ﬁ:‘ Machine Learning, 35, 4155 (1999)
‘ © 1999 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

An Efficient Method To Estimate Bagging'’s
Generalization Error

DAVID H. WOLPERT dhw@ptolemy.arc.nasa.gov
NASA Ames Research Center, Caelum Research, MS 269-1, Moffett Field, CA 94035

WILLIAM G. MACREADY wgm@biosgroup.com
Bios Group, LP, 317 Paseo de Peralta, Santa Fe, NM 87501

Editor: Pazzani

Abstract. Bagging (Breiman, 1994a) is a technique that tries to improve a learning algorithm’s performance
by using bootstrap replicates of the training set (Efron & Tibshirani, 1993, Efron, 1979). The computational
requirements for estimating the resultant generalization error on a test set by means of cross-validation are often
prohibitive, for leave-one-out cross-validation one needs to train the underlying algorithm on the ardeimogs,

wherem is the size of the training set andis the number of replicates. This paper presents several techniques
for estimating the generalization error of a bagged learning algorithm without invoking yet more training of
the underlying learning algorithm (beyond that of the bagging itself), as is required by cross-validation-based
estimation. These techniques all exploit the bias-variance decomposition (Geman, Bienenstock & Doursat, 1992,
Wolpert, 1996). The best of our estimators also exploits stacking (Wolpert, 1992). In a set of experiments reported
here, it was found to be more accurate than both the alternative cross-validation-based estimator of the bagged
algorithm’s error and the cross-validation-based estimator of the underlying algorithm’s error. This improvement
was particularly pronounced for small test sets. This suggests a novel justification for using bagging— more
accurate estimation of the generalization error than is possible without bagging.

Keywords: Bagging, cross-validation, stacking, generalization error, bootstrap

1. Introduction

This paper is concerned with the problem of supervised learning, in which one is provided
a training set of input-output pairs sampled from a “target” input-output distribution, and
uses a “learning algorithm” to convert that training set into an estimate of the target. In
the technique of “bagging” (Bootstrap Aggregating (Breiman, 1994a)) one tries to improve
this inference of the target, by running one’s learning algorithm many times and averaging
the results. Bagging often works quite well. Unfortunately though, the computational
requirements for estimating its generalization error by means of cross-validation are often
prohibitive, due to the many rerunnings of the underlying learning algorithm.

In this paper we investigate fast alternatives to traditional cross-validation for estimating
bagging’s generalization error. The best-performing of those alternatives, which exploits
the idea of “stacking” (Wolpert, 1992), is not only far faster than cross-validation; it also
results in more accurate estimation of the bagged algorithm’s generalization error than does
cross-validation. The estimate is even more accurate than is cross-validation run on the
original, unbagged algorithm. This suggests a novel justification for using bagging— more
accurate estimation of the generalization error than is possible without bagging.

Our notation is as follows: LeX be an input space arid an output space. Letbe a
training set ofm input-output pairs{z*, y*}, formed by sampling a “target” input-output

42 WOLPERT AND MACREADY

distribution P(y € Y|z € X), indicated byPy, or just f for short. Unless explicitly noted
otherwise, % € Y will always refer to an output value formed by sampling the target.

Let i indicate a hypothesis input-output distributi®iy € Y|z € X), generated by a
learning algorithnG in response to a training set. All hypotheses considered in this paper
(e.g., in the experiments) will be single-valued functions fr&no Y (i.e., the hypothesis
probability distributions will bec-parameterized delta functions ou€}, though the ideas
naturally extend to non-single-valued hypotheses. Similarly, we will only explicitly discuss
deterministic learning algorithms that always guess the Jameaesponse to the sanade
although the ideas extend to algorithms with a stochastic component. When the training
set must be indicated bd can be assumed, we will wrife;.

Inbagging, rather than use the hypothésiseates after training of) one uses the average
of the hypothese§ creates by training on thesetsd,. Thed, are created in some manner
from d. In Breiman’s work thel; are “bootstrap replicates” @f, i.e., eachd;, is created by
sampling the pairs il uniformly with replacementn times (Efron & Tibshirani, 1993,
Efron, 1979). In general, one would expect that bagging improves generalization for “un-
stable” learning algorithms, that is for algorithms for whichis a sensitive function aof.
Bagging does not usually help “stable” learning algorithms (Breiman, 1994b).

When used directly to generalize fraipwe will refer toG as the “underlying algorithm”.
Wheninstead one averages the hypothésareates from the’,, we will refer to the resultant
mapping fromd to hy as the “bagged algorithm”.

Clearly the use of leave-one-out cross-validation to estimate the generalization error of
the bagged algorithm can be prohibitive, since one needs to train the underlying algorithm
muv times. Even forJ-fold cross-validation, you have to train the underlying algorithm
on the order of/v times. Such onerous computational requirements for estimating the
associated generalization error are a major impediment to the real-world use of bagging.

