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Abstract. A constant rebalanced portfolio is an investment strategy which keeps the same distribution of wealth
among a set of stocks from period to period. Recently there has been work on on-line investment strategies
that are competitive with the best constant rebalanced portfolio determined in hindsight (Cover, 1991, 1996;
Helmbold et al., 1996; Cover & Ordentlich, 1996a, 1996b; Ordentlich & Cover, 1996). For the universal algorithm
of Cover (Cover, 1991), we provide a simple analysis which naturally extends to the case of a fixed percentage
transaction cost (commission), answering a question raised in (Cover, 1991; Helmbold et al., 1996; Cover &
Ordentlich, 1996a, 1996b; Ordentlich & Cover, 1996; Cover, 1996). In addition, we present a simple randomized
implementation that is significantly faster in practice. We conclude by explaining how these algorithms can be
applied to other problems, such as combining the predictions of statistical language models, where the resulting
guarantees are more striking.
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1. Introduction

A constant rebalanced portfolio (CRP) is an investment strategy which keeps the same
distribution of wealth among a set of stocks from period to period. That is, the proportion
of total wealth in a given stock is the same at the beginning of each period. Recently there
has been work on on-line investment strategies which are competitive with the best CRP
determined in hindsight (Cover, 1991, 1996; Helmbold et al., 1996; Cover & Ordentlich,
1996a, 1996b; Ordentlich & Cover, 1996). Specifically, the daily performance of these
algorithms on a market approaches that of the best CRP for that market, chosen in hindsight,
as the lengths of these markets increase without bound.

As an example of a useful CRP, consider the following market with just two stocks
(Helmbold et al., 1996; Ordentlich & Cover, 1996). The price of one stock remains constant,
and the price of the other stock alternately halves and doubles. Investing in a single stock
will not increase the wealth by more than a factor of two. However, a( 1

2,
1
2) CRP will

increase its wealth exponentially. At the end of each period it trades stock so that it has an
equal worth in each stock. On alternate periods the total value will change by a factor of
1
2(1)+ 1

2(
1
2) = 3

4 and1
2(1)+ 1

2(2) = 3
2, thus increasing total worth by a factor of 9/8 every

two periods.
We extend this model by adding a fixed percentage commission costc< 1 to each

transaction, as is common in financial modeling (Davis & Norman, 1990). To fully define
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the commission model, in addition to specifying the cost of each transaction, we must also
specify how a CRP pays this overhead. In Section 2, we give three natural properties of
such a specification which we will use for our analysis. These properties are satisfied by
the optimal investor who must simultaneously rebalance her portfolio and pay for these
transaction costs from the sale of stock.

In Section 3 we present a new, simpler analysis and implementation for Cover’s universal
algorithm (Cover, 1991). It is along the same lines of reasoning as an argument in (Foster &
Vohra, 1995). We show how our argument extends to the case of commission in Section 4.
The previous bound for a market withm assets andn periods was a performance ratio of at
least

wealth of UNIVERSAL

wealth of best CRP
≥ 1

(n+ 1)m−1
.

In the presence of a commissionc, this becomes

wealth of UNIVERSALc

wealth of best CRP
≥ 1

((1+ c)n+ 1)m−1
.

The above ratio is a decreasing function ofn. However, the average per-period ratio,
(1/(n + 1)m−1)1/n, increases to 1 asn increases without bound. For example, if the best
CRP makes one and a half times as much as we do over a period of 22 years, it is only
making a factor of 1.51/22 ≈ 1.02 as much as we do per year. Cover raises the question
of whether it is even possible to achieve the exponential growth rate of the best CRP in
the presence of commission (Cover & Ordentlich, 1996a), and our analysis answers this
question. However, we do not consider the Dirichelet(1/2, . . . ,1/2) Universal algorithm
(Cover & Ordentlich, 1996a) which has the better guaranteed ratio of 2

√
1/(n+ 1)m−1.

Semi-constant-rebalanced portfolios, which may or may not rebalance during each
period, have been suggested as an investment strategy in the presence of commission
(Helmbold et al., 1996). In Section 5, we show that the exponential wealth of a semi-
constant-rebalanced portfolio cannot, in general, be achieved without future knowledge of
the market.

