepts that fall within thei th row of blocks in the matrix are consistent with the labeling
for x, but these include the blockA(i, i ) which contains a copy ofCd

n−1.
To prove property (3), define theRobust VC-dimensionof a setC of subsets ofX ,

rVCdim(C), as the VC-dimension ofC ′ whereC ′ = C ∪ {∅,X }. Observe that, for every
concept classC, rVCdim(C) ≥ VCdim(C), andrVCdim(C)= rVCdim(C′). We now show,
by induction onn, thatrVCdim(Cd

n )≤ d.
Cd

0 is defined over a domain of sized so it cannot have a robust VC-dimension that is
greater thand. Now, examine a subsetY of sized + 1 ≥ 4 of the domain ofCd

n . By the
induction hypothesis, if all the elements ofY fall within the same column of blocks in the
matrix thenY is not shattered. Otherwise,Y contains elements from at least two different
columns of blocks in the matrix. Since|Y| ≥ 4, at least two of these elements,y1 andy2,
belong to the same column of blocks,j y (1≤ j y ≤ 3). For every concept where the labeling
of y1 is different from that ofy2, the concept must come from thej yth row of blocks, but
that forces a single label for each element inY that is not in thej yth column of blocks, and
soY cannot be shattered. Furthermore, adding the rows of all 1’s and all 0’s will not make
Y shattered, as the missing subsets ofY are those where the labeling ofy1 is different from
that of y2. Note that the last argument cannot be stated for the standard definition of the
VC-dimension, as the row of all 1’s and the row of all 0’s was added. 2

Corollary 5. The self-directed complexity of a concept class is not bounded by any function
of its VC-dimension. Namely, for every n and d≥ 3, there exist a concept class whose
VC-dimension is d, yet its Msd exceeds n.

Proof: Apply Lemma 1. Note that property (4) of the lemma implies that, for alln ≥ 1
andd, Msd(Cd

n ) ≥ Msd(Cd
n−1) + 1. It can be easily verified for alld, Msd(Cd

0 ) = d, as for
Msd(Cd

0 ) an adversary can force the learner to err on every pointx ∈ X . It follows that, for
all n andd, Msd(Cd

n ) ≥ d + n. The corollary is now established by recalling property (3)
of the lemma, namely that for everyn andd ≥ 3, VCdim(Cd

n ) = d. 2

3.2. Intersection-closed classes

We also consider Conjecture 11 of (Goldman & Sloan, 1994) which states that forintersec-
tion-closedconcept classes,C, Msd(C) ≤ VCdim(C).3 We provide a counterexample to this
conjecture by showing the existence of concept classesCd that are intersection-closed, yet,
VCdim(Cd) = 2d andMsd(Cd) = 3d.

Example 1. For every integerd, we show a concept classCd so thatVCdim(Cd) = 2d, Cd

is intersection-closed, andMsd(Cd) = 3d.

We start withd = 1. LetC1 be the set of all segments on the circumference of a discrete
circle (i.e.,n many points equally spaced on the circumference of a two-dimensional circle,
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with n ≥ 6), where the length of each segment is less than half of the circumference. It is
clear thatC1 is intersection-closed, andVCdim(C1) = 2.

Let us show an adversary strategy that will force any algorithm to make at least three
mistakes onC1. The first time the algorithm makes a prediction, the adversary will declare
a “mistake”. We now show that the concepts that are consistent with that answer have a pair
of points that they shatter. Moreover, the adversary can force the algorithm to err before
having to determine the label of each of these points. If the learner predicted(x, 0) (for
some pointx on the circle), then the two neighboring points ofx (one on each side) are such
a pair (since the target may be a segment of 1, 2 or 3 points). If the learner predicted(x, 1),
then the adversary (now committed to a 0 onx) marks to itself the point that is antipodal to
x as being in the target. The same argument implies that the two neighbours of this marked
point constitute a pair as required. (It is easy to see thatC1 can indeed be learned with three
mistakes.)

We constructCd by usingd disjoint copies ofC1, i.e.,d circles with a concept being a set
that contains one segment on each circle. It is easy to see thatVCdim(Cd) = 2d and that
the above strategy, when duplicatedd times, once for each circle, will force 3d mistakes.