This paper presents several techniques for circumventing this problem, and thereby fa-
cilitating the real-world use of bagging. In particular, it is shown how the bias-variance
formula (Geman, Bienenstock & Doursat, 1992, Wolpert, 1996) can be exploited to esti-
mate the generalization error of a bagged learning algorithm without additional training
of the underlying learning algorithm; only the originaltraining runs used to create the
bagged algorithm’s hypothesis are needed.

In a set of experiments, the accuracy of several such estimators based on the bias-variance
formula are compared to both the accuracy of using cross-validation to estimate the gen-
eralization error of the bagged algorithm, and to the accuracy of using cross-validation to
estimate the generalization error of the underlying learning algorithm. The best of our esti-
mators exploits the technique of stacking (Wolpert, 1992). It actually estimates the bagged
algorithm’s generalization error more accurately than does the alternative cross-validation-
based estimator of either the underlying or the bagged algorithm'’s error. This increased
accuracy is a novel reason for using bagging. Importantly, this gain in accuracy becomes
more pronounced as one moves to smaller test sets. (Note that in the real world, one is
often only presented with a single test set element at a time.)

In Section 2 we review bagging and the bias-variance formula, and Section 3 presents
several ways to exploit that formula to estimate bagging'’s error, the last of which turns out
to be the best-performing. In Section 4 we present the results of our experiments comparing

ESTIMATE BAGGING’S GENERALIZATION ERROR 43

the accuracy of these estimators to each other and to the accuracy of cross-validation-based
estimators. In Section 5 we discuss our results, and in Section 6 we present future work.

2. Bagging

We are interested in the “generalization err6trineasuring the disparity betwegrandh
onatestseX valueg. Forthis paper, for a providéd-sample off atq (i.e., arandom sample
of P¢(:|q)), letthe generalization error be the square of the difference bet(eg¢and that
sample. Next define the expectation valti¢q) = E(h(q)|f,m) = >, P(d|f,m)ha(q);
this is the guess atmade by the averagde;, formed byG in response to training sedsof
sizem sampled fromf according to the likelihood given b¥(d|f, m). In this paper, we
will implicitly assume the IID likelihood:P(z*, y*| f, m) = []\~, Ps(y*|z*)w ("), where
7(+), the unconditioned distribution ove¥, is called the “sampling distribution”.

Next define the averagg value of the target af as f*(q) = Zy yPs(ylg). Then up
to an overall additive constant that is independent of the learning algorithm, the expected
value ofC conditioned onf, the training set size, andg, is

B(C|f,m.q)= 34 Pldlf,m) (ha(a) ~ /*(2))° .o
= (*(q) = f*(@)” + X P(dlf,m)(hala) — h*(q))"-

This is the famous bias-variance formula (Geman, Bienenstock & Doursat, 1992,
Wolpert, 1996). The first term on the right-hand side is the (square of the) bias. It measures
how well the averagé matchesf*. The second term is the variance. It measures how
muchhgy “bounces around” ag's sampled fromf change.

A learning algorithm is defined to be unstablé&ifis a sensitive function af (Breiman,
1994b). For such a learning algorithm, the variance contributes substantially to the expected
error. As an example, Breiman argues that due to the existence of many local minima in
the energy surface, the learning algorithm of backprop-trained neural nets is unstable.

Now fix G and thereforé,*(¢). Consider a separatkindependent learning algorithm
that responds with that same hypotheésigq) for anyd it is “trained” on. That algorithm
has the same bias & However since that algorithm’s hypothesis does not vary wijth
its variance is zero. Accordingly, @ is unstable, the expected error for that algorithm that
always guesseis*(q) regardless ofl is significantly less than that @f.

The difficulty with exploiting this effect to aid real-world generalization, of course, is the
fact that we cannot evaluaké (¢) in practice, since we only have access to a single training
setd, whereagi*(q) is defined in terms of an infinite number of training sets. Breiman’s
insight was that one can produce a “mimic” fo(q). Intuitively, one starts witkl, and then
uses density estimation techniques to estinfateom d. One then samples that estimate
repeatedly and runs the learning algorithm on those samples, and in this way produces a
mimic of h*(q).

To the degree that one’s mimic af (¢) approximates the true*(q) (regardless of the
d used to create that mimic), it follows that guessing with the mihfig;) rather tham,
will result in lower expected generalization error. Breiman argues that one should similarly
expect that bagging improves average misclassification generalization error (as opposed to
the quadratic error discussed here).

44 WOLPERT AND MACREADY

The density estimation technique Breiman used also directly provided his samples of that
density estimate: it was the bootstrap procedure (Efron & Tibshirani, 1993, Efron, 1979).
This is both the maximum-likelihood density estimator and an unbiased density estima-
tor. The samples of the bootstrap-estimafedre called “replicates”. See (Wolpert &
Macready, 1996) for a discussion of some theoretical caveats behind the utility of bagging,
and (Wolpert, 1996) for theoretical caveats about the bootstrap procedure in general.