In Section 6, we present results of the universal algorithm with various commissions
on some real-world stock data. Finally, in Section 7, we explain how these stock market
algorithms can be used on other problems, such as combining the predictions of language
models almost as well as if we had prior knowledge of the optimal mixture.

2. Notation and definitions

We use mainly the notation of (Cover, 1991). A price relative for a given asset is the
nonnegative ratio of closing price to opening price during a given period. If the market
hasm assets and trading takes place duringn periods, then the market’s performance can
be expressed byn price relative vectors,xn = (x1, x2, . . . , xn), xi ∈ <m

+, wherexij is the
nonnegative price relative of thej th stock for thei th period.
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A portfolio is simply a distribution of wealth among the stocks. We represent a distribution
of wealth byb ∈ <m

+, where
∑

j bj = 1. Sob is an element of the(m− 1)-dimensional
simplexβ,

β =
{

b = (b1, b2, . . . ,bm) :
∑

j

bj = 1, ∀ j bj ≥ 0

}
.

The CRP investment strategy for a particular portfoliob, CRPb, redistributes its wealth at
the end of each period so that the proportion of money in thej th stock isbj . An investment
using a portfoliob during a period with price relativesx increases one’s wealth by a factor
of b · x =∑ bj x j . Therefore, overn periods, the wealth achieved by CRPb is,

Sn(b, xn) =
n∏

i=1

b · xi .

2.1. Commission

We now consider an extension of the above model to the case of a fixed percentage com-
mission 0≤ c ≤ 1. For simplicity, we will assume that the commission is charged only for
purchases and not for sales (we explain at the end of this section why this can be assumed
without loss of generality). We now need to specify how an investor, who has a target dis-
tribution of wealth, pays for these transaction costs, each period. In our model, the investor
must pay for all transaction costs by selling stock. Since we are comparing ourselves to
the best CRP, it is natural to assume that the CRP investor makes the optimal trades so as
to rebalance her portfolio and pay for her transaction costs. For example, suppose there
is a hefty 40% commission on each purchase. Say, at the end of a period, an investor has
$200 in stock A, and $800 in stock B, and this investor wishes to rebalance to a(1/2, 1/2)
portfolio for the start of the next period. The optimal investor would first sell $100 of stock
B to cover the upcoming transaction costs. She now has $200 in stock A, $700 in stock B,
and $100 in cash. When she trades $250 of stock B for stock A to get $450 in each stock,
she then pays her(40%)$250= $100 in transaction costs. This is better than someone who
naively tries to rebalance to $500 in each stock and then must sell $60 worth of each stock
to pay his(40%)$300= $120 in transaction costs, leaving $440 in each stock.

For our analysis, we do not need to know the specifics of this optimal rebalancer. But
for the sake of completeness, let’s look at how to compute these optimal costs. Say we start
with one dollar distributed according tob and we would like to rebalance tob′ optimally with
respect to commission. If we know the largest amount that we can have after rebalancing,
α, then it is easy. In order to achieveα dollars distributed according tob′, we sell the
difference of every stock for whichαb′j < bj and buy the others. Optimality requires that
α is the solution of

α = 1− c
∑
αb′j >bj

(αb′j − bj ).
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Algorithmically, to solve the above equation, we first determine which intervalα is in by
checking the critical points,α = bj /b′j . Once we’ve determined the interval, the above
reduces to a linear equation. For reasonable commission costs, we can easily approximate
the optimal rebalancer described above by paying for the transactions proportionally from
each stock, i.e.,

α ≈ 1− c
∑

b′j>bj

(b′j − bj ).

This is not optimal rebalancing because some of the same stock is bought and then sold
during a single rebalance. However, our on-line guarantees also hold among this class of
CRP investors, who do not optimally rebalance with respect to commission.

In our analysis, we will only use the following natural properties of optimal rebalanc-
ing:

1. The costs paid changing from distributionb1 tob3 is no more than the costs paid changing
from b1 to b2 and then fromb2 to b3.

2. The cost, per dollar, of changing from a distributionb to a distribution(1− α)b+ αb′

is no more thanαc, simply because we are movingat mostanα fraction of our money.
3. An investment strategyI which invests an initial fractionα of its money according to

investment strategyI1 and an initial 1− α of its money according toI2, will achieve at
leastα times the wealth ofI1 plus 1− α times the wealth ofI2. (In fact, I may do even
better by occasionally saving in commission cost if, for instance, strategyI1 says to sell
stock A and strategyI2 says to buy it.)

