
Machine Learning 34, 211–231 (1999)
c© 1999 Kluwer Academic Publishers. Manufactured in The Netherlands.

An Algorithm that Learns What’s in a Name

DANIEL M. BIKEL ∗ dbikel@seas.upenn.edu
RICHARD SCHWARTZ schwartz@bbn.com
RALPH M. WEISCHEDEL weisched@bbn.com
BBN Systems and Technologies, 70 Fawcett Street, Cambridge MA 02138

Editors: Claire Cardie and Raymond Mooney

Abstract. In this paper, we present IdentiFinderTM, a hidden Markov model that learns to recognize and classify
names, dates, times, and numerical quantities. We have evaluated the model in English (based on data from the
Sixth and Seventh Message Understanding Conferences [MUC-6, MUC-7] and broadcast news) and in Spanish
(based on data distributed through the First Multilingual Entity Task [MET-1]), and on speech input (based on
broadcast news). We report results here on standard materials only to quantify performance on data available to the
community, namely, MUC-6 and MET-1. Results have been consistently better than reported by any other learning
algorithm. IdentiFinder’s performance is competitive with approaches based on handcrafted rules on mixed case
text and superior on text where case information is not available. We also present a controlled experiment showing
the effect of training set size on performance, demonstrating that as little as 100,000 words of training data
is adequate to get performance around 90% on newswire. Although we present our understanding of why this
algorithm performs so well on this class of problems, we believe that significant improvement in performance
may still be possible.

Keywords: named entity extraction, hidden Markov models

1. The named entity problem and evaluation

1.1. The named entity task

The named entity task is to identify all named locations, named persons, named organiza-
tions, dates, times, monetary amounts, and percentages in text (see figure 1). Though this
sounds clear, enough special cases arise to require lengthy guidelines, e.g., when isThe
Wall Street Journalan artifact, and when is it an organization? When isWhite Housean
organization, and when a location? Are branch offices of a bank an organization? Is a street
name a location? Shouldyesterdayand last Tuesdaybe labeled dates? Ismid-morning
a time? In order to achieve human annotator consistency, guidelines with numerous spe-
cial cases have been defined for the Seventh Message Understanding Conference, MUC-7
(Chinchor, 1998).

Both the boundaries of an expression and its label must be marked. The Standard Gen-
eralized Markup Language, or SGML, is an abstract syntax for marking information and

∗Current address:Department of Computer and Information Science, University of Pennsylvania, 200 South 33rd
Street, Philadelphia, PA 19104.

212 D.M. BIKEL, R. SCHWARTZ AND R.M. WEISCHEDEL

Figure 1. Examples (examples of correct labels for English text and for Spanish text).

structure in text, and is therefore appropriate for named entity mark-up. Various GUIs to
support manual preparation of answer keys are available.

1.2. Evaluation metric

A computer program is used to evaluate the performance of a name-finder, called a “scoring
program”. The scoring program developed for the MUC and Multilingual Entity Task
(MET) evaluations measures both precision (P) and recall (R), terms borrowed from the
information-retrieval community, where

P= number of correct responses

number of responses
and R= number of correct responses

number correct in key
. (1.1)

(The termresponseis used to denote “answer delivered by a name-finder”; the termkeyor
key fileis used to denote “an annotated file containing correct answers”.) Put informally,
recall measures the number of “hits” vs. the number of possible correct answers as specified
in the key, whereas precision measures how many answers were correct ones compared to
the number of answers delivered. These two measures of performance combine to form one
measure of performance, theF-measure, which is computed by the uniformly weighted
harmonic mean of precision and recall:

F = RP
1
2(R+ P)

. (1.2)

In MUC and MET, a correct answer from a name-finder is one where the label and both
boundaries are correct. There are three types of labels, each of which use an attribute to
specify a particular entity. Label types and the entities they denote are defined as follows:

1. entity (ENAMEX): person, organization, location
2. time expression (TIMEX): date, time
3. numeric expression (NUMEX): money, percent.

WHAT’S IN A NAME 213

A response is half-correct if the label (both type and attribute) is correct but only one
boundary is correct. Alternatively, a response is half-correct if only the type of the label
(and not the attribute) and both boundaries are correct. Automatic scoring software is
available, as detailed in Chinchor (1998).

2. Why

2.1. Why the named entity (NE) problem

First and foremost, we chose to work on the named entity (NE) problem because it seemed
both to be solvable and to have applications. The NE problem has generated much interest,
as evidenced by its inclusion as an understanding task to be evaluated in both the Sixth and
Seventh Message Understanding Conferences (MUC-6 and MUC-7) and in the First and
Second Multilingual Entity Task evaluations (MET-1 and MET-2). Furthermore, at least
one commercial product has emerged: NameTagTM from IsoQuest. The NE task had been
defined by a set of annotator guidelines, an evaluation metric and example data (Sundheim
& Chinchor, 1995).

Second, though the problem is relatively easy in mixed case English prose, it is a challenge
in cases where case does not signal proper nouns, e.g., in Chinese, Japanese, German or
non-text modalities (e.g., speech). Since the task was generalized to other languages in the
Multilingual Entity Task (MET), the task definition is no longer dependent on the use of
mixed case in English. Figure 2 shows some difficulties involved in name recognition in
unicase English, using corporation names for illustration. All of the examples are taken
from on-line newswire text studied. The first example is the easiest; a key word (CO.)
strongly indicates the existence of a company name. However, the full, proper form will
not always be used; example 2 shows a short form, an alias. Many shortened forms are
algorithmically predictable. Example 3 illustrates a third easy case, the introduction of an
acronym. Examples 1–3 are all handled well in the state of the art. Examples 4–6 are far
more challenging, and call for improved performance. For instance, in examples 4 and 5
there is no clue in the names that they are company names; the underlined context in which
they occur is the critical clue to recognizing that a name is present. In example 6, the

Figure 2. English examples (finding names ranges from the easy to the challenging. Company names are in
boldface. The underlined text is discussed below).