3. Estimating Bagging’s Error
3.1. Overview

Under the hypothesis of bagging, the mimicidfq) produced by bagging is a close ap-
proximation to the actuat*(q), i.e,, h*(q) closely approximates the bagged algorithm’s
guess. Therefore, up to a learning-algorithm-independent constahe bagged algo-
rithm’s generalization error is closely approximated(ihyi(q) — f*(q))Q, i.e, itis given

by the square of the underlying algorithm’s bias. Accordingly, by Equation (1), under
these assumptions one could find the error of the bagged algorithimyagubtracting the
underlying algorithm’s variance atfrom the underlying algorithm’s expected error there.

(x cancels the similar learning-algorithm-independent constant in the bias-plus-variance
formula.) We can write this as

EBagged G (q) ~ EG(Q) - VG(Q)

So to find (an approximation to) the average of the bagged algorithm’s error oyenall
a test set, one simply averages the expected error of the underlying algorithm over all such
¢ and subtracts from it the-average of the underlying algorithm’s variance.

Both that underlying algorithm’s variance and expected error can be estimated in many
different ways €.g, via cross-validation). For our purpose though, since we want to avoid
additional retraining of our underlying algorithm, the natural thing to do is estimate that
variance and expected error by using some variant of the bootstrap procedure — in forming
the bagged algorithm we have already formed/theq) needed by that procedure, and
therefore with such an approach no retraining is needed to perform our estimations.

3.2. Estimation Schemes Based on the Bias-Variance Decomposition

Our task is to use the bootstrap replicates at hand to estimate the difference between the
expected error and variance of the underlying algorithm. In this subsection, we first intro-
duce several estimators all of which perform this task satisfactorily. These estimators all
have some (subtle) shortcomings though. These shortcoming motivate our stacking-based
estimator, which is introduced below. Although only a slight modification of the esti-
mators introduced here, that stacking-based estimator significantly outperforms the other
estimators.

Consider the following three estimatdrgq) for the variance at point.

ESTIMATE BAGGING’S GENERALIZATION ERROR 45

V1. In the first variant, we start by calculating the variance at a training set poast one
varies the replicates. Withthe number of replicates,

5, (hay (@) — [hay)/])

v—1

V1 (SCZ) =

We then take the average of the variance over the elements of the test set (which is what
we're ultimately interested in) to equal the averagé/gfr?) over thex?.

V5. Inthe second variant, one is careful to avoid the over-fitting problems that can accom-
panyV;(z%). So one uses a modification bf (z*) where the two sums occurring in
V1 («*) each only run over those replicates that do not contain the pbi(with “»”
implicitly redefined to be the number of such replicates).

Vs3: The final variant is also almost identical¥®(q). Here the difference is that one does
not calculate thé’ (z*) for all 2 and then assume that the variance at all test set points
q is given by the average (ovet) of V' (z*). Rather one directly estimates the variance
at the pointsg; in the test set that one is interested in:

5, (hay @) — [, (0)])

Vs(q) 1

The average of the variance over thén the test set is then simply taken to be the
average ol/3(q) over thosey.

For the expected error of the underlying algorithm we started with the following two
estimators:

Ei: Eq(q) is like Vi (q). For eachr’,

> (hay () — yi)Q

v

E1 (:CZ)

E1(q ¢ {='}) is undefined, and we take the averagd’fq) over the elements of the
test set (which is what we're interested ift),, to equal the average @f, (z*) over the
Ii.

Es: Es(q) is identical toE (q), except that to avoid over-fitting problems the sum only
goes over those replicates that do not contginandy is implicitly redefined to the
number of such replicates. Similar modificationsfafdefineE;.

Since there are ng/ provided to us for the in the test set, there is no analogud/ffor
the expected error of the underlying algorithm.

Now for large enoughy, for bothi = 1 and: = 2 the differenceE;(x) — V;(x) is
almost never strongly negative, since it is closely approximate(c[@g. ha; (x)/v] — y)2
(where the sum implicitly only runs over the replicates appropriate for the choiée of
This is proper behavior, since by definition the bagged algorithm’s error is non-negative.

46 WOLPERT AND MACREADY

Unfortunately though, unless one is usivigtogether withZ;, or V; together withEs, it is
common for the estimate of the bagged algorithm’s error to be substantially neghtve. (

fori # j, E; — Vj is often very negative.) The simplest way to address such problems is
to replace all such negative estimates with an estimate of zero (so our estimator becomes
[E; — V;]T). Alternatively, one could just refuse to use the offending combinatior; of
andE; for the situation at hand.

3.3. A More Nuanced Decomposition

There are several assumptions that lie behind the use of the bias-variance formula to estimate
the bagged algorithm’s error, not least of which is that the bagged algorithm’s hypothesis
is a good mimic of.*(¢). Most of those assumptions can be circumvented if one instead
uses the decomposition introduced in this section.

