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Abstract. Maximum a posteriori optimization of parameters and the Laplace approximation for the marginal
likelihood are both basis-dependent methods. This note compares two choices of basis for models parameterized
by probabilities, showing that it is possible to improve on the traditional choice, the probability simplex, by
transforming to the ‘softmax’ basis.
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1. Introduction

Laplace’s method approximates the integral of a function
∫

dkw f (w) by fitting a Gaussian
at the maximumŵ of f (w), and computing the volume under that Gaussian:∫

dkw f (w) ' f (ŵ)(2π)k/2 |−∇∇ log f (w)|−1/2 . (1)

This method is widely used in probabilistic modeling to approximate the value of marginal
likelihoods, which are of interest for model comparison (Ripley, 1995; Lindley, 1980;
Smith & Spiegelhalter, 1980; MacKay, 1992; Chickering & Heckerman, 1996). In this
paper I consider the case of models whose parameters are probabilities, for example, hidden
Markov models, mixture models, belief networks and certain language models. I examine
the neglected issue of the choice ofbasisin which the Laplace approximation is made.

It is well known that the location of the maximum of a densityf is not invariant with
respect to a non-linear reparameterizationθ(w) of the parametersw. Clearly the Laplace
integral is not invariant either. Thus the choice of basis is important, but in many areas of
statistical modeling, people rarely consider changing from the most obvious basis. Intui-
tively, if we are going to use Laplace’s approximation we should try to reparameterize our
model so that the densityf is as near as possible to a Gaussian.

1.1. Models to be discussed

The likelihood function for a simple belief network with no hidden nodes is a product of
factors, one for each unknown probability vectorp, of the form

P(F | p) =
∏

i

pFi
i , (2)
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wherep is a probability vector withI components, andF is a vector of countsFi , the number
of times that outcomei occurred when we sampled from the distributionp. We will discuss
the very simplest case of a network with one node which can take onI possible values, so
that the likelihood is given by the one factor above. An example system to have in mind
is a bentI -sided die whose probability of rolling ani is pi . The unknown vectorp is to
be inferred from the outcome ofF rolls in which facei came upFi times, and we wish to
calculate the marginal likelihood, which depends on the prior distribution overp.

A popular prior for a probability vectorp is the Dirichlet distribution (O’Hagan, 1994)
parameterized by a measureu (a vector with all coefficientsui > 0):

P(p | u) = 1

ZDir(u)

I∏
i=1

pui−1
i δ

(∑
i

pi − 1

)
≡ Dirichlet(I )(p | u). (3)

The functionδ(x) is the Dirac delta function which simply restricts the distribution to
the simplex such thatp is normalized, i.e.,

∑
i pi = 1; the distribution is restricted to

non-negativepi ’s. The normalizing constant of the Dirichlet distribution is

ZDir(u) =
∏

i

0(ui )/0(u), (4)

where we defineu = ∑
i ui . We will similarly defineF = ∑

i Fi . The hyperparameter
vector u controls how compact the prior distribution overp is. If u is large then the
distribution overp is concentrated around the mean of the distribution,ui /u. If all the
components ofu are small then extreme large and small probabilities are expected.

In the case of our bent die model, assuming a Dirichlet prior, the posterior probability of
p given the dataF is

P(p | F, u) = P(F | p)P(p | u)
P(F | u) (5)

=
∏

i pFi
i

∏
i pui−1

i δ
(∑

i pi − 1
)/

ZDir(u)

P(F | u) (6)

= Dirichlet(I )(p | F+ u). (7)

The predictive distribution, that is, the probability that the next outcome will be ani , is
given by

P(i | F, u) =
∫

Dirichlet(I )(p | F+ u) pi dIp = Fi + ui

F + u
. (8)

Belief networks with hidden variables and mixture models have a likelihood function
obtained by summation over the hidden variables; Dirichlet priors are also widely used for
such models. The traditional MAP method for such models (Lee & Gauvain, 1993) is to
maximize the posterior probability of the parametersp, and the traditional Laplace method
for such a model is, after maximizing in thep basis, to make the Gaussian approximation
in the same basis (Chickering & Heckerman, 1996).
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There is an obvious difficulty, namely that if a prior withui < 1 is used, then it is
possible for the posterior density to diverge at the edge of the parameter space where at least
one parameterpi is equal to zero, if the sum ofui and the effective countFi for outcome
i is less than 1. The Laplace approximation is only valid at the maximum of a smooth
hump, so if this happens the traditional method is in trouble. The traditional solution to
this problem is to forbid the use of Dirichlet priors with anyui ≤ 1. However, as argued
in (Jeffreys, 1939; MacKay & Peto, 1995; Gelman, 1996), there may be good reasons for
expecting priors withui < 1 to be appropriate for many problems. I would argue that the
‘−1’ terms in the traditional posterior probability are artefacts of the choice of basis.