214 D.M. BIKEL, R. SCHWARTZ AND R.M. WEISCHEDEL

problem is an error in the text itself; the challenge is recognizing thatMATSUSHITA EILLis
not a company, but thatMATSUSHITAis.

A third motivation for our working on the NE problem is that it is representative of a
general challenge for learning: given a set of concepts to be recognized and labeled, how can
an algorithm learn to reliably spot and label new examples of the concepts? Although we
have primarily applied our approach to the NE problem, we have begun to tackle additional
term classification tasks. All classes are contiguous sequences of words where local context
usually contains enough information to identify the term as a class member.

2.2. Why a learning algorithm

Most current techniques for named entity recognition are based on handcrafting finite
state patterns to recognize names, dates, etc. (Appelt et al., 1995; Weischedel, 1995).
Unfortunately, straightforward rules, such as

<proper-noun >+ <corporate designator > ==> <corporation >

are not nearly adequate for state-of-the-art performance, nor do they capture typical naming
conventions. For instance, humans would have no problem predicting not only that “BOSTON

POWER& LIGHT” is a corporation name but also that it is an electric utility, even though
they have never heard that name before. (There is no such company.) In fact, organizations
tend to choose names that identify the type of business/government purpose they have. The
chance to eliminate requiring your best people to pour over data to find rules to achieve
state-of-the-art performance is strong motivation to begin research in learning algorithms.

Our previous experience with handwritten rules is that each new source of text requires
significant tweaking of rules to maintain optimal performance. That is, tackling the news-
paper sources of the New York Times newswire after developing a rule set for the Wall
Street Journal requires significant hand tuning. Even if the technology is good enough
to be embedded in various applications, the maintenance costs for handcrafted rule sys-
tems could be quite steep. Furthermore, moving to other modalities such as speech input,
or merely to upper case text, may require substantial modification of rule sets to obtain
optimal performance for each modality.

In our earlier experience with handcrafted rules, we found that rules for one language
may help very little in developing rule sets for another language. While the English rule
set was suggestive for developing a rule set for Spanish, virtually nothing carried over to a
rule set for Chinese.

3. A hidden Markov model

Name recognition may be viewed as a classification problem, where every word is either
part of some name (such as the seven types of named entities in the MUC evaluations
described earlier) or not part of any name. In recent years, hidden Markov models (HMMs)
have enjoyed great success in other textual classification problems—most notably part-of-
speech tagging (Church, 1988; Weischedel et al., 1993). Given this success, and given the
locality of phenomena which indicate names in text, such as titles like “Mr.” preceding a

WHAT’S IN A NAME 215

Figure 3. Pictorial representation of conceptual model (the subgraph of name-classes is complete, indicated here
by the dashed arcs).

person name, we chose to develop a variant of an HMM for the name recognition task. (See
Rabiner (1989) for an excellent tutorial on HMMs.)

By definition of the task, only a single label can be assigned to a word in context.
Therefore, our model will assign to every word either one of the desired classes or the label
NOT-A-NAME to represent “none of the desired classes”. We organize the states of this
HMM-variant into regions, one region for each desired class plus one for NOT-A-NAME.
See figure 3. The HMM will have a model of each desired class and of the other text. The
implementation is not confined to the seven classes of NE; an arbitrary number of classes
may be provided to the system at run-time. Additionally, there are two special states, the
START-OF-SENTENCEand END-OF-SENTENCEstates.

Within each of the regions, we use a model for computing the likelihood of words
occurring within that region (name-class), called a statistical bigram language model. A
statistical bigram language model computes the likelihood of a sequence of words by
employing a Markov chain, where every word’s likelihood is based simply on the previous
word. More formally, every word is represented by a state in the bigram model, and there
is a probability associated with every transition from the current word to the next word.
To determine the likelihood of a sequence of wordsw1 throughwn, the model computes∏n

i=1 p(wi | wi−1) (a special +begin+ word is used to compute the likelihood ofw1). The
use of a statistical bigram model in each name-class means that the number of states in each
of the name-class regions is equal to the vocabulary size,|V |.

For the purposes of name-finding, we must find the most likely sequence of name-classes
(NC) given a sequence of words (W):

max Pr(NC |W) (3.1)

We assume a generative model, i.e., that the HMM generates the sequence of words and
labels. We use Bayes’ Rule:

Pr(NC |W) = Pr(W,NC)
Pr(W)

(3.2)

216 D.M. BIKEL, R. SCHWARTZ AND R.M. WEISCHEDEL

Since the unconditioned probability of the word sequence—the denominator—is constant
for any given sentence, we can maximize the right-hand side of Eq. (3.2) by maximizing
the numerator alone. We will describe how Pr(W,NC) is modeled in Section 3.2.1.

The numerator of Eq. (3.2) is the joint probability of the word and name-class sequence.
As is necessary with a Markov model, we make independence assumptions when computing
this joint probability. Accordingly, the generation of words and name-classes proceeds in
three steps:

1. Select a name-classNC, conditioning on the previous name-class and the previous word.
2. Generate the first word inside that name-class, conditioning on the current and previous

name-classes.
3. Generate all subsequent words inside the current name-class, where each subsequent

word is conditioned on its immediate predecessor (as per a standard bigram language
model).

These three steps are repeated until the entire observed word sequence is generated.
Using the Viterbi algorithm (Viterbi, 1967), we efficiently search the entire space of all
possible name-class assignments, maximizing the numerator of Eq. (3.2), Pr(W,NC).

Let us illustrate the high-level computation of the likelihood of a word-name-class se-
quence with an example. Suppose IdentiFinder encounters the sentence

Mr. Jones eats .

