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Abstract. Maximum a posteriori optimization of parameters and the Laplace approximation for the marginal
likelihood are both basis-dependent methods. This note compares two choices of basis for models parameteri:
by probabilities, showing that it is possible to improve on the traditional choice, the probability simplex, by
transforming to the ‘softmax’ basis.
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1. Introduction

Laplace’s method approximates the integral of a funcﬁd\‘w f (w) by fitting a Gaussian
at the maximunw of f (w), and computing the volume under that Gaussian:

fdkwf(w) ~ f(W)(2m)¥2 |-V Vlog f (w)|"Y2. 1)

This method is widely used in probabilistic modeling to approximate the value of margina
likelihoods, which are of interest for model comparison (Ripley, 1995; Lindley, 1980;
Smith & Spiegelhalter, 1980; MacKay, 1992; Chickering & Heckerman, 1996). In this
paper | consider the case of models whose parameters are probabilities, for example, hidc
Markov models, mixture models, belief networks and certain language models. | examin
the neglected issue of the choicebafsisin which the Laplace approximation is made.

It is well known that the location of the maximum of a densftys not invariant with
respect to a non-linear reparameterizatigw) of the parametera. Clearly the Laplace
integral is not invariant either. Thus the choice of basis is important, but in many areas c
statistical modeling, people rarely consider changing from the most obvious basis. Intu
tively, if we are going to use Laplace’s approximation we should try to reparameterize ou
model so that the densitly is as near as possible to a Gaussian.

1.1. Models to be discussed

The likelihood function for a simple belief network with no hidden nodes is a product of
factors, one for each unknown probability vegoof the form

PP =]]p" e
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wherep is a probability vector with components, anilis a vector of count§;, the number
of times that outcomeoccurred when we sampled from the distribumnWe will discuss
the very simplest case of a network with one node which can takepmssible values, so
that the likelihood is given by the one factor above. An example system to have in minc
is a bentl -sided die whose probability of rolling anis p;. The unknown vectop is to
be inferred from the outcome &f rolls in which facei came upF; times, and we wish to
calculate the marginal likelihood, which depends on the prior distributionmver

A popular prior for a probability vectap is the Dirichlet distribution (O’Hagan, 1994)
parameterized by a measuréa vector with all coefficients; > 0):

|
P(p|u) = ZD-l(u) H pits (Z P — 1) = Dirichlet" (p | u). )
it i

The functioné(x) is the Dirac delta function which simply restricts the distribution to
the simplex such tha is normalized, i.e.) ; pi = 1; the distribution is restricted to
non-negativep;'s. The normalizing constant of the Dirichlet distribution is

Zoir(w) = [ [T/ Tw), )

where we define = >, u;. We will similarly defineF = >, F. The hyperparameter
vectoru controls how compact the prior distribution overis. If u is large then the
distribution overp is concentrated around the mean of the distributigriy. If all the
components ofl are small then extreme large and small probabilities are expected.

In the case of our bent die model, assuming a Dirichlet prior, the posterior probability of
p given the dat# is

P(FIpPP{@]|u

PpplFu = W (5)
CTLeT TR (Y e — 1)/ Zoi (W) -
B P(F|u
= Dirichlet" (p | F+u). (7)

The predictive distribution, that is, the probability that the next outcome will be &n
given by

F+u
F+u’

P | F,u) = / Dirichlet"(p | F+u) pid'p = (8)

Belief networks with hidden variables and mixture models have a likelihood function
obtained by summation over the hidden variables; Dirichlet priors are also widely used fo
such models. The traditional MAP method for such models (Lee & Gauvain, 1993) is tc
maximize the posterior probability of the parametgrand the traditional Laplace method
for such a model is, after maximizing in tipebasis, to make the Gaussian approximation
in the same basis (Chickering & Heckerman, 1996).
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There is an obvious difficulty, namely that if a prior withy < 1 is used, then it is
possible for the posterior density to diverge at the edge of the parameter space where at le
one parametep; is equal to zero, if the sum af and the effective courf for outcome
i is less than 1. The Laplace approximation is only valid at the maximum of a smootf
hump, so if this happens the traditional method is in trouble. The traditional solution to
this problem is to forbid the use of Dirichlet priors with any < 1. However, as argued
in (Jeffreys, 1939; MacKay & Peto, 1995; Gelman, 1996), there may be good reasons ft
expecting priors withy; < 1 to be appropriate for many problems. | would argue that the
‘—1’ terms in the traditional posterior probability are artefacts of the choice of basis.