2. A change of basis

I suggest that maximum a posteriori parameter estimation and Laplace approximations
would be better conducted in the ‘softmax’ representation (widely used in neural networks
(Bridle, 1989)) in which the parametersp are replaced by parametersa:

pi (a) = exp(ai )∑
i ′ exp(ai ′)

. (9)

[Please do not confusep(a), the function defined in Eq. (9), with the probability density
P(a).] The probability vectorp hasI components but onlyI − 1 degrees of freedom; the
sum of pi must be 1. Similarly,a hasI components, but it has a redundant degree of free-
dom: addition of an arbitrary multiple ofn = (1, 1, 1, . . .1)T to a leavesp(a) unchanged.
We are free to constrain this degree of freedom however we wish.

In the softmax basis the Dirichlet prior may be written as

P(a | u) = 1

ZS(u)

∏
i

pi (a)ui g(a · n), (10)

whereg(a · n) is an arbitrary density constraining the redundant degree of freedom, and
ZS(u) is the appropriate normalizing constant. This prior no longer has any ‘−1’ terms
in its exponents, because the Jacobian of the transformation fromp-space toa-space is
proportional to

∏
i pi (see Appendix).

It is as straightforward to evaluate derivatives and curvatures with respect toaas it is with
respect top. Consider the log likelihoodL = log

∏
i pFi

i =
∑

i Fi log pi for example.
Definingz=∑i exp(ai ), we have

L =
∑

i

Fi [ai − logz] =
∑

i

Fi ai − F logz, (11)

whereF =∑i Fi . The derivative is

∂L

∂ai
= Fi − Fpi , (12)
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and the curvature is

∂2L

∂ai ∂aj
= −F

∂pi

∂aj
= −F [δi j pi − pi pj ]. (13)

We note that the most probablea in this basis under the above likelihood and a Dirichlet
prior P(a | u) is a= aMP such that

pi (aMP) = Fi + ui

F + u
, (14)

which we recognize as being equivalent to the predictive distribution (8). So in the softmax
basis, unlike the traditional basis, the MAP parameter vectorp is, conveniently, equal to
the mean ofp.

3. Comparison

Figure 1 gives an intuitive picture for why we might expect the softmax representation
to be a superior representation in which to make Gaussian approximations. In the case
P[(p, 1− p)] = Dirichlet(2)(p | u = (1.3, 1.3)) the traditional Gaussian approximation
puts more probability massoutsidethe interval [0, 1] than inside. The curvature of the true
density diverges atp = 0 andp = 1. As a function ofa, in contrast, the density has no
singularities. The Gaussian approximation in the softmax basis is still imperfect, however,
in that the Dirichlet distribution falls exponentially for large|a|, so the softmax Gaussian
approximation is too light-tailed.

We can make a quantitative comparison of the traditional Laplace approximation and the
softmax Laplace approximation in a simple case where the exact marginal likelihood can
be computed. This is the case, already discussed above, of inferring the probability vector
p of a bentI -sided die fromF rolls of the die. We will test the two approximations in cases
where the prior is well matched to the source of the data and in cases where the prior and
the data are at variance with each other.

3.1. Exact answer

If we assume a Dirichlet prior forp and observeF samples fromp, obtaining countsF =
(F1, F2, . . . , FI ), the posterior probability ofp is another Dirichlet distribution (Eq. (7))
and we can obtain the marginal likelihoodP(F | u) from Eq. (4):

P(F | u) = ZDir(F+ u)
ZDir(u)

=
∏

i 0(Fi + ui )

0(F + u)

0(u)∏
i 0(ui )

. (15)

As in Section 1, we defineu ≡∑i ui .
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Figure 1. Intuition for the defect of the traditional Laplace approximation and the possible advantage of the
softmax basis. This figure shows the case of a binary(I = 2) probability(p, 1−p), which might alternatively be
represented by the parametera, wherep(a) = 1/(1+ e−2a). (a1) The density Dirichlet(2)(p | u = (1.3, 1.3)) in
traditionalp-space,P(p) ∝ p0.3(1− p)0.3. (a2) The density, approximated by a Gaussian. Note how poorly the
Gaussian tails match the true density. (b1) The same density transformed intoa-space,P(a) ∝ p(a)1.3(1−p(a))1.3.
(b2) The Gaussian approximation ina-space. In both cases the Gaussian approximation is made by matching the
first two derivatives of logP at the maximum. The Gaussians have variancesσ 2

p = 1/(8(ui−1))andσ 2
a = 1/(2ui )

respectively, whereui = 1.3. The vertical lines in (a) are equally spaced inp; the vertical lines in (b) show the
corresponding values ofa.