In actuality, we are not interested in an average error over many training sets; rather we are
directly interested in the expected quadratic loss of the bagged algorithm given the precise
replicates and test set input values at hdral, we are interested in the expectation value

hg
Err(q) :E([Zd’y(q) —y]2

f{di}q)

whereg is a test set input value. Note that sincand the{d; } are fixed in this expectation
value (as they are whenever we use bagging in practice), the guesses of both the underlying
and bagged algorithms are fixed, and the only varying quantity is the vajydared by
samplingf atgq.

Simple algebra verifies that we can writer(q) = E.(q) — V.(q), where

[hay (q) — y]?

Ec(q) = E(Z 7”, {dg}MI),
and

V@) = 2 3 [0~ (D h @)

J

Note thatV.(q) is identical toV3(q), except that we divide by rather than — 1. In
particular, we can measufé.(¢q) exactly for allg in the test set, just as we can measure
V3(q) exactly for all suchy. However there is one crucial distinction between the two
quantities: InV.(¢) we have a direct evaluation of one of quantities occurring in the
associated decomposition. In contrdgf(q) is anestimateof a quantity occurring in its
associated decomposition (namely, an estimate of#feeraged variance).

Becausd/.(q) as empirically measured is exactly one of the two quantities occurring in
the decomposition of what we really want to know (nam&ly-(¢)), the only quantity we
must estimate — the only possible source of approximation error in our new decomposition
- —is E.(q). This contrasts with the schemes defined above, for which two quantities
must be estimated; with this new decomposition not only are we directly addressing what
we really want to know, we also have one fewer quantity to estimate.

ESTIMATE BAGGING’S GENERALIZATION ERROR 47

An obvious way to try to exploit our knowing. exactly is to estimat&,. with one of the
E; (FE1 or E») introduced above, and then estimate bagging’s error by subtrdgtifigm
that E;. However if we simply usé;(q) — V.(q) as our estimator with one of th&;(q)
introduced above, we do not get an improvement over uBifg) — V;(q) as our estimator
(see experimental results below). This despite the fact thatilat is an (infinitely) more
accurate estimate of the quantity we wish to subtract fignthan isV;(q).

Part of the reason for this is that whereas (usualy}q) — V;(q)] > 0 —as isErr(q)—
the quantity F; (¢) — V.(q)] is often substantially negative. If one compensates for this by
forcing non-negativity on the&; (¢) — V..(¢) estimator (by replacing it with®; (¢) — V..(¢)]
— see above), performance improves. However the performance still is no better than that
associated with the best of thi&(q) — V;(¢) estimators, thé’;(¢) — Va(gq) estimator (see
experimental results below).

To understand why theZs (¢) — V.(q)]" estimator does not outperform thig(q) — V2 (q)
estimator at approximating.(q) — V.(g), note that the inaccuracy accompanying the
replacement of.(q) with E;(¢) — an inaccuracy both th&;(q) — V;(¢) estimator and
the [Ei(q) — V.(q)]" estimator must make — can be aligned in sign with the inaccuracy
accompanying the replacementdf(¢) with V;(¢q). In such cases, replacirig.(q) with
Vi(q) in our estimator may actually result in a smaller absolute value of the inaccuracy in
our estimate ofz.(¢) — V. (q).

This aligned-signs behavior is not a sufficient condition for the superiority aEtke) —
Vi(q) estimator{E;(q) — V.(q)]™ may still be superior ifV..(¢) — Vi(q)| is large compared
to|E.(¢) — Ei(q)|. Infact, if for some particulaithe random variable$, (¢) = V.(q) — V;
were uncorrelated (as one varies oggwith the random variable’,(¢) = E.(q) — E;
then even the naiv&;(q) — V.(q) estimator (which has no positivity constraint) would
be more correlated witlvrr.(q) = E.(q) — V.(q) than would be the&Z; — V; estimator.
Intuitively speaking, if one takes two random steps in a random walk where the steps are
uncorrelated with one another (and both have mean zero), then one must, on average, have
traveled further than if one had only taken a single random step.

The fact that this is not the case (see experiments below) meansitfgt andwi, (¢)
are correlated. This is not unexpected; for example for fixed valués ahdV;, if wi;(q)
is quite small, thew?, (¢) cannot be too large, sindérr(q) = E; — Vi + wi(q) — wi (q)
is always strictly non-negative.

In the limit wherew?,(¢) andw?, (¢) are perfectly correlatedy; — V; = E.(q) — V.(q)
exactly, and you can do no better than use fthe- V; estimator. However we would
never expect to have such perfect correlation. (In our experiments, we had quite strong
but not perfect correlation — correlation coefficients were on the order of 095op.)
Accordingly there is room to try to improve upon tlig — V; estimator. One way to
do this would be a Bayesian approach, where one uses thebdptavided by the off-
replicate points in the training set to estimate the expectation ia(ue.(¢) — V.(q) |
D,Ve(q), E.(q) > V.(q), E2,V2). An alternative approach, somewhat akin to empirical
Bayesian analysis, is described in the next section.