Our model assumes commission on buying but not selling. Alternatively, one can imagine
having two commissions,cbuy andcsell, for buying and selling, as we do in our experiments.
Our theoretical results will still hold forc = cbuy+ csell because one dollar in a single stock
can be transferred to(1− csell)/(1+ cbuy) ≥ (1− c) dollars in a different stock, which is
all that is required for Property 2.

3. Analysis without commission

In this section, we give a simple analysis of the universal algorithm of Cover, without
commission. To get our bearings, let’s first consider an easier question. Suppose you just
want a strategy that is competitive with respect to the best single stock. In other words, you
want to maximize the worst-case ratio of your wealth to that of the best stock. In this case,
a good strategy is simply to divide your money among them stocks and let it sit. You will
always have at least1m times as much money as the best stock. Note that this deterministic
strategy achieves the expected wealth of the randomized strategy that just places all its
money in a random stock.

Now consider the problem of competing with the best CRP. Cover’s universal portfolio
algorithm is similar to the above. It splits its money evenly among all CRPs and lets it sit
in these CRP strategies. (It does not transfer money between the strategies.) Likewise, it
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always achieves the expected wealth of the randomized strategy which invests all its money
in a random CRP. In particular, the bookkeeping works as follows:

Definition 1 (UNIVERSAL). The universal portfolio algorithm, UNIVERSAL, at timei
is specified by

b̂i =
∫
β

bSi−1(b, xi−1) dµ(b)∫
β

Si−1(b, xi−1) dµ(b)
, i = 1, 2, . . .

with µ equal to the uniform distribution over portfoliosb. (We do not consider the
Dirichelet(1/2, 1/2, . . .) distribution.)

This is the form in which Cover defines the algorithm. He also notes (Cover & Ordentlich,
1996a) that

wealth of UNIVERSAL= E
b∈β

[wealth of CRPb] (1)

Let theholdingsof a portfolio represent the actual amount of wealth we have in each stock,
so that it is a vector whose elements do not necessarily add to 1. Then Eq. (1) can be seen
very easily if we rewrite Definition 1 as, during periodi ,

holdings of UNIVERSAL= E
b∈β

[holdings of CRPb].

Theorem 1. As in(Cover and Ordentlich, 1996a),

wealth of UNIVERSAL

wealth of best CRP
≥
(

n+m− 1
m− 1

)−1

≥ 1

(n+ 1)m−1
,

for all markets with m stocks and n periods.

Proof: As mentioned above, the wealth of UNIVERSAL is simply the expected wealth of
a random CRP. The idea behind our argument is that portfolios “near” to each other perform
similarly and that a large fraction of portfolios are “near” the optimal portfolio.

Say, in hindsight,b∗ is an optimal CRP for the particular market. Here is what we mean
when we say that “near” portfolios perform nearly as well asb∗. If b = (1− α)b∗ + αz
for somez ∈ β, then a single period’s gain of CRPb must be at least(1− α) times as large
as a single period’s gain of CRPb∗ . After all, a(1− α) fraction ofb is distributed exactly
like b∗. Compiled overn periods,

wealth of CRPb ≥ (1− α)n(wealth of CRPb∗). (2)

So, to prove the theorem, we will show that a sufficiently large volume of portfolios is
sufficiently nearb∗. This is easy to compute because the set of near portfolios is a shrunken
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simplex,αβ, translated from the origin to(1− α)b∗.
Volm−1({(1− α)b∗ + αz : z ∈ β}) = Volm−1({αz : z ∈ β})

= αm−1Volm−1(β). (3)

In particular, forα = 1/(n+ 1), we get a ratio ofαm−1(1− α)n > e−1/(n+ 1)m−1 for the
wealth of universal compared to the best CRP, because at least anαm−1 = 1/(n + 1)m−1

fraction of portfolios perform at least(1− α)n > e−1 as well as the best CRP.
We can get a better bound if we considerα to be the random variable defined by 1−α =

min j {bj /b∗j }. Then, from Eqs. (1) and (2),

wealth of UNIVERSAL

wealth of best CRP
≥ E

b∈β
[(1− α)n].

Now we will compute this quantity exactly, starting with the application of an identity for
non-negative random variables,

E
b∈β

[(1− α)n] =
∫ 1

0
Prob
b∈β

[(1− α)n ≥ x] dx.