4. Teacher-directed complexity

As stated in Rivest & Yin (1995), most “natural” concept classes are easier to learn in the
self-directed model than in the teacher-directed model. This raises the question of whether
the teacher’s knowledge of the target function may be of any help to a “smart” self-directed
learner. Rivest & Yin (1995) give an example whereMtd(C) < Msd(C) for the case where
the self-directed learner is limited, in each step, to polynomial time in the size of each
example (not in the size of the concept class). Their example relies on some cryptographic
assumptions. We present here an example where teacher-directed learning will require less
examples than the number of mistakes self-directed learner will make, without imposing
any limitations on the self-directed learner.

Lemma 2. For the classesCd
n of Lemma1, Mtd(Cd

n ) = d + 1.

Proof: We present a strategy for the teacher that will allow any consistent learner to infer
the target functions after receiving no more thand + 1 examples. Let the teacher use the
following algorithm:

• For a targetct present thed coordinates on the diagonal of the matrix (the coordinates
for which concepts in the same block asct may have any behavior).
• If the target concept labels all thesed points identically (all 0’s or all 1’s), present one

more example from another block of the same innermost matrix as the one the target is
in (i.e., another block that is in the same copy ofCd

1 as thed examples already given to
the learner) that will differentiate it from the case where the firstd examples were taken
from a block that is all 1’s or all 0’s (for example, if the target is taken from the first
third of a copy ofCd

1 , and for the firstd coordinates its values are all 0’s, the teacher will
present an example that falls into the third block column of the same copy ofCd

1 whose
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value will be 0, as rows whose first third is all 0’s and belong to the second block-row of
Cd

1 will have a 1 inthat position).

It is immediate that there will be only one concept inCd
n that is consistent with the first

d + 1 examples presented according to the above strategy. 2

Corollary 6. The self-directed complexity of a concept class is not bounded by any
function of its teacher-directed complexity. Namely, for every n and d≥ 3, there exist a
concept class whose teacher-directed complexity is d, yet its Msd exceeds n.

5. Generic self-directed learning algorithms

In this section we address the existence of generic learning algorithms for a given family
of learning problems. Do there exist efficient algorithms that, given a concept class as an
input, output a ‘good’ learning algorithm for it?

The meaning of ‘efficiency’ is not immediately clear in the context of such algorithms.
Usually, a learning algorithm is considered to be efficient if its running time is polynomial
in the size of an example and in the size of the description of the target concept. That
is, an algorithm for a finite classC over a finite domainX is efficient if its running time
is polynomial in(log(|X |), log(|C|)). In the ‘generic learning’ task, the classC is also a
part of the input, so we expect the running time of the algorithm to depend upon the size
of a description ofC as well. Clearly, the choice of representation for the input concept
classes plays a crucial role. One simple option is to represent each input concept class as a
binary matrix. More precisely, a concept class corresponds to a binary matrix in which the
(i, j )th entry is 1 if and only if thej th element ofX is labeled 1 by thei th concept inC.
Papadimitriou & Yannakakis (1993) provide evidence that, using this matrix representation,
the problem of finding the VC-dimension of a class cannot be decided in polynomial time.
Frances & Litman (1995) show that the VC-dimension problem is reducible to any generic
mistake-bound-optimal On-Line learning algorithm. In other words, any generic On-Line
learning algorithm, that makes the optimal number of mistakes on every concept class, runs
in time that is, up to a polynomial factor, larger than that of some algorithm for the VC-
dimension search problem (when the whole concept class, as a binary matrix, is considered
a part of the algorithm’s input). Regretfully, we do not have similar results concerning the
complexity of generic self-directed learning algorithms. On the other hand, we cannot offer
an efficient generic self-directed learning algorithm that will make the optimal number of
mistakes on any concept class. We conjecture that such algorithms do not exist.

In this section we present an efficient generic algorithm for self-directed learning. This
algorithm follows the basic ideas of the Halving algorithm (Littlestone, 1988, 1989). Our
algorithm receives as input the concept class from which the target is chosen and then runs
as a learning algorithm for this class. Our generic algorithm is efficient in the sense that
its running time for a classC over some domainX (and any targett ∈ C) is polynomial in
(|C|, |X |). While we show that for some classes it does achieve optimal learning complexity,
we also show that there exist classes on which it does make more than the optimal possible
number of mistakes.