48 WOLPERT AND MACREADY

3.4. Using Stacking to Exploit Exact Knowledgé®{ q)

Rather than use something as complicated as a full Bayesian approach to exploit the fact
that we knowV,(¢) exactly, we can instead directly modify our estimatépfq) based on
its observed relationship with.(¢). In particular, one can use the bootstrap information
the replicates provide to estimate the relation betwié¢q) andE.(q), with the estimation
constrained to enforce the conditidin.(¢) > V.(¢). One would then use the resultant
probability distribution over possible values Bf.(q) — V.(¢) to estimateE.(q) from the
observed value o¥.(¢). Note that in doing this one is positing that there is a strong
relationship betweel.(¢) andE.(q).

More directly, one can use the bootstrap information to directly estithai€q) from
V.(q), and then combine that estimate “conservatively” with Fhe— V, estimate (say by
averaging). Thisin essence amounts to single-generalizer stacking with a bootstrap partition
set (Wolpert, 1992), where rather than try to improve the generalization of one’s system,
here one is instead trying to improve one’s estimate of the system'’s generalization accuracy.
(See (Wolpert & Macready, 1996) for discussion of how one can also successfully use this
same basic idea of combining bagging and stacking to get lower generalization error than
that given by conventional bagging.)

To implement this idea we used a simple linear mod&lr(¢) = aV.(q) + b, to ap-
proximate the mapping froi.(¢) to Err(q). The slopex and intercepb were estimated
by minimizing the summed squared error between thefine(q) = aV,(q) + b and the
m pairs {V,(z*), Err(x')} provided by the replicates and the training set. As stacking
advises, for each?, to avoid overfitting we calculatet.(z*) and Err(z*) by only using
those replicateé} that do not contain the point. (So in particular the value offor these
calculations varied from ongr, 3*) pair to the next, in general.)

Given such a fit, one might simply estimate the accuracy of the bagged algorithm at point
g asaV.(q) +b. However following the advice of stacking (see (Wolpert, 1992)), we chose
to be “conservative”. The accuracy of the linear fit can be estimated by lookingat its
residual error. If that error is large, we should be wary of our stacking-based estimate of
Err(q), and might prefer to instead use an estimator like— 5. One way to implement
this idea starts by defining a thresheldThen ify? > c (i.e.,if we had a poor linear fit) we
estimated the error a8, — V5 while if x2 < ¢ (i.e.,a good fit) we estimated the average
Err(q) over the test set as

1
"7 Jtest set,

Z aVe(q) +b

ctest set

By setting the size of we can tune how conservative we are in our estimate.

We have also investigated a “weighted” scheme combining both guesses rather than
switching between them based on a threshold. In this scheme our estimate of the bagged
algorithm’s error is given by

rr = mt > al®) (aVela) +b) + B(C) (Bs — Va)

ctest set

wherea(x?) = 1/(1 +x*) and3(x?) = x*/(1 + x?).

ESTIMATE BAGGING’S GENERALIZATION ERROR 49

Note that both of thesg?-based schemes ignore many issues. For example, the bagged
algorithm’s guess is based on the fulteplicates. However the number of replicates going
into the calculations of eadlV,.(z%), Err(x%)) pair varies. When that number of replicates
is small, one would expect the values of the associatedx?), Err(x?)) pair to be a
relatively poor indicator of the relationship betwekr{q) and Err.(q) for the full (based
on all v replicates) bagged algorithm. There are a number of ways to take this into effect
in estimating the values of the coefficientandb; we plan to explore some of them in the
near future.

4. Experiments
4.1. Experimental setup

Again following the lead of Breiman, the experiments reported in this paper involved simple
linear models. Because measuring the leave-one-out cross-validation error estimate for a
bagged learning algorithm (the error-estimation scheme to which we're comparing our
technigues) is so time-intensive, we used rather simple experiments in this paper. There
was noise and (unlike in Breiman’s experiments) model-misspecification, but the input
space was only one-dimensional. Future work involves extending these experiments to
more elaborate domains.

As in the first set of experiments in (Wolpert & Macready, 1996), our input and output
space wereR!. The target function was a third-order polynomial with two Gaussians
superimposed. The coefficients of the polynomial were randomly chosen from [-1, 1].
The centers of the two Gaussians were randomly chosen from [-1, 1], and the widths were
randomly chosen from [0.1, 0.3]. The coefficient of the Gaussians was always 1. Given
such a randomly generated target function Gaussian noise of width 0.05 was superimposed
to create training sets. ThE-components of training sets were chosen randomly from
[-1.0, 1.0]. Test sets consisted of 100 points chosen the same way as training sets, with the
same amount of noise added.

To understand our learning algorithm, first consider the following four different learning
algorithms. These learning algorithms all work by forming the linear combination of six
basis functions with the least-squared-error fit to the training set. (No regularization was
used.) Each learning algorithm'’s set of six basis functions consisted of the cosines and sines
of three wavelengths. The difference between the learning algorithms was simply in the
choice of those wavelengths. All of the learning algorithms used wavelengths from the set
{0.5,1,2,4}; since there are four sets of triples in that set, we had four learning algorithms
all told.