According to rules of MUC and MET, the correct annotation for such a sentence is

Mr. <ENAMEX TYPE=PERSON>Jones </ENAMEX> eats .

That is, the tokenJones is in the PERSONname-class, while the other tokens are in the
NOT-A-NAME name-class. The model would assign the following likelihood to this word-
name-class sequence (which we would hope to be the most likely, given sufficient training):

Pr(NOT-A-NAME |START-OF-SENTENCE, “+end+”)*
Pr(“Mr.” |NOT-A-NAME, START-OF-SENTENCE) *
Pr(+end+| “Mr.”, N OT-A-NAME) *
Pr(PERSON|NOT-A-NAME, “Mr.”) *
Pr(“Jones”|PERSON, NOT-A-NAME) *
Pr(+end+| “Jones”, PERSON) *
Pr(NOT-A-NAME |PERSON, “Jones”) *
Pr(“eats”|NOT-A-NAME, PERSON) *
Pr(“.” | “eats”, NOT-A-NAME) *
Pr(+end+| “.”, N OT-A-NAME) *
Pr(END-OF-SENTENCE|NOT-A-NAME, “.”)

The details of these probability estimates as well as the use of the special +end+ word are
described below, in Section 3.2.

WHAT’S IN A NAME 217

Informally, the construction of the model in this manner indicates that we view each
type of “name” to be its own language, with separate bigram probabilities for generating
its words. This reflects our intuition of the following:

• There is generally predictive internal evidence regarding the class of a desired entity.
Consider the nature of stereotypical names for airlines, utilities, other corporations and
government organizations. In many cultures, first person names are stereotypical; in
Chinese, family names are stereotypical. In Chinese and Japanese, special characters are
used to transliterate foreign names.
• Local external evidence often suggests the boundaries and class of one of the desired

expressions. Titles signal beginnings of person names. Closed class words, such as de-
terminers, pronouns, and prepositions often signal a boundary.

While the number of word-states within each name-class is equal to|V |, this “interior”
bigram language model is ergodic, i.e., there is a probability associated with every one
of the |V |2 transitions. As a parameterized, trained model, if such a transition were never
observed, the model “backs off” to a less powerful model, as described below, in Section
3.2.3.

3.1. Words and word-features

The word feature is the one part of this model that is language-dependent. Fortunately,
the word feature computation is an extremely small part of the implementation, at roughly
twenty lines of code. The rationale for having such features is clear:

• In Roman languages, capitalization gives good evidence of names.1

• Numeric symbols can automatically be grouped into categories, as in the initial features
in Table 1.
• Semantic classes can be defined by lists of words having a semantic feature.
• Special character sets such as the ones used for transliterating names in Chinese or in

Japanese can be identified.

Throughout most of the model, we consider words to be ordered pairs (or two-element
vectors), composed of word and word-feature, denoted〈w, f 〉. The word feature is a
simple, deterministic computation performed on each word as it is added to or looked up
in the vocabulary. It produces one of the fourteen values in Table 1.

These values are computed in the order listed, so that in the case of non-disjoint feature-
classes, such ascontainsDigitAndAlpha andcontainsDigitAndDash , the former
will take precedence. The first eight features arise from the need to distinguish and annotate
monetary amounts, percentages, times and dates. The rest of the features distinguish types
of capitalization and all other words (such as punctuation marks, which are separate tokens).
In particular, thefirstWord feature arises from the fact that if a word is capitalized and
is the first word of the sentence, we have no good information as to why it is capitalized
(but note thatallCaps andcapPeriod are computed beforefirstWord , and therefore
take precedence).

218 D.M. BIKEL, R. SCHWARTZ AND R.M. WEISCHEDEL

Table 1. Word features, examples and intuition behind them.2

Word feature Example text Intuition

twoDigitNum 90 Two-digit year

fourDigitNum 1990 Four-digit year

containsDigitAndAlpha A8956-67 Product code

containsDigitAndDash 09-96 Date

containsDigitAndSlash 11/9/89 Date

containsDigitAndComma 23,000.00 Monetary amount

containsDigitAndPeriod 1.00 Monetary amount, percentage

otherNum 456789 Other number

allCaps BBN Organization

capPeriod M. Person name initial

firstWord first word of sentence No useful capitalization information

initCap Sally Capitalized word

lowerCase can Uncapitalized word

other , Punctuation marks, all other words

In the early stages of IdentiFinder’s development, the word-feature was not in the model;
instead the system relied on a third-level back-off part-of-speech tag, which in turn was
computed by our stochastic part-of-speech tagger. The tags were taken at face value: there
were nok-best tags; the system treated the part-of-speech tagger as a “black box”. Although
the part-of-speech tagger used capitalization to help it determine proper-noun tags, this
feature was only implicit in the model, and then only after two levels of back-off. Also,
the capitalization of a word was submerged in the muddiness of part-of-speech tags, which
can “smear” the capitalization probability mass over several tags. Because it seemed that
capitalization would be a good name-predicting feature, and that it should appear earlier
in the model, we eliminated the reliance on part-of-speech altogether, and opted for the
more direct, word-feature model described above, in Section 3. Also in the early stages of
development, we had a very small number of features, indicating whether the word was a
number, the first word of a sentence, all uppercase, initial-capitalized or lower-case. We
then expanded the feature set to its current state in order to capture more subtleties related
mostly to numbers; due to increased performance (although not entirely dramatic) on every
test, we kept the enlarged feature set.

3.2. Formal model

This section describes the model formally, discussing the transition probabilities to the word-
states, which “generate” the words of each name-class. As with most trained, probabilistic
models, we have a most accurate, most powerful model, which will “back off” to a less-
powerful model when there is insufficient training, and ultimately back-off to unigram
probabilities.