P1: ABL

Machine Learning KL641-04-ben-david September 8, 1998 16:48

98 S. BEN-DAVID AND N. EIRON

Algorithm 1.
1. Initialization: Set i← 0 andCcons← C.
2. Let

X ′ 4= {x ∈ X | C(x=0)
cons 6= ∅ ∧ C(x=1)

cons 6= ∅
}

Find xi ∈ X ′ such that∣∣∣∣C(xi=0)
cons

∣∣− ∣∣C(xi=1)
cons

∣∣∣∣ = max
x∈X ′

∣∣∣∣C(x=0)
cons

∣∣− ∣∣C(x=1)
cons

∣∣∣∣
Set pi such thatC(xi=pi )

cons ≥ C(xi=1−pi )
cons .

3. Predict pi on xi .
4. After being given ct (xi ), setCcons← C(xi=ct (xi ))

cons and set i← i + 1.
5. If |Ccons| = 1 thenCcons= {ct }, and we are done. Otherwise, go to step2.

This algorithm is based on the same principal as the Halving algorithm (Littlestone,
1988, 1989), that is, keeping the set of all concepts that are consistent with the examples
received so far and predicting a value that most of the concepts are consistent with. The
only difference is that this algorithm also chooses the next point on which to predict by
choosing a pointxi for which the difference between the number of consistent concepts that
havexi ∈ c and those who havexi 6∈ c is the greatest. This is a heuristic that is based on
the hope that making a mistake on such a sample point will be very profitable to the learner,
as it will shrink the set of consistent concepts by as much as possible in a single step.

It is easy to see that the running time of this algorithm is polynomial in the size of its
input (the input isC and each step requiresO(|C| · |X |) time).

While in the worst case this algorithm performs no better than the Halving algorithm, for
many “natural” problems it gives optimal performance, even for classes whereMbest(C) >
Msd(C). We present here two examples for which Algorithm 1 is optimal. These include
the class of monotone monomials and the concept class presented in (Ben-David, Eiron, &
Kushilevitz, 1995, Theorem 9), for which self-directed learning is better than best sequence
learning.

Example 2(Monotone monomials). It is known thatMsd(CMM ) = 1 (Goldman & Sloan,
1994).

That result is achieved by predicting negative on all assignments ton variables, starting with
the assignment that assigns false to every variable, moving to all assignments that assign
true to a single variable, then to those that assign true to two variables, etc.

Claim 1. Algorithm1 will make one mistake onCMM .

Proof: All there is to show is that at every stage there is a variablexi such that|C(xi=1)
cons | =1.

This will ensure that the algorithm will predict false on thatxi , and if mistaken, the target
will be known to it.

Let x be an assignment that assigns “true” to a minimal numberk, of variables, among
all assignments that still satisfy some concepts inCcons. It is clear that such an assignment
satisfies a single monotone monomial inCcons(if there are two monotone monomials thatx
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satisfies, at least one of them contains less thank variables, as there is surely just a single
concept withk variables that is satisfied byx. This contradicts the assumption that all
assignments that assign true to less thank variables do not satisfy any concept inCcons). It
follows thatx satisfies the above condition, and Algorithm 1 will make just one mistake on
CMM . 2

Note that for the class of monotone monomials, an optimal Best Sequence algorithm will
also make a single mistake. This proof can be easily extended to the class of monomials,
where the optimal mistake bound is 2.

The following example shows that Algorithm 1 exploits the power of self-directed learn-
ing, showing that it is sometimes optimal even for classes whereMbest> Msd.

Example 3(Power of Adaptiveness). In the proof of (Ben-David, Eiron, & Kushilevitz,
1995, Theorem 9) a set of concept classes for whichMsd(C) = 2 but Mbest= Ä(logn) is
introduced.

These concept classes are defined as follows: The concept classC consists of 2· 2d func-
tionsC = { f1, . . . , f2d , g1, . . . , g2d} defined overX = {z, x1, . . . , x2d , y1, . . . , y2d}. Each
function fi is defined as follows:fi (z) = 0; fi (xi ) = 1; fi (xj ) = 0 for all j 6= i (i.e.,
there is a singlexi which is assigned 1 and hence can be observed as an indicator for the
corresponding functionfi ). The variablesy1, . . . , y2d are partitioned intod “blocks” each
of size 2d/d, where variables in the same block are equivalent with respect tof1, . . . , f2d .
Each of the 2d functions fi gets one of the 2d possible behaviors on thesed blocks. The
functionsg1, . . . , g2d are defined similarly by switching the roles ofx’s and y’s. More
precisely,gi (z) = 1; gi (yi ) = 1; gi (yj ) = 0 for all j 6= i (i.e., this timeyi serves as an
indicator for the corresponding functiongi ). Again, the variablesx1, . . . , x2d are partitioned
into d “blocks” of 2d/d equivalent variables. Each of the 2d functionsgi gets one of the 2d

possible behaviors on thesed blocks.