Now, by Eq. (3), the probability in the above integral is exactly(1− x1/n)m−1.Making the
change of variabley = x1/n, and repeating integration by parts, this yields,∫ 1

0
(1− x1/n)m−1 dx = n

∫ 1

0
yn−1(1− y)m−1 dy

= n

(
yn(1− y)m−1

n

∣∣∣∣1
0

+ m− 1

n

∫ 1

0
yn(1− y)m−2 dy

)
= n

(
m− 1

n

∫ 1

0
yn(1− y)m−2 dy

)
= n

(
m− 1

n

m− 2

n+ 1

∫ 1

0
yn+1(1− y)m−3 dy

)
= · · · = n

(
(m− 1)!(n− 1)!

(n+m− 2)!

∫ 1

0
yn+m−2 dy

)
= 1( n+m− 1

m− 1

) . 2

3.1. Randomized approximation

The implementation presented in (Cover & Ordentlich, 1996a) has space and time re-
quirements which grow likenm−1. However, the universal algorithm is simply a weighted
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average of all CRPs. This suggests an obvious randomized approximation. First choose
N portfolios uniformly at random. Then, invest a 1/N fraction of the money in each of
the N CRPs and let it sit within these CRPs. (Do not transfer between them.) If the best
constant rebalanced portfolio achieves a wealthR times as large as the universal algorithm,
Chebyshev’s inequality guarantees that, usingN = (R− 1)/ε2δ random portfolios, with
probability at least 1− δ, the approximation achieves a wealth at least 1− ε times as large
as the universal algorithm. For a given market with no commission, one can determine,
in hindsight, the optimal CRP (Helmbold et al., 1995) and then estimateR. In the worst
caseR grows likenm−1. However, experiments on stock market data, presented in (Cover,
1991; Helmbold et al., 1996), all have a ratioR< 2 for various combinations of two stocks,
making this approach especially efficient.

This same observation can be used to implement the Dirichelet(1/2, . . . ,1/2) universal
algorithm (Cover & Ordentlich, 1996a). In this case, it is an improvement becauseRgrows,
at worst, liken(m−1)/2.

4. Analysis with commission

In this section, we introduce a slight modification of UNIVERSAL, UNIVERSALc, which
is competitive in the presence of a fixed commission 0≤ c ≤ 1. The importance of this
section is not as much in introducing a new algorithm as it is in showing that a trivial
extension of UNIVERSAL is theoretically competitive in the presence of commission.

At the start of thei th period, UNIVERSAL computes a weighted average of CRPs,
where the weight of a particular CRPb is proportional to the wealth it has accumulated
during the firsti − 1 periods,Si−1(b, xi−1). UNIVERSALc is similar. At the start of the
i th period, UNIVERSALc computes a weighted average of CRPs, where the weight of a
particular CRPb is proportional to the wealth it has accumulated during the firsti−1 periods
including commission costs, Sc

i−1(b, x
i−1). Formally,

Definition 2 (UNIVERSALc). The universal portfolio with commission algorithm at time
i is specified by

b̂c
i =

∫
β

bSc
i−1(b, x

i−1) dµ(b)∫
β

Sc
i−1(b, xi−1) dµ(b)

, i = 1, 2, . . .

with µ equal to the uniform distribution over portfoliosb.

Notice here we are defining the distribution of wealth held each day. The exact amount
is determined by rebalancingoptimally with respect to transaction costs. Notice that the
universal algorithm maintains, each period, the same distribution of wealth as another
algorithm which splits its money evenly amongN independent random CRP investors
(and does not transfer money between them), in the limit asN goes to infinity. Like the
zero-commission case, this other algorithm achieves the expected wealth of a random CRP.
However, the universal algorithm may actually do better because of lower commission costs
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due to offsetting trades (in the same way that a collection of investors operating together can
save on commission by occasionally trading amongst themselves). This is an application
of the third property given in Section 2.1.

Theorem 2. In the presence of commission0≤ c ≤ 1,

wealth of UNIVERSALc
wealth of best CRP

≥
(
(1+ c)n+m− 1

m− 1

)−1

≥ 1

((1+ c)n+ 1)m−1
,

for all markets with m stocks and n periods.