3.2. Softmax Laplace approximation

Let us assume a Gaussian prior on the one unconstrained direction ina space so that the
Dirichlet distribution ona is

P(a | u, ε) = 1

ZS(u)

∏
i

pi (a)ui exp[−ε(a · n)2/2]. (16)

Let us approximateZS(u) using Laplace’s method. We know that the maximum is atâ
such that the correspondinĝpi is ui /u. The curvature matrixM that we require is given
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by (cf. Eq. (13))

Mi j = − ∂2

∂ai ∂aj
log P(a | u, ε) = u

∂pi

∂aj
+ εni n j = u[δi j pi − pi pj ] + εni n j . (17)

The determinant ofM is readily evaluated using the identities

[A + βggT]−1=A−1− βA−1ggTA−1

1+ βgTA−1g
and det[A + βggT] = (det A)(1+ βgTA−1g),

(18)

and we obtain

ZS(u) '
∏

i

p̂ui
i (2π)

I /2det−1/2M (19)

= (2π)I /2
∏

i

p̂ui
i

/(
ε I 2uI−1

∏
i

p̂i

)1/2

(20)

= κ
∏

i p̂
ui− 1

2
i

u(I−1)/2
= κ

∏
i u

ui− 1
2

i

uu− 1
2

, (21)

whereκ = (2π)I /2/(ε1/2I ) is independent ofu.
We are now ready to approximate the marginal likelihood:

P(F | u) ' ZS(F+ u)/ZS(u) (22)

=
∏

i (Fi + ui )
Fi+ui− 1

2

(F + u)F+u− 1
2

uu− 1
2∏

i u
ui− 1

2
i

. (23)

3.3. Traditional Laplace approximation

We need the version of the Laplace approximation in which the density is multiplied by a
delta function:∫

dkx δ(x · n)e− 1
2 xTAx = (2π) k−1

2
det−1/2A√

nTA−1n
. (24)

We now approximateP(F | u):

P(F | u) =
∫

dI p P(F | p)P(p | u) (25)

'
∏

i

p̂Fi+ui−1
i (2π)(I−1)/2 det−1/2A√

nTA−1n

1

ZDir(u)
(26)
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where p̂i = (Fi + ui − 1)/(F + u− I ) and

Ai j = − ∂2

∂pi ∂pj

∑
i

(Fi + ui − 1) log pi

∣∣∣∣∣
p=p̂

(27)

= δi j (Fi + ui − 1)
1

p̂2
i

(28)

= (F + u− I )δi j
1

p̂i
(29)

so that

nTA−1n = 1/(F + u− I ) (30)

and

det−1/2A = (F + u− I )−I /2
∏

i

p̂1/2
i . (31)

Thus, the traditional Laplace method gives

P(F | u) '
∏

i

p̂
Fi+ui− 1

2
i

1

(F + u− I )(I−1)/2

(2π)(I−1)/2

ZDir(u)
(32)

=
∏

i (Fi + ui − 1)Fi+ui− 1
2

(F + u− I )F+u− 1
2

(2π)(I−1)/2

ZDir(u)
. (33)

3.4. Results

Four simple experiments were performed, withI = 20 in all cases.
In the first experiment, allui were set to 1, and a probability vectorp was drawn from the

corresponding Dirichlet distribution using the method described by Gelman et al. (1995).
The vectorF was then set toNp for a range of values ofN, the effective number of data
points (this fake data set thus has non-integer ‘counts’). The three methods of evaluating
P(F | u) were compared as a function ofN. This first experiment tests the ability of the
methods to evaluate the marginal likelihood when allui are 1 and this prior is well matched
to the data source. In the second experiment we keep the same data source, but change
the model’s prior toui = 0.05 for all i . This tests the accuracy of the methods for the
case when the assumed prior expects ap that is more ‘spiky’ than the data source. The
third experiment reverses the situation: the probability vectorp is drawn from the Dirichlet
distribution withui = 0.05, and we find the marginal likelihoods when the prior hasui = 1
and thus expects an overly ‘smooth’p. Finally, the fourth experiment looks at the case
ui = 0.05 (source) andui = 0.05 (model).