WHAT’S IN A NAME 219

3.2.1. Top level model.The top-level model consists of three components: (1) a model
to generate a name-class, (2) a model to generate the first word in a name-class and (3) a
model to generate all subsequent words in a name-class.

In order to generate the first word, we must make a transition from one name-class to
another, as well as calculate the likelihood of that word. Our intuition was that a word
preceding the start of a name-class (such as “Mr.”, “President” or other titles preceding the
PERSONname-class) and the word following a name-class would be strong indicators of
the subsequent and preceding name-classes, respectively. Accordingly, the probability for
generating the first word of a name-class is factored into two parts:

Pr(NC | NC−1, w−1) · Pr(〈w, f 〉first | NC,NC−1). (3.3)

The top level model for generating all but the first word in a name-class is

Pr(〈w, f 〉 | 〈w, f 〉−1,NC). (3.4)

There is also a distinguished “+end+” word, so that the probability may be computed for
any current word to be the final word of its name-class, i.e.,

Pr(〈+end+, other 〉 | 〈w, f 〉final,NC). (3.5)

As one might imagine, it would be useless to have the first factor in Eq. (3.3) be condi-
tioned on the +end+ word, so the probability is conditioned on the previousreal word of
the previous name-class, i.e., we compute

Pr(NC | NC−1, w−1)


w−1 = +end+ if

NC−1 = START-OF-SENTENCE

w−1 = last observed word otherwise

(3.6)

Note that the above probability is not conditioned on the word-feature ofw−1. Our
intuition is that in cases where the previous word would help the model predict the next
name-class, the word feature—capitalization in particular—is not important: “Mr.” is a good
indicator of the next word beginning the PERSONname-class, regardless of capitalization,
especially since it is almost never seen as “mr.”.

3.2.2. Training: Estimating probabilities. The calculation of the above probabilities is
straightforward, using events/sample-size:

Pr(NC|NC−1, w−1) = c(NC,NC−1, w−1)

c(NC−1, w−1)
(3.7)

Pr(〈w, f 〉first | NC,NC−1) = c(〈w, f 〉first,NC,NC−1)

c(NC,NC−1)
(3.8)

220 D.M. BIKEL, R. SCHWARTZ AND R.M. WEISCHEDEL

Pr(〈w, f 〉 | 〈w, f 〉−1,NC) = c(〈w, f 〉, 〈w, f 〉−1,NC)

c(〈w, f 〉−1,NC)
(3.9)

wherec() represents the number of times the events occurred in the training data (thecount).

3.2.3. Back-off models and smoothing.Ideally, we would have sufficient training (or at
least one observation of) every event whose conditional probability we wish to calculate.
Also, ideally, we would have sufficient samples to estimate the conditional probabilities,
e.g., for Pr(NC | NC−1, w−1), we would like to have seen sufficient numbers ofNC−1, w−1.
Unfortunately, there is rarely enough training data to estimate accurate probabilities for all
possibilities. There are two cases: words not seen in training (“unknown words”) and other
events where insufficient training data is available.

3.2.3.1. Unknown words.The vocabulary of the system is built as it trains. Necessarily,
then, the system knows about all words for which it stores bigram counts in order to
compute the probabilities in Eqs. (3.3)–(3.5). All unknown words are mapped to the token
UNK . The question arises how the system should estimate probabilities involvingUNK ,

since there are three ways in which they can appear in a bigram: as the current word, as
the previous word or as both. A good answer is to train a separate, unknown word-model
on held-out data, to gather statistics of unknown words occurring in the midst of known
words. That is to say, since we treat all unknown words as one tokenUNK , we would like
to estimate howUNK occurs in some of our training data.

Ideally, one would hold out one article at a time for smoothing or unknown word-training.
However, to simplify the implementation, we hold out 50% of our data to train the unknown
word model (the vocabulary is built up on the first 50%), save these counts in a training
data file, then hold out the other 50% and concatenate these bigram counts with the first
unknown word training file. This way, we can gather likelihoods of an unknown word
appearing in a bigram using all available training data. This approach is perfectly valid,
as we are trying to estimate that which we have not legitimately seen in training. When
performing name recognition, if either word of the bigram is unknown, the model used to
estimate the probabilities of Eqs. (3.3)–(3.5) is the unknown word model, otherwise it is
the model from the normal training. The unknown word-model can be viewed as a first
level of back-off, therefore, since it is used when an unknown word is encountered, and is
necessarily not as accurate as the bigram model formed from the actual training.

3.2.3.2. Further back-off models and smoothing.Whether a bigram contains an unknown
word or not, it is possible that either model may not have seen this bigram. Table 2 shows
a graphic illustration of the back-off scheme.

The weight for each back-off model is computed on-the-fly, using the following formula:
if computing Pr(X | Y) for some eventsX andY, assign weight ofλ to the direct estimate
of this conditional probability computation (using one of the formulae of Section 3.2.2) and
a weight of (1− λ) to the back-off model, where

λ =
(

1− old c(Y)

c(Y)

)
1

1+ unique outcomes ofY
c(Y)

. (3.10)

WHAT’S IN A NAME 221

Table 2. Back-off strategy.

Name-class bigrams First-word bigrams Non-first-word bigrams

Pr(NC | NC−1, w−1) Pr(〈w, f 〉first | NC,NC−1) Pr(〈w, f 〉 | 〈w, f 〉−1,NC)

.

.

.
.
.
.

.

.

.

Pr(NC | NC−1) Pr(〈w, f 〉 | 〈 +begin+,other 〉,NC) Pr(〈w, f 〉 | NC)

.

.

.
.
.
.

.

.

.

Pr(NC) Pr(〈w, f 〉 | NC) Pr(w | NC) · Pr(f | NC)

.

.

.
.
.
.

.

.

.

1
number of name-classes Pr(w | NC) · Pr(f | NC) 1

|V | · 1
number of word features

.

.