Proof: We need only modify Eqs. (1) and (2) of the previous proof. As discussed above,
Eq. (1) changes from an equality to an inequality,

wealth of UNIVERSALc ≥ E
b∈β

[wealth of CRPb],

which only helps.
Based on the three properties given in Section 2.1, ifbj ≥ (1− α)b∗j for all j , then

(single-period profit of CRPb)

(single-period profit of CRPb∗)
≥ (1− α)(1− cα). (4)

To see this, note first that CRPb starts with at least(1− α) of CRPb∗ ’s wealth, both pay
some cost to rebalance tob∗, and CRPb pays at most an additionalcα fraction to rebalance
from b∗ to CRPb. In terms of our stated properties, the third property implies that CRPb

earns at least as much as an investor who only has(1−α) times as much money, but begins
with it distributed according tob∗ and ends with it distributed according tob. In other
words, the extra stock beyond(1−α)b∗j cannot hurt. Secondly, note that this investor pays
no more in commission than a naive investor who first rebalances tob∗ and then tob, by the
first property. Finally, the second property implies that the commission cost for changing
from b∗ to b is no more thancα, since it involves moving anα fraction of your portfolio.
Thus, CRPb does no worse than(1− α)(1− cα) times an investor who starts and ends the
period with distributionb∗. This is Eq. (4).

It is easy to establish that 1− cα ≥ (1− α)c for 0 ≤ c, α ≤ 1 (see, e.g., Lemma 3.4.1
of (Littlestone, 1989)). Combining this with Eq. (4),

wealth of CRPb ≥ (1− α)(1+c)n(wealth of CRPb∗).

Since Eq. (2) is the only use ofn in the previous proof, we can replacen by (1+ c)n in the
final guarantee. 2

This algorithm can be implemented in the same randomized way as UNIVERSAL.
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5. Semi-constant-rebalanced portfolios

In (Helmbold et al., 1996), the idea of a semi-constant-rebalanced portfolio (SCRP) is
proposed as a good strategy in the presence of transaction costs. An SCRP is a portfolio
which may be rebalanced on any subset of the periods. For instance, one may prefer not
to rebalance if the transaction costs outweigh the benefits of rebalancing. We show that
no strategy can guarantee the exponential growth rate of the best SCRP in hindsight, even
without commission.

As in (Cover & Ordentlich, 1996b), consider the set of all market sequences of length
n over two stocks, where each period one of the stock relatives is 1 and the other isε for
some smallε ≥ 0,

K = {xn : xi = (1, ε) or xi = (ε, 1), for all i ≤ n}.

In these markets, each period one of the stocks crashes and the other stays the same.
Clearly, if we choose a random element ofK, every non-anticipating investment strategy

(a strategy which has no knowledge of the future) will achieve an expected wealth of
((1+ ε)/2)n.

However, a SCRP chosen in hindsight can do much better. A good SCRP( 1
2 ,

1
2 )

strategy
would initially divide its money into two parts, and then rebalance only when the market
is about to switch (whenxi 6= xi+1). If the market switchesk times, this strategy achieves
wealth≥1/2k+1. Thus, if we choose a random market fromK, in hindsight we can make
at least

(1/2)n
n−1∑
k=0

2

(
n− 1

k

)
(1/2)k+1 = (1/2)n(1+ 1/2)n−1.

Thus, the hindsight strategy’s expected performance is at least(1/(1+ ε))n(3/2)n−1 times
as large as the expected performance of any non-anticipating strategy.

6. Experiments with NYSE data

In this section, we present results that show examples of the performance of the univer-
sal algorithm as commission is varied, on 22 years of NYSE data. For more thorough
experiments, see (Cover, 1991; Helmbold et al., 1996). We tried the universal algorithm
with various transaction costs. As was the case without commission, we found that with
commission it performed well on some sets of stocks and not as well on others. The per-
formance, of course, was better with smaller transaction costs. Rebalancing less often was
very beneficial, especially with larger commissions. We chose to rebalance monthly. In
practice, one way to select how often to rebalance is to choose the period length which
gives the best result on past data. As an aside, the EG(η) algorithm of (Helmbold et al.,
1996) usually outperformed the universal algorithm, even though there are no theoretical
guarantees of its performance with commission.