Claim 2. For this class. Algorithm1 will make at most Msd(C) = 2 mistakes.

Proof: At first, Algorithm 1 will pick any of thexi ’s or the yi ’s (but notz) and predict
0 for it (because exactly 1+ 2d−1 of the concepts include each of these points, and the
majority does not). This will continue until the algorithm is first mistaken. Note that if the
algorithm make a correct prediction on a pointxi , the part of the concept class that will
remain consistent will have all the targets of the formf j , except for fi , and exactly half
of the concepts of the formgj . The algorithm will now continue to predict on points of
the formxj (not yj ) until being mistaken, as most of the concepts that were found to be
inconsistent had an equal number of 1’s and 0’s for each of thexj ’s (so the number of 1’s
was cut by almost a half), while having only a single 1 for anyyj .

Without loss of generality, let us assume that Algorithm 1 makes its first mistake onxi .
Now, the concepts that are still consistent with Algorithm 1’s observations are:fi and some
of the gj ’s. Note that forz, there is only a single consistent function that hasfi (z) = 0.
This means that if Algorithm 1 will make a mistake before predicting onz, it will be its
last mistake (as the point on which it will predict will have just one concept that assigns



P1: ABL

Machine Learning KL641-04-ben-david September 8, 1998 16:48

100 S. BEN-DAVID AND N. EIRON

the “wrong” value to it, or Algorithm 1 would have triedz before). Once Algorithm 1
predicts onz, and is not mistaken (again, if it is mistaken, the only consistent function
that will remain is fi , and no more mistakes will be made), the only functions that remain
consistent are of the formgj . For all these functions there are now pointsyj that have a
single function that assigns 1 to them, so Algorithm 1 will predict on all these points before
trying any others, and it will, finally, be mistaken on one of them, leaving, once again, a
single consistent function.

All in all, Algorithm 1 will make no more than two mistakes: One onxi and the other
one, either onz or on one of theyj ’s. This shows that Algorithm 1 actually exploits the
power of adaptiveness. 2

However, it can also be easily shown that Algorithm 1 is not always optimal.

Theorem 7. For every integer k≥ 1 and d> 3+ k there exists a concept classCd
k such

that Msd(Cd
k ) = d while Algorithm1 can be forced to make d+ k mistakes onCd

k .

Proof: Let us describe the concept classesCd
k . These concept classes are defined over

an instance spaceX of k + n · 2k points, wheren
4= 2

d
2+1 andX = {y1, . . . , yk, x1, . . . ,

xn·2k}.
Cd

1 is constructed as follows: The first 2d concepts assign 0 toy1, while the other
n2− n+ 2 concepts assign 1 toy1. The xi ’s are set to be duplicated blocks of all 2d

binary vectors of lengthd for the first 2d concepts, and are set to the class of all segments
on the circumference of a discreten-circle for the rest of the concepts (there aren2− n+ 2
segments on the circumference of a discreten-circle).

It can be easily verified that the class of segments of a discrete circle can be learned by
a self-directed algorithm with at most three mistakes. It is also clear that the class of all
2d binary vectors of lengthd cannot be learned in less thand mistakes. This implies that
an optimal self-directed algorithm forCd

1 will first predict 0 ony1. If it is correct, it can be
forced to maked more mistakes, and if it is wrong, it will make no more than three more
mistakes, for a maximum total ofd mistakes. Algorithm 1 on the other hand, will also
guess first ony1 (as allx’s have an equal number of 0’s and 1’s), but it will predict 1 (as
there are just 2d = n2

4 concepts for whichy1 is 0, while there aren2 − n+ 2 concepts for
which it is 1). This will force up tod + 1 mistakes onCd

1 as required.
GivenCd

k we constructCd
k+1 as follows:

• The first part ofCd
k+1 will assign 0 toyk+1, be the same asCd

k for all othery’s, and will
have two exact duplicates of eachxi fromCd

k for its x’s (there are twice as manyx’s now).
• The second part ofCd

k+1 will assign 1 toyk+1, assign 0’s and 1’s arbitrarily to the rest of
the y’s, making sure that on the total, each ofy1, . . . , yk has an equal number of 0’s and
1’s (since this part is more than double in size than the first part, such an assignment can
be found), and will assign to thex’s all segments on a discreten · 2k−1-circle.