.

1
|V | · 1

number of word features

The quantity “oldc(Y)” is the sample size of the model from which we are backing off.
This is a rather simple method of smoothing, which tends to work well when there are only
three or four levels of back-off.3 This method also overcomes the problem when a back-off
model has roughly the same amount of training as the current model, via the first factor
of Eq. (3.10), which essentially ignores the back-off model and puts all the weight on the
primary model, in such an equi-trained situation. For example, suppose we are trying to
compute the back-off weightλ for a computation of Pr(PERSON|NOT-A-NAME, “Mr.”), but
it turns out thatc(NOT-A-NAME, “Mr.”) ≈ c(NOT-A-NAME). In such a case, we would like
to effectively remove the estimate of Pr(PERSON|NOT-A-NAME) from the smoothing of our
estimate of Pr(PERSON|NOT-A-NAME, “Mr.”), since the two have equal training, but the
latter is a superior model, since it conditions on more context. This is exactly what happens
with the first factor in Eq. (3.10), since, when we are computing Pr(PERSON|NOT-A-NAME),
old c(Y) ≈ c(Y), makingλ almost zero and pushing all the rest of the probability mass to
the computation of Pr(PERSON).

The second factor of Eq. (3.10), which does the real work of smoothing, is based on the
notion that the number of unique outcomes over the sample size is a crude measure of the
certainty of the model. This “certainty” is essentially a measure (in the (0, 1) interval) of
the uniformity of the distribution from stateY, where a completely uniform distribution has
the most uncertainty.

As an example—disregarding the first factor—if we saw the bigram “come hither” once
in training and we saw “come here” three times, and nowhere else did we see the word
“come” in the NOT-A-NAME class, when computing

Pr(“hither” | “come”,NOT-A-NAME),

we would back off to the unigram probability

Pr(“hither” |NOT-A-NAME)

222 D.M. BIKEL, R. SCHWARTZ AND R.M. WEISCHEDEL

with a weight of 1
3, since the number of unique outcomes for the word-state for “come”

would be two, and the total number of times “come” had been the preceding word in a
bigram would be four (a weight of 1/(1+ 2

4) = 2
3 for the bigram probability, a weight of

1− 2
3 = 1

3 for the back-off model).

3.3. Comparison with a traditional HMM

Unlike a traditional HMM, the probability of generating a particular word is 1 for each
word-state inside each of the name-class states. An alternative—and more traditional—
model would have a small number of states within each name-class, each having, perhaps,
some semantic significance, e.g., three states in the PERSON name-class, representing a
first, middle and last name, where each of these three states would have some probability
associated with emitting any word from the vocabulary. We chose to use a bigram language
model because, while less semantically appealing, suchn-gram language models work
remarkably well in practice. Also, as a first research attempt, ann-gram model captures
the most general significance of the words in each name-class, without presupposing any
specifics of the structure of names, ´a la the PERSON name-class example, above. More
important, either approach is mathematically valid, as long as all transitions out of a given
state sum to one.

3.4. Decoding: The recognition process

The number of possible state sequences forN states in an ergodic model for a sentence
of m words is Nm. However, using dynamic programming and an appropriate merg-
ing of multiple theories when they converge on a particular state—the Viterbi decoding
algorithm—a sentence can be “decoded” in time linear to the number of tokens in the sen-
tence,O(m). Since we are interested in recovering the name-class state sequence, we pursue
N theories, one for each name-class, at every given step of the algorithm (for MUC-6, e.g.,
N = 8).

4. Implementation

IdentiFinder is implemented in C++. On a desktop PC running linux with a 200 MHz
processor and 128 MB RAM, IdentiFinder trains on the 650 K word training corpus of Wall
Street Journal text in six minutes. Named entity recognition runs at about 12 MB/h.

Up until now, our effort has been focused on recognition quality (F-measure). We believe
that substantial speed up is possible, and have begun implementation to achieve that.

5. Results of evaluation

In this section we report the results of evaluating the current version of the learning software.
We report the results for English and for Spanish mixed case, and for English in varying

WHAT’S IN A NAME 223

Table 3. F-measure scores (IdentiFinder’s performance as compared to the best reported scores for each
category).

Language Best rules IdentiFinder

Mixed case English (WSJ) 96.4 94.9

Upper case English (WSJ) 89 93.6

Speech form English (WSJ) 74 90.7

Mixed case Spanish 93 90

modalities. In addition, we present the results of experiments that determine the impact of
the training set size on the algorithm’s performance in both English and Spanish. For each
language, we have a held-out development test set and a held-out, blind test set. We only
report results on the blind test set for each respective language.

5.1. English and Spanish results

Our test set for English data is that from MUC-6, a collection of 30Wall Street Journal
documents (we used a different test set during development).4 Our Spanish test set is from
materials used in MET-1, comprised of articles from the news agency AFP.5

Table 3 compares theF-measure for IdentiFinder against the highest performing system
of handcrafted rules.6 We can make the following two observations.

1. Performance of the best hand-crafted system on mixed case is better than that of the
HMM. However, the performance is close enough that we choose the learning approach
rather than requiring computational linguists to maintain rule sets. Indeed, significance
tests (see Chinchor, 1995) indicate that IdentiFinder performs comparably to the best
hand-crafted system on mixed-case text.

2. Spanish performance trails that of English. There are several contributing factors to this
performance discrepancy:

• Three times more training data were available for English. Spanish performance should
improve with more training data.
• The training data for Spanish seems to have more internal inconsistencies. Another

pass through the data to minimize inconsistencies should improve performance.
• Many words in the Spanish names are lower case, thereby making name-finding in

Spanish somewhat harder than in English. For example,departamento(“Department”)
could often start an organization name, and nationality adjectives, such ascoreana
(“Korean”) could appear in names and by convention are not capitalized.
• The domain of the Spanish data, press conferences, is probably somewhat harder than

the narrower domain of English, namely the change of corporate officers in major
corporations.