All four of these learning algorithms are stable. Accordingly, for them, the bagged
learning algorithm does not outperform the underlying learning algorithm. (It performs
slightly worse — see (Wolpert & Macready, 1996).) Accordingly, a single unstable learning
algorithm is created from these four stable ones. This unstable learning algorithm again
works by forming a least-squared-error fit to the training set, using a set of three cosines
and associated sines. However to create instability, the choice of the three wavelengths
from the set{0.5,1, 2,4} depends sensitively on the training set. The choice was made by
forming the sum of the input and output components of the training set, multiplying it by

50 WOLPERT AND MACREADY

Table 1. Summary statistics for some of t{&;, E;) variants. Any un-
certainties in the results are in the last significant digjtA ®errof” is the
average, over th80000 targets, of the absolute difference between esti-
mated and true errors for each such target. “Correlation coefficient” also is
between those two errors. The “slope” and the “intercept” values refer to
a least mean squares linear fit between those two errors, and are included
simply to provide a crude characterization of the associated scatter plots.
All statistics here and throughout are based on simple frequency counts.

statistic V1, E1) (Va,E2) (Va,E1) (Va, E2)
Estimated error 0.142 0.281 0.02 0.392
Actual test set error 0.292 0.293 0.293 0.293
|A erroi 0.152 0.117 0.274 0.290
Correlation coefficient 0.678 0.677 0.135 0.195
Best fit slope 0.288 0.601 0.03 0.94
Best fit intercept 0.058 0.105 0.01 0.116

10, and then evaluating the result modulo 4. The resultant number was either 0, 1, 2, or
3. Which of those four numbers arose determined which of the four triples from the set of
four possible wavelength-sets to use.

Note there is no compelling reason to use such a learning algorithm in the real world — it
was simply a convenient way of introducing instability, which is something that in the real
world you will usually want in order for bagging to be of interest. (Indeed, as expected,
whereas bagging does not help the performance of any one of our learning algorithms used
by itself, it does improve the performance of the unstable combination of those algorithms.)
Moreover, as far as the experiments in this paper on estimating generalization accuracy are
concerned, each of the the four bagged variants of a stable learning algorithm gives results
that are very similar to the experimental results described below for the unstable bagger.

4.2. Results of the Experiments

The bagged generalizer was formed by combinirg 50 bootstrap replicates with, = 25.

To obtain our results we generate@00 target functions as described above, one new set of
50000 for each estimator. For each of these target functions one training set was generated
with noise, as described above. Then the test set error was estimated using one of the
schemes described above and this estimate was compared with the actual error on the
(randomly generated) test set.

The summary statistics of some of the variants are presented in Table 1. For those variants
for which E; — V; can be negative we replace any negative estimate with the value 0. Of
the six simple(V;, E;) estimators(Vs, E5) was found to be the most effective.

For comparison we have also looked at the correlations in the error estimated by leave-
one-out cross-validation for both the underlying (unstable) learning algoxitrand the
bagged learning algorithm. These results are presented in Table 2.

Unsurprisingly, thgVy, E;) estimator performs rather poorly. Becausgis measured
on points in the training set this estimation procedure consistently underestimates the true

ESTIMATE BAGGING’S GENERALIZATION ERROR 51

Table 2. Summary statistics for leave-one-out
cross-validation schemes. See the caption for
Table 1 for definitions of the quantities reported.

statistic x-valG x-val bag
Estimated error 0.735 0.301
Actual test set error 0.739 0.299
|A errot 0.303 0.117
Correlation coefficient 0.694 0.699
Best fit slope 0.777 1.114
Best fit intercept 0.168 -0.032

Table 3. Summary statistics for the “conservative” and
“weighted” stacking-based estimation scheme described above
for test sets of size 100, as in Table 1. See the caption for Table
1 for definitions of the quantities reported.

statistic “conservativet =1 “weighted”
Estimated error 0.291 0.294
Actual test set error 0.293 0.294
|A erroi 0.115 0.111
Correlation coefficient 0.691 0.706
Best fit slope 0.607 0.623
Best fit intercept 0.113 0.112

Table 4.Summary statistics faPs — V2, cross-validation and
“weighted estimates” for error on test sets of size 1. See the
caption for Table 1 for definitions of the quantities reported.

statistic Ey; — V> x-val “weighted”
Estimated error 0.280 0.296 0.294
Actual test set error 0.294 0.296 0.294
|A erroi 0.314 0.306 0.295
Correlation coefficient 0.251 0.267 0.353
Best fit slope 0.08 0.10 0.12
Best fit intercept 0.26 0.27 0.26

error on the training set. (Although interestingly, the correlation between its guess and the
true error is comparable to that of th&;, F>) estimator.)

However the results from th@%, E») estimator are very encouraging. In particular,
for this techniqug A errol is no worse than that of the (far more expensive) leave-one-
out cross-validation estimator of the bagged algorithm’s error. In addition there is almost
as much correlation between true and estimated errors for this estimator as there is for
the leave-one-out cross-validation estimator. Moreover, the correlation seems to improve
further with larger training sets.