It can be easily verified that under the assumptions ford andk, this construction leaves
Msd(Cd

k+1) = d but Algorithm 1 will first predict 1 onyk+1, and if mistaken, will make one
more mistake for the classCd

k+1 than it did forCd
k . 2
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Having demonstrated classes for which Algorithm 1 is not optimal, it is only natural to
try to improve it. The first step that comes to mind is to enhance the algorithm’s look-ahead
capability. We thus go on and define a family of algorithms based on the same heuristics as
Algorithm 1. Each of these algorithms is based on approximating the number of mistakes
it will do for any remaining subset of the concept class by using the previous algorithm to
learn the subset. More formally, we define the following sequence of algorithms:

Algorithm 2. LetA1 be Algorithm1. DefineAn+1 as follows:
1. Initialization: Set i← 0 andCcons← C
2. Find xi ∈ X and pi ∈ {0, 1} such that

Msd
(
An, C(xi=1−pi )

cons

) = min
x∈X ,δ∈{0,1}

Msd
(
An, C(x=δ)cons

)
Predict pi on the above xi . After being given ct (xi ), setCcons← C(xi=ct (xi ))

cons and set
i ← i + 1

3. If |Ccons| = 1 thenCcons= {ct }, and we are done. Otherwise, go to step2.

Considering the classesCd
k used in the proof of Theorem 7, it is immediate to realize

that the algorithmAn+1 will be optimal for all the classesCd
k for which k ≤ n. It follows

that the sequence of algorithms,{An : n∈N} is of strictly increasing self-directed learning
capabilities (in the sense that for everyn, the algorithmAn+1 makes on every class at most
the number of mistakes made on this class byAn, and on some classes,An+1 makes strictly
fewer mistakes thanAn).

6. On thequery complexityof self-directed learning

The information complexity of on-line learning tasks is commonly measured by either the
number of student’s queries or by the number of mistakes made by the student. The query
complexity measure is usually used in models in which the learning communication is
student-driven, while the mistake bound measure is more common in models with teacher-
driven learning communication.

The self-directed learning model may be viewed as a mixture of these two types of models.
On one hand, it is naturally presented in terms of a student-driven learning scenario; yet,
on the other hand, it uses mistake counting for its definition of learning complexity.

A fully student-driven version of the self-directed learning model may be obtained by
changing its complexity measure to the number of student queries (rather than mistakes).
The resulting model may be viewed as a restricted version of the Maass-TuranPartial
Equivalence Query(PEQ) model (Maass & Turan, 1992). In that model, the student presents
hypotheses that arepartial functions fromX to {0, 1}. In response to its partial-function
query, the student gets a counterexample from the query’s domain (that is, a pointx ∈ X
on which the query function is defined and its value differs from that of the target function).
By restricting the student to asking only hypotheses whose domains are singletons, one gets
the self-directed learning scenario.4
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Another way to view this model is as Membership Queries Only learning (MQ). In the
MQ model the student queries the teacher by presenting a point of the domain set and
gets, in response, the value of the target function on that point. The student is charged by
the number of queries it makes. This is exactly the model one gets by the restriction to
singletons of the PEQ model (and ignoring the value that the student’s hypothesis assigns
to the domain point). The main difference between the MQ (or the restricted PEQ) model
and the self-directed model is in their definition of learning complexity. On one hand, by
charging for queries, rather than mistake, the SD model becomes the restricted PEQ or the
MQ model, while on the other hand, it is not hard to see that as far as the mistake bound
measure is concerned, the (restricted or unrestricted) PEQ and the self-directed learning
models are equivalent.

Therefore, it is natural to investigate the query complexity of self-directed learning, in
addition to its mistake-bound complexity.5 As a first step in this direction, we have the
following trade-off formula between the number of queries and the number of mistakes of
any self-directed learning algorithm. Yin (1995) addressed this issue independently (and at
the same time with the conference version of our work (Ben-David, Eiron, & Kushilevitz,
1995)). She proves a similar trade-off formula and provides several examples of classes
for which there exist learning algorithms that almost meet the query complexity bounds
implied by the formula. Our proof below is much simpler than the one in Yin (1995).