The results are shown in figure 2. In the cases where the assumedui = 0.05, the
traditional method is not plotted because it fails utterly on account of some componentspi

having negative exponents. The traditional method is at its best whenui is large (e.g., 1),
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Figure 2. Comparison of the two Laplace approximations with the correct answer in four experimental situations
(two data sources, and two priors.) The probability vectors produced by the two sources are (with their components
in rank order) forui = 1: p = [0.23, .17, .17, .074, .064, .040, .034, .034, .032, .026, .026, .025, .017, .016, .015,
.010, .0082, .0038, .0027, .000057] and forui = 0.05,p = [.69, .29, .012, .00095, .00030, 7.5e-5, 7.5e-5, 5.2e-5,
3.9e-5, 1.0e-5, 9.1e-6, 2.8e-7, 8.0e-9, 1.2e-13, 1.7e-15, 6.3e-18, 6.2e-19, 6.6e-21, 7.7e-24, 5.3e-26].

and the data come from a source that matches this prior, and the amount of data is large.
The softmax method is superior for most parameter settings, but it is not globally superior:
in the limit of large amounts of data in all binsi (where both methods perform well) the
traditional approximation can be a little more accurate.

4. Discussion

This paper’s aim is not to advocate the use of Laplace approximations; indeed a good case
can be made for using other methods such as Markov chain Monte Carlo (see, for example,
Neal (1992)). And deterministic Bayesian approximations that arebasis independentare
under development (MacKay, 1997). But if MAP methodsareused, this paper offers a way
of evaluating marginal likelihoods which satisfies these two desiderata:

1. We can make a Laplace approximation for any Dirichlet priors and any amount of data.
Singularities will not be encountered, in contrast to the traditional MAP method.

2. In simple cases where the predictive distribution
∫

dp P(p)p is easy to compute, the
maximuma posterioriparameterŝp are equal to the predictive distribution.
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In the cases where exact results are available this ‘softmax’ Laplace approximation is
often much more accurate than the traditional approximation. It seems plausible that these
advantages will carry over to the case of models with hidden variables.

The softmax parameterization also has the convenient property that any setting of the
parametersa is valid; there are no constraints. This makes it easy to integrate models into
computational packages such as optimizers.

Appendix: The Dirichlet prior in the softmax basis

We sketch the proof that the density overa given in Eq. (10),

P(a | u) = 1

ZS(u)

∏
i

pi (a)ui g(a · n),

does indeed transform into the Dirichlet distribution overp. We start with the special case
wherea is confined to anI −1 dimensional subspace satisfyinga · n = α, so thatg( ) above
is a delta function. In this case we can representa by an I − 1 dimensional vectorb thus:

ai = bi i = 1, 2, . . . , I − 1

aI = α −
I−1∑
i=1

bi ,
(34)

and similarly we can representp by an I − 1 dimensional vectorq:

pi = qi i = 1, 2, . . . , I − 1

pI = 1−
I−1∑
i=1

qi ,
(35)

then we can find the density overq (which is proportional to the required density overp)
from the density overb (which is proportional to the given density overa) by finding the
determinant of the(I − 1)× (I − 1) JacobianJ given by

Jik = ∂qi

∂bk
=

I∑
j=1

∂pi

∂aj

∂aj

∂bk
= δik pi − pi pk + pi pI = pi (δik − (pk − pI )). (36)

Defining theI −1 dimensional vectorsp+k ≡ pk− pI andnk ≡ 1, and using det
[
I − xyT

]
= 1− x · y, which is easily proved by changing basis such thatx is aligned with one of the
coordinates, we find

detJ =
I−1∏
i=1

pi × det[I − np+T]

=
I−1∏
i=1

pi × (1− n · p+) =
I−1∏
i=1

pi ×
(

1−
∑

k

p+k

)
= I

I∏
i=1

pi . (37)
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So, for a delta functiong( ) in Eq. (10), neglecting constant factors which can be incorporated
into the normalizing constants, we find that

P(p) = P(a(p))/|detJ| ∝
I∏

i=1

pui−1
i δ

(
I∑

i=1

pi − 1

)
. (38)

This result is true for anyα; so we can integrate over any normalized distributiong(), and
the probability overp will be the same.
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