224 D.M. BIKEL, R. SCHWARTZ AND R.M. WEISCHEDEL

Figure 4. Detailed performance analysis of IdentiFinder on the MUC-6 test. The left axis is percentage of
recall/precision for the bars; the right axis is the raw entity count for the line graph. There are no occurrences of
theTIME name-class in the MUC-6 test.

5.2. Detailed performance results on English

While theF-measure is convenient as a simple, single metric of name-finding performance,
it is illuminating and indeed necessary when evaluating a name-finder to look at the precision
and recall from which theF-measure is derived, as well as the precision and recall for
specific named entities. The overall recall for IdentiFinder on the MUC-6 test is 96%, the
overall precision, 93%, which combine to form anF-measure of 94.92.

Figure 4 illustrates the performance of IdentiFinder on the various named entities that
appeared in the MUC-6 test, giving separate recall and precision scores for each type of
entity. It is important to note that not all entity types appear with the same frequency, and
therefore performance on the far more numerous entity types has a much greater impact on
overall performance than on the infrequent ones. The combined line chart serves to illustrate
the relative frequency of the entities, using the absolute scale on the right-hand side of the
chart; e.g., there were 457 organization (ORG) names in the MUC-6 test, but only 76 money
amounts. All data for figure 4 were generated by the MUC-7 scoring program running in
MUC-6 compatibility mode.

5.3. Effect of word features

As the word-feature computation is the only part of the model that is language-dependent,
it is instructive to evaluate the performance of IdentiFinder with only the smallest subset
of word-features vs. the entire set. Early in the system’s development there were only five
word features, to detect whether a word was a number, all upper-case, all lower-case, the
first word of a sentence or none of the above. Using only these five features, IdentiFinder

WHAT’S IN A NAME 225

scored anF of 94.07 (96% recall, 92% precision) on the MUC-6 test, as compared to the
94.92F-measure score with the full feature set. This experiment indicated that while the
full word feature computation yields better performance, it is not nearly as significant as
the other parts of the model.

5.4. Modalities other than mixed case prose

For English, if mixed case is not available, the NE task becomes significantly harder, even
for humans. In figure 5, we show the same sentence in mixed case, in upper case, and in
the format generated by automatic speech recognition, termed “SNOR” format. SNOR
format not only lacks case, but lacks all punctuation, and has all numbers spelled out as
words.

Figure 6 illustrates how one mixed case training set can serve to train IdentiFinder for
uppercase input, for speech (SNOR) format, and for OCR input. It is easy to see that one
can automatically convert the mixed case training set into upper case training, and then
retrain IdentiFinder on the uppercase material. However, it is also easy to convert mixed
case prose into SNOR format by upcasing the text, removing all punctuation, and converting

Figure 5. Three modalities (the task becomes increasingly difficult as one moves from mixed case to upper case,
to SNOR format).

Figure 6. Deriving alternative modalities (given mixed case training data, one can automatically derive training
data for upper case text, for speech (SNOR) format and for optical character recognition (OCR)).

226 D.M. BIKEL, R. SCHWARTZ AND R.M. WEISCHEDEL

all numbers to their word form, e.g., 150 becomesone hundred fifty. For OCR, print the
training files, then OCR it, and retrain.

We have conducted experiments on upper case text and SNOR format, and have planned
to run experiments with OCR data in 1999. Results for the MUC-6 test materials are
reported in Table 3. Two points should be noted about the results with respect to alternative
modalities. First, the best score previously reported for an upper case version of MUC-6
was by the handcrafted rule system NameTagTM, the same system that scored best on the
mixed case version (Krupka, 1995). It had been designed to perform well on mixed case
and on upper case. Second, the only performance by a rule-based system ever reported
on SNOR format was by our own rule-based system. It should be noted that we had not
prepared it specifically for SNOR, but had tuned it to handle upper case text. We estimate
that a month’s effort would have improved its scores by about 10 points ofF . Given the
performance of IdentiFinder without any labor for SNOR input, we had no motivation to
spend a person month to get an exact score for the rule-based system. Nevertheless, the
following two conclusions were very apparent.

1. IdentiFinder clearly outperformed all previous approaches when mixed case was not
available.

2. IdentiFinder required no labor to handle upper case text or speech format. It required
only a few machine cycles to convert the mixed case training data to other forms and
retrain.

5.5. The amount of training data required

With any learning technique one of the important questions is how much training data is
required to get acceptable performance. More generally, how does performance vary as the
training set size is increased or decreased? We ran a sequence of experiments in English
and in Spanish to try to answer this question for the model that was implemented.

For English, there were 650,000 words of training data. By that we mean that the text of
the document itself (including headlines but not including SGML tags) was 650,000 words
long. Given this maximum size of training available to us, we successively divided the
training material in half until we were using only 60,000 words for the smallest experiment.

The results are shown in figure 7 below using a logarithmic scale for thex-axis. The
positive outcome of the experiment is that half as much training data would have given almost
equivalent performance. Had we used only one sixth of the data or approximately 100,000
words, performance would have degraded slightly, only about 1–2 percent. Reducing the
training set to 60,000 words would have had a more significant decrease in the performance
of the system; however, the performance is still very high even with such a small training set.

With increased training data it would be possible to use even more detailed models that
require more data and could achieve significantly improved overall system performance
with those more detailed models. For Spanish we had only 223,000 words of training data.
We also measured the performance of the system with half the training data or slightly
more than 100,000 words of text. Figure 7 shows the results. There is almost no change
in performance by using as little as 100,000 words of training data. Therefore, the results

WHAT’S IN A NAME 227

Figure 7. Impact of various training set sizes on performance (the learning algorithm performs remarkable well
in both English and Spanish, nearly comparable to handcrafted systems with as little as 100,000 words of training
data).

in both languages were comparable. As little as 100,000 words of training data produces
performance nearly comparable to handcrafted systems.