In Tables 3 and 4 we present the results for the stacked estimates of the error. We find
that both the conservative scheme with= 1 and the weighted scheme whereand 3

52 WOLPERT AND MACREADY

are determined by? improve upon thes, — V5 estimate and perform as well as or better
than cross-validation. Of the two stacking algorithms, the weighted one appears to be the
better performing. (We have not explored other stacking algorithms — we have not even
investigated other values of— so further gains are possible). For smaller test sets we
found even greater gains in using stacked estimates rather than dimplys. For test
sets of size 1 we gained almost 40% in correlation between our estimate of error and actual
error by using stacking.

In summary, for the problems investigated here, we have found thdltheé’,) esti-
mator works almost as well as cross-validation in estimating error. Moreover, the more
sophisticated stacking-based schemes actually lead to estimates as accurate, and in some
cases, more accurate than cross-validation. This provides a novel justification for using
bagging — by bagging an algorithm, one can use an error estimator that is more accurate
than leave-one-out cross-validation applied to the underlying algofithm.

5. Discussion

Our experiments indicate that it is indeed possible to accurately estimate a bagged algo-
rithm’s generalization error without extra training of the underlying algorithm. Thisremoves
one of the major obstacles to real-world use of bagging. In fact, based on the results in this
paper, one might argue that one reason to use bagging is that when its generalization error is
estimated using the techniques described in this paper, the resultant estimate is often more
accurate than the estimate of the generalization error of the underlying algorithm given by
conventional cross-validation. (The details of this comparison where one tries different
kinds of cross-validation besides leave-one-out — including in particular bootstrap-based
variants — are the subject of future work.)

Simultaneously with our work, Tibshirani conducted a similar study (Tibshirani, 1996).

In his study, he investigated tli&>, E-) estimator, for classification problems (as opposed

to the regression problems studied in this paper). The results in (Tibshirani, 1996) are quite
encouraging; they suggest that the basic idea of¥heF-) estimator also works well on
classification problems. Combined with our results this suggests th@tthg,) estimator

may be broadly applicable.

Our work goes on to complement Tibshirani’s study in a number of ways. We have
considered other estimators beyond those concurrently investigated by Tibshirani. In par-
ticular, we have presented an estimator that exploits stacking and that improves upon the
already effectivéV;, F5) estimator also investigated by Tibshirani, at least for the problems
we have investigated to date. Moreover, we have made comparisons to cross-validation,
comparisons that have demonstrated that these estimation schemes sometimes work better
than cross-validation. This result potentially provides a novel reason to use bagging —
improved estimation of generalization error.

In addition, along with results similar to those Tibshirani presented concerning the bias
of using the(V;, E5) estimator to estimate generalization error, we have also considered
other measures of the efficacy of that estimator (and of other estimators). Such results are
important because bias alone can be highly misleading. For example, one could conceivably
have zero bias, but perfect anti-correlation between one’s estimator and the quantity being
estimated. Our experiments examine that (and similar) possibilities; we have found such

ESTIMATE BAGGING’S GENERALIZATION ERROR 53

pernicious anti-correlation not to obtain, and instead observed strong correlation between
estimated and true error.

Finally, we have also drawn attention to the importance of these estimation schemes
in light of the computational cost of bagging. Moreover, we have placed the estimation
problem in the context of the bias-variance decomposition.

In addition to this work of ours and the work of Tibshirani’s, there has been subsequent
work by Breiman that explores yet more ways to use the out-of-replicate instances generated
in bagging to aid estimation of error rates (Breiman, 1996). That work by Breiman also
touches on how to use the out-of-bag instances to improve the error, not just the estimate
thereof, much as in our work on bootstrap stacking (Wolpert & Macready, 1996).

6. Future Work

In addition to the work mentioned in the text, there are many other ways that the inves-
tigations presented in this paper should be extended. Most obviously, it is important to
investigate the performance of the stacking-based estimator on higher dimensional prob-
lems than those investigated here. That estimator’s performance on classification problems
should also be explored. In addition, we plan to explore stacking schemes Whefg
depends on other variables besides or in additidri.tg) (e.g., have it depend aj). More
generally, we plan to explore other kinds of stacking schemes, e.g., a more principled way of
using they? misfit in the stacking to determine how best to combine the stacker’s estimate
of Err(q) with the E5 — V5 estimate ofErr(q).