Definition 4 (Self-directed query complexity). Given a self-directed learning problem
(C,X ) and an algorithmA for it, let qA denote the maximum, over all possible targets
t ∈ C, of the number of queries made by the algorithmA during the learning protocol when
applied to the targett .

Theorem 8. For all X , C and for every self-directed learning algorithmA, let mA denote
Msd(A) then,
1. log(|C|) ≤ mA · log(qA).
2. |C| ≤∑mA

i=0(
qA
i )

Proof: Note that part 1 of the theorem follows from part 2 (usend as an upper bound
to
∑d

i=0 (
n
i ) and take the logarithm of both sides of the inequality). Part 2 of the theorem

is implied by the following simple argument: Given a self-directed learning algorithmA
for a classC, each concept inC is uniquely determined by the set of queries on which
the algorithm errs when the teacher’s responses correspond to this concept. The theorem
follows by noting that this set of queries is, in turn, determined by the set of their indices in
the sequence ofA’s queries. 2

7. Conclusions and open problems

In this paper we discussed some combinatorial problems related to the information com-
plexity of self-directed learning. We have fully resolved the question of the relation between
the self-directed complexity of a class and its VC-dimension by showing that none of these
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parameters imposes any bound on the other. We have also obtained a similar result concern-
ing the relation between the self-directed and the teacher-directed complexity of a concept
class. Concerning the family of intersection-closed classes, we have shown that there exist
such classes for which the self-directed complexity can exceed the VC-dimension by a ratio
of 3/2. We do not know whether this result is the best possible, namely,

Open Problem 1. Is it true that, for every intersection-closed classC, Msd(C)≤ 3/2
(VCdim(C))?

Rather than addressing the computational complexity of the self-directed learning problem
for specific classes, we discussed, in Section 5, the existence of a fixed ‘generic’ algorithm
that will learn every concept class. Frances & Litman (1995) addressed the analogous
problem for the On-Line learning model and showed that the problem of computing the
VC-dimension of a class is reducible, via the problem of computing the On-Line mistake
bound of a class, to the existence of a generic On-Line algorithm that is mistake-bound-
optimal for all classes. This results is a strong indication to the computational hardness of
generic mistake-bound-optimal On-Line learning algorithms. Regretfully, we do not have
a similar result for self-directed learning. It is quite easy to see that, like the case for
On-Line learning, self-directed generic optimal learning is poly-time equivalent to the task
of calculatingMsd(C) (on inputC in its matrix representation). The main open problem
along this line of research is whether a result like the Frances-Litman reduction holds for
self-directed learning, namely,

Open Problem 2. Does there exist an algorithm that, on inputC, calculates the VC-
dimension ofC in polynomial time(in the binary matrix representation ofC) using an
oracle that provides the self-directed mistake bound of classes?

Notes

1. In fact, the models defined in Ben-David, Kushilevitz, & Mansour (1995) allow restricting the instances to
some subsetSof the instance space. To simplify the presentation we omit this generalization from this paper.

2. Ben-David, Kushilevitz, & Mansour (1995) restrict the learner to a subsetS⊆ X of the instance space. For
clarity, our definition follows the more standard definition of Littlestone (1988, 1989). However, it can easily
be extended to include this additional ingredient.

3. A ClassC is calledintersection-closedif for every two conceptsc1, c2 ∈ C alsoc1 ∩ c2 ∈ C.
4. Note that, without this restriction, the PEQ model is strictly stronger than the SD model. For an example,

consider a concept class ofn-many singletons. Clearly, both a PEQ and a self-directed learning algorithm can
learn it with only one mistake. As for queries, PEQ can settle for only one query, while for any self-directed
learning algorithm there is a concept in the class on which it will be forced to maken − 1 queries. When
Goldman & Sloan (1994, Section 7) discuss the relation of the SD model to the PEQ model, they state the
converse statement, namely, that the self directed learning model is more powerful than the PEQ model. One
should note, however, that their claim is only due to the bias inflicted by using a different complexity measure for
each of these models (they compare the number ofmistakesmade by an SD learner to the number ofqueries
made by a PEQ learner).

5. Goldman & Sloan (1994) state, in the definition of the self-directed model, that the student should eventually
ask every single member of the domain. For the purposes of our discussion, we adopt the approach of Maass
& Turan (1992) and view the learning process as complete once only one member of the concept class remains
consistent with the data collected so far.
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