The cost of using any algorithm is always an issue. To give a sense of the size of 650,000
words, that is roughly two-thirds the length of one edition of the Wall Street Journal.
Annotators—those who mark answer keys—can reliably mark WSJ-style text with the
seven MUC categories at a rate of 3000 words per hour for inexperienced annotators,
and roughly 5000 words per hour for experienced annotators, according to experiments
performed at BBN. Using IdentiFinder itself, BBN has also explored several automatic
means of correction/adjudication, and several bootstrapping methods that make the task
of creating a sufficient amount of training data quite manageable. One of these methods
is to have IdentiFinder test on its own training, catching an important albeit limited class
of errors due to inconsistency (either intra- or inter-annotator). In our experience, inter-
annotator consistency is roughly 95% or above for our typical text sources.

6. Further work and error analysis

6.1. Further work

While our initial results have been quite favorable, there is still much that can be done poten-
tially to improve performance and completely close the gap between learned and rule- based
name-finding systems. We would like to incorporate the following into the current model:

• a hierarchical model to capture nested names, e.g.,Bank of Boston
• longer-distance information, to find names not captured by our bigram model
• training heuristics to supplement annotated data with large volumes of unmarked lan-

guage.

228 D.M. BIKEL, R. SCHWARTZ AND R.M. WEISCHEDEL

Figure 8. IdentiFinder output on a sentence from the MUC-7 dryrun data.

6.2. Error analysis

The second bullet in Section 6.1 is of particular interest, especially in the analysis of certain
errors currently made by IdentiFinder. Let us look at the sentence that is shown in figure 8,
part of the MUC-7 dryrun data.

The angle-bracketed items are SGML tags, which delimit and identify the type of names in
the text. Note thatBirgen Air has been labeled aLOCATION, when it is anORGANIZATION

(and is so marked in the key file). According to the tokenization rules of MUC-6, MET-1
and MUC-7, punctuation marks such as commas are treated as separate tokens, meaning that
the “word” directly precedingBirgen —as far as IdentiFinder’s model is concerned—is
“ , ”, and the same “word” directly follows “Air ”. This means that currently, IdentiFinder
is incapable of using the slightly wider context of a trigram that would include the word
“company ” when predicting the beginning of thisORGANIZATION. As it happens,Birgen
is an unknown word, and the capitalized wordAir happens to have a very high unigram
probability for appearing within aLOCATION, due to many training examples of “Edwards
Air Force Base ” and the like, which are consideredLOCATIONs, notORGANIZATIONs.
(For the same reason, “UNK Air ” is a very likely bigram in aLOCATION in the unknown
word model.) Therefore, with the current bigram model, IdentiFinder has determined that
“Birgen Air ” is a LOCATION, when it is actually anORGANIZATION, an error thatcould
be potentially prevented by using more context in the model. The downside of using more
context, such as trigrams, is that in practice exponentially more training data is required.

As another approach, one might consider effectively “stripping” seemingly inconsequen-
tial tokens such as commas out of the data stream processed by IdentiFinder, re-inserting
them after name-finding is complete. While such a technique might appear to be helpful,
it is actually quite detrimental, as punctuation tokens—commas in particular—give great
evidence of names, especially given the prevalence ofLOCATIONs having the form “City,
State ”. For example, in the text fragment “Los Angeles, California ”, the comma
helps signal the end of the firstLOCATION “Los Angeles ” and the beginning of the next
LOCATION “California ”. The compromise between a full trigram model and the status
quo is to develop a special-case extension to the model. Indeed, very recently IdentiFinder’s
model has been augmented with this special case, so thatboth the punctuation tokenand
its adjacent token can be used to determine the likelihood of a name.

7. Other learning approaches to name-finding

There have been relatively few attempts to apply learning algorithms to the task of named
entity recognition. However, Brill’s transformation-based learning algorithm (Brill, 1995)
has been applied to the NE problem, as outlined in Aberdeen et al. (1995). Performance
thus far reported lags that of IdentiFinder by about 10F-measure points. Bennett, Aone,

WHAT’S IN A NAME 229

and Lovell (1997) use binary decision trees for the NE task. The decision tree decides
whether to insert a begin category mark, end category mark, or nothing at each point in the
sequence of input words. TheirF-measure scores thus far are about 91, contrasted with
IdentiFinder’s 94.9 on the same test material.

Like IdentiFinder, these two alternative learning approaches use statistics to make deci-
sions. However, only IdentiFinder has a complete probabilistic model that

• governs all decisions and
• models the categories of interest and the residual input that is not of interest.

A very recent approach is the MENE system (Borthwick et al., 1998), which employs
similar features to those of IdentiFinder to create a Maximum Entropy model for name-
finding. Using MENE alone, the reportedF-measure results on the MUC-7 dry-run and
formal test sets range from the mid-80s to the early 90s. However, Borthwick et al. (1998)
have very successfully combined MENE with other, rule-based name-finders to achieve
results superior to the rule-based systems alone.

8. Conclusions

None of the formalisms or techniques presented in this paper is new; rather, applying
an HMM to this task and the model itself are novel. We have shown that using a fairly
simple probabilistic model, finding names and other numerical entities as specified by
the MUC NE and MET tasks can be performed with “near-human performance”, often
likened to anF-measure of 95 or above. We have also shown that such a system can be
trained efficiently. Furthermore, the system is largely language-independent: for example,
although none of the authors speaks Spanish, we were able to develop a Spanish name-
finder by training IdentiFinder on answer keys marked by native speakers. We also showed
that the technique handles multiple modalities automatically when automatic methods exist
to convert the training data for one modality into another. To our knowledge, our learned
name-finding system has achieved a higherF-measure than any other learned NE system.
Indeed, IdentiFinder performs as well as the top-performing systems, whether learned or
handcrafted, on mixed case text and is superior to all previously reported results when case
information is lacking.