As mentioned above, other future work involves modifying the stacking so that the (vary-
ing) number of distinct elements in each replicate is taken into account. We also plan to
investigate schemes for correcting for replicate-size-based effects wilf) thé/; estima-
tors. For examplef; is the average over the inputs} of the off-sample-estimated error
atthe{z'}. If we definel;; = 0if 2* € (d})x and 1 otherwise, then we can write this as

B — Z [ij [hd; (mt) - yi]z
o ij m g Ly

However this differs in general from another reasonable candidate to use to edfinthate
average over the replicate-generated hypothegesf the off-sample-estimated error of
the hy . (This alternative quantity involves division by> ., I;; instead ofm Zj, L)
Note that with this alternative estimator, it may make sense to weight each term in our sum
So as to take into account the fact that the ladggr I;; is, the fewer points went into the
training that producedd/j, and therefore the less we would expect the associated error to
be like that ofh,;. On the other hand though, under the same conditions, the error estimate
we have formed foh, is based on more points (namely, all the pointgor which I;;
is nonzero). One mig'ht therefore presume that that error estimate more accurately reflects
hd; 's actual error. So there are at least two opposing effects as one varies from replicate to
replicate.

To further complicate matters, one can consider yet other alternative estimators. For
example, one might simply ask for the average ovet,glbf I;; [, (x%) — 4. In other
words, one might replace the normalization faetob _ ;, I;;» by 3., 1i1j. Future work

54 WOLPERT AND MACREADY

involves disentangling all these effects to produce a better variaht ¢fiat can then be
compared to the stacking-based estimators.

Taking a differentapproach, in those cases where we can afford to do some cross-validation
(though would prefer not to), whenever one or more of {lig E;) estimation schemes
gives dubious resulte(g. when it estimates a negative squared error) we can resort to
cross-validation. In other words, we can use such dubious results as a warning flag. Future
work involves characterizing the performance of such a hybrid estimator.

It is worth noting that many of the concepts introduced in this paper can be extended to
other problems besides the estimation of a bagged algorithm’s generalization error. For
example, the basic insight that one can measure variance exactly could perhaps be used to
improve the accuracy of cross-validation schemes in which there is overlap between the
validation sets so that the calculated cross-validation value can be viewed as a sum of (an esti-
mate of) bias and (an estimate of) variance. (In the variant of such a scheme being suggested
here, one would only estimate bias by means of partitions of the training-sevariance
would be measured directly on the test set.) In particular, stacking could perhaps be used to
effect this improvement. Similarly, the schemes explored in (Wolpert & Macready, 1996)
use stacking to shrink the generalization error of bagging; the results of this paper suggest
that havingV.(q) be one of the variables involved in the stacking would result in even
greater improvement in generalization error.

Another avenue of future work is to investigate scenarios whgis non-single-valued,
and in fact is an estimate fgf. Such scenarios are quite common, arising for example
whenever a Bayesian learning algorithm is used. (For quadratic loss, for example, one’s
final generalization guess @with such a learning algorithm would B€ | yha(ylq).) For
such scenarios, the replicates going into the bagging can be formed by samptather
thand. If hy is a better estimate of at the points{«?} than isd - — which one would
hope is a common case — then such samplingofo form bagging’s guess may result
in lower generalization error than does conventional bagging. (See (Breiman, 1994a) for
related discussion.) An even more speculative issue is how best to estimate generalization
accuracy for such a modification of bagging.

Acknowledgments

DHW was supported in part by TXN Inc. and the Santa Fe Institute, and WGM was
supported by the Santa Fe Institute and Bios Group. DHW thanks Ronny Kohavi for
interesting discussion. We thank Michael Pazzani for helpful comments.

Notes

1. We came to this conclusion based on an additional set of experiments faithE,) estimator that kept all
parameters the same but increased the training set size to 60. Doing this resulted in the correlation coefficient
increasing to 0.913. (The means of the estimated and true errors for those experiments are 0.219 and 0.227
respectively.)

2. Compare the “weighted” results of section (b) of Table (3), especially the results for the correlation coefficient,
to the “x-val G” results of Table 2.

ESTIMATE BAGGING’S GENERALIZATION ERROR 55

References

Breiman, L. (1994a). Bagging predictors. Univesity of California, Dept. of Statistics, TR 421.

Breiman, L. (1994b). Heuristics of instability and stabilization in model selection. University of California, Dept.
of Statistics, TR 416.

Breiman, L. (1996). Out-of-bag estimation. University of California, Dept. of statistics.

Efron, B. (1979). Computers and the theory of statistics: thinking the unthink&beVl Review, 21460.

Efron, B. & Tibshirani, R. (1993)An introduction to the bootstrapChapman and Hall.

Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural networks and the bias/variance diléfeonal
Computation, 41-58.

Tibshirani, R. (1996). Bias, variance and prediction error for classification rules. University of Toronto Statistics
Department Technical Report.

Wolpert, D. H. (1992). Stacked generalizatiddeural Networks, 5241-249.

Wolpert, D. H. (1996). The bootstrap is inconsistent with probability thelryMaximum Entropy and Bayesian
Methods”, K. Hanson and R. Silver (Edgages 69—76.

Wolpert, D. H. (1996). On bias plus variance. Neural Computation, in press.

Wolpert, D. H. & Macready, W. G. (1996). Combining stacking with bagging to improve a learning algorithm.
Submitted.

Received August 14, 1996
Accepted August 24, 1998
Final Manuscript August 24, 1998