Figure 1 shows the wealths achieved by the universal algorithm on two different sets
of stocks, where rebalancing occurs monthly. We compare this to the best CRP and to the
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Figure 1. Performance of universal on two different sets of stocks. Compare with best CRP in hindsight and
average stock price. 2% commission charged on all transactions, rebalancing monthly. This corresponds to
c = 0.04 in our model.

Figure 2. Performance of universal with varying commission rates. Commission charged on all transactions.
Notice that with large enough commissions, we would be better off rebalancing less often than monthly.

average value of the stocks. With a 2% commission charged onbothpurchases and sales,
we did not get the amazing gains in wealth that were found in the no-commission setting,
but in the first set of stocks we were still doing significantly better than average.

Figure 2 shows the same stocks as we vary the commission costs. Since the strategy of
investing in the best stock is a form of a CRP, the best CRP always does at least as well as the
best stock and thus, of course, the average stock. And indeed, once the commission costs
get prohibitively large, the best CRP is exactly the no-commission strategy of investing in a
single stock. That is why the best CRP’s performance plateaus. The universal algorithm, on
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the other hand, initially divides its money among all CRPs. As the commission increases,
many of these CRPs do poorly. Over time, the investments in these worse CRPs become
less valuable. As a result, the universal algorithm thus has an increasing fraction of its total
holdings in CRPs that rebalance a smaller percentage of their holdings.

7. Application to statistical language modeling

Analogies between universal compression and the UNIVERSAL algorithm have been
made by Cover (1996). The EG(η) portfolio algorithm of (Helmbold et al., 1996) has
also been used for finding the best mixture of predictive models (Kivanen & Warmuth,
1994; Helmbold et al., 1995). We present the analogy between stocks and language models
which shows how the UNIVERSAL algorithm can be applied to language models and
other predictors. This analogy is more general than Kelly’s racehorse analogy (Kelly, 1956)
because it covers price relatives and probabilities other than just{0, 1}.

A statistical language model is a probability distribution over sequences of words. A
language model is generally represented as a conditional probability distribution for the
next word to be seen, given the previous words, i.e.,

P(wi | hi−1), hi−1 = w1, w2, . . . , wi−1.

The most common way to combine various language models is to linearly interpolate them.
A mixture of three language models, for example a unigram modelP1, a bigram modelP2,
and a trigram modelP3 might be,

P(w | hi ) = λ1P1(w | hi )+ λ2P2(w | hi )+ λ3P3(w | hi ),

whereλ1+ λ2+ λ3 = 1, λi ≥ 0.
This is similar to a CRP. Consider an analogy between language models and stocks. A

price relativexij corresponds to a conditional probabilityPj (wi | hi−1) and a portfoliob
corresponds to a daily mixture of language models. In other words, feed the probabilities
into a portfolio algorithm as if they were price relatives, and predict the next word as a
linear combination of the predictions of the models where the coefficients are the weights
recommended by the portfolio algorithm. Then we have the nice property that the probability
that a combined language model algorithm assigns to a sequencehn = w1, . . . , wn is simply
the value of the holdings of the corresponding portfolio algorithm.

Now, the log of the probability assigned to the observed sequence is a common measure of
a language model’s performance. This leads us to the following algorithm. Given language
modelsP1, P2, . . . , Pm and a sequence of wordshn = w1, . . . , wn, if UNIVERSAL invests
its money based on portfolioŝbi when observing price relativesxij = Pj (wi | hi−1), then
the universal language modelP predicts

P(wi | hi−1) =
m∑

j=1

b̂ij Pj (wi | hi−1).
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Theorem 3. For any sequence of n words hn = w1, . . . , wn and any m language models,
the log probability assigned to hn by the universal algorithm P is at least(log probability
assigned to hn by the best mixture) −(m− 1) logn.

This follows directly from the observation that the wealth of a portfolio algorithm is
exactly the probability it assigns to the word sequence. It is impressive because it shows how
these mixture parameters can be “learned” on the fly with on-line guarantees. Furthermore,
the amortized cost of(m−1) logn/n bits per word is a small overhead asn gets large. It also
helps to explain a relationship between portfolios and weighted-average-type algorithms
for making predictions from expert advice (Cesa-Bianchi et al., 1993; DeSantis et al., 1998;
Foster & Vohra, 1993; Haussler et al., 1994; Kivanen & Warmuth, 1994; Vovk, 1990, 1995).
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