Acknowledgments

The work reported here was supported in part by the Defense Advanced Research Projects
Agency and the DoD Counterdrug Technology Development Program Office. Technical
agents for part of this work were Fort Huachucha under contract number DABT63-94-C-
0062 and Rome Laboratory under contract number F30602-95-C-0111. The views and con-
clusions contained in this document are those of the authors and should not be interpreted
as necessarily representing the official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency, the DoD Counterdrug Technology Development Pro-
gram Office, or the United States Government.

230 D.M. BIKEL, R. SCHWARTZ AND R.M. WEISCHEDEL

Notes

1. Spanish has many lower-case words in organization names.
2. This table represents the feature set used at the time of MET-1. We have subsequently made additions, such as

list membership features, that have helped marginally in certain domains. We have also allowed for multiple,
non-disjoint feature vectors, which again provide only marginal improvement in overall performance.

3. Any more levels of back-off might require a more sophisticated smoothing technique, such as deleted interpo-
lation. No matter what smoothing technique is used, one must remember that smoothing is the art of estimating
the probability of that which is unknown (i.e., not seen in training).

4. Unfortunately, the MUC-6 test is not a good measure of domain-independent performance, since the MUC-6
materials were obtained by a keyword search intended to retrieve articles reporting a change in corporate
officers.

5. The MET-1 data was selected by the Government retrieving articles about press conferences from AFP.
6. For Mixed Case and Upper Case, the “Best Rules” column results are those of NameTagTM reported at MUC-6.

The “Best Rules” result in the “Speech Form” test is from an earlier, rule-based name-finder developed at BBN
(the rules were tuned for regular WSJ, not speech output). Finally, the “Best Rules” result in the Mixed Case
Spanish was reported anonymously in (Merchant, Okurowski, & Chinchor, 1996).

References

Aberdeen, J., Burger, J., Day, D., Hirschman, L., Robinson, P., & Vilain, M. (1995). MITRE: Description of the
Alembic system used for MUC-6.Proceedings of the Sixth Message Understanding Conference (MUC-6)(pp.
141–155). Columbia, Maryland: Morgan Kaufmann Publishers, Inc.

Appelt, D.E., Jerry, R.H., Bear, J., Israel, D., Kameyama, M., Kehler, A., Martin, D., Myers, K., & Tyson, M.
(1995). SRI international FASTUS system MUC-6 test results and analysis.Proceedings of the Sixth Message
Understanding Conference (MUC-6)(pp. 237–248). Columbia, Maryland: Morgan Kaufmann Publishers,
Inc.

Bennett, S.W., Aone, C., & Lovell, C. (1997). Learning to tag multilingual texts through observation.Proceedings
of the Second Conference on Empirical Methods in Natural Language Processing(pp. 109–116). Providence,
Rhode Island: Morgan Kaufmann Publishers, Inc.

Borthwick, A., Sterling, J., Agichtein, E., & Grishman, R. (1998). Description of the MENE named entity system
as used in MUC-7.Proceedings of the Seventh Message Understanding Conference (MUC-7). Fairfax, Virginia:
Morgan Kaufmann Publishers, Inc.

Brill, E. (1995). Transformation-based error-driven learning and natural language processing: A case study in
part-of-speech tagging.Computational Linguistics, 21(4), 543–565.

Chinchor, N. (1995). Statistical significance of MUC-6 results.Proceedings of the Sixth Message Understanding
Conference (MUC-6)(pp. 39–43). Columbia, Maryland: Morgan Kaufmann Publishers, Inc.

Chinchor, N. (1998). MUC-7 named entity task definition dry run version, version 3.5, 17 September 1997.
Proceedings of the Seventh Message Understanding Conference (MUC-7)(to appear). Fairfax, Virginia: Morgan
Kaufmann Publishers, Inc. URL: ftp://online.muc.saic.com/NE/training/guidelines/NE.task.def.3.5.ps.

Church, K. (1988). A stochastic parts program and noun phrase parser for unrestricted text.Proceedings of the
Second Conference on Applied Natural Language Processing, Austin, Texas.

Krupka, G. (1995). SRA: Description of the SRA system as used for MUC-6.Proceedings of the Sixth Message
Understanding Conference (MUC-6)(pp. 221–235). Columbia, Maryland: Morgan Kaufmann Publishers,
Inc.

Merchant, R., Okurowski, M., & Chinchor, N. (1996). The multilingual entity task overview.Proceedings of the
Tipster Text Program Phase II(pp. 445–447). Vienna, Virginia: Morgan Kaufmann Publishers, Inc.

Rabiner, L.R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition.
Proceedings of the IEEE.

Sundheim, B., & Chinchor, N. (1995). Named entity task definition (version 2.1).Proceedings of the Sixth Message
Understanding Conference (MUC-6)(pp. 319–332). Columbia, Maryland: Morgan Kaufmann Publishers,
Inc.

WHAT’S IN A NAME 231

Viterbi, A.J. (1967). Error bounds for convolutional codes and an asympotically optimum decoding algorithm.
IEEE Transactions on Information Theory, IT-13(2), 260–269.

Weischedel, R. (1995). BBN: Description of the PLUM system as used for MUC-6.Proceedings of the Sixth Mes-
sage Understanding Conference (MUC-6)(pp. 55–69). Columbia, Maryland: Morgan Kaufmann Publishers,
Inc.

Weischedel, R., Meteer, M., Schwartz, R., Ramshaw, L., & Palmucci, J. (1993). Coping with ambiguity and
unknown words through probabilistic methods.Computational Linguistics, 19(2), 359–382.