2. A change of basis

| suggest that maximum a posteriori parameter estimation and Laplace approximatior
would be better conducted in the ‘softmax’ representation (widely used in neural network
(Bridle, 1989)) in which the parametgpsare replaced by parametexs

exp(@)

Yo exp@a)’ ®)

pi(@) =

[Please do not confugg(a), the function defined in Eq. (9), with the probability density
P(a).] The probability vectop hasl components but only — 1 degrees of freedom; the
sum of p; must be 1. Similarlya hasl components, but it has a redundant degree of free-
dom: addition of an arbitrary multiple of = (1, 1,1, ... 1)T to aleavesp(a) unchanged.
We are free to constrain this degree of freedom however we wish.

In the softmax basis the Dirichlet prior may be written as

P@lu) = [[r@“g@-n), (10)

1
ZS(U) i
whereg(a - n) is an arbitrary density constraining the redundant degree of freedom, anc
Zs(u) is the appropriate normalizing constant. This prior no longer has aftyterms
in its exponents, because the Jacobian of the transformation ffrepace toa-space is
proportional to] [; pi (see Appendix).

Itis as straightforward to evaluate derivatives and curvatures with respgeastibis with
respect top. Consider the log likelihood = log[T]; piFi = > ; Filog pi for example.
Definingz = >, exp(a), we have

L:ZFi[a—Iogz]:ZFiai—Fngv (11)

whereF =), F. The derivative is

oL

B_a_Fi_Fpi’ (12)



80 D. MACKAY

and the curvature is

92L api
03 0a; o3 [5|J Pi — B pj] (13)

We note that the most probalddn this basis under the above likelihood and a Dirichlet
prior P(a | u) isa = ay such that

F +u
F+u’

Pi (aMF') = (14)

which we recognize as being equivalent to the predictive distribution (8). So in the softma
basis, unlike the traditional basis, the MAP parameter vegtisy conveniently, equal to
the mean op.

3. Comparison

Figure 1 gives an intuitive picture for why we might expect the softmax representatior
to be a superior representation in which to make Gaussian approximations. In the ca
P[(p,1 — p)] = Dirichlet?(p | u = (1.3, 1.3)) the traditional Gaussian approximation
puts more probability massutsidethe interval [Q 1] than inside. The curvature of the true
density diverges ap = 0 andp = 1. As a function ofa, in contrast, the density has no
singularities. The Gaussian approximation in the softmax basis is still imperfect, howeve
in that the Dirichlet distribution falls exponentially for lar¢g, so the softmax Gaussian
approximation is too light-tailed.

We can make a quantitative comparison of the traditional Laplace approximation and th
softmax Laplace approximation in a simple case where the exact marginal likelihood ca
be computed. This is the case, already discussed above, of inferring the probability vect
p of a bentl -sided die fromF rolls of the die. We will test the two approximations in cases
where the prior is well matched to the source of the data and in cases where the prior at
the data are at variance with each other.

3.1. Exact answer

If we assume a Dirichlet prior fqu and observéd- samples fronp, obtaining count§ =
(F1, Fo, ..., F), the posterior probability opis another Dirichlet distribution (Eq. (7))
and we can obtain the marginal likeliho®F | u) from Eq. (4):

Zoi(F+u) [ TR +u) T
Zpr(u)  T(F+uw T[T’

P(Flu) = (15)

As in Section 1, we define =}, u;.



LAPLACE APPROXIMATION 81

Density overp —- Derjsity overp ——
Traditional approximation -----
TN
(al) (a2)
0 025 0.5 0.75 0 0.250.50.75

Density overa — Density overa —

Softmax approximation -----
(b1) (b2)

T T T T L) =
-3 -2 -1 [} 1 2 3 -3 -2 -1 0 3

Figure 1 Intuition for the defect of the traditional Laplace approximation and the possible advantage of the
softmax basis. This figure shows the case of a bithre 2) probability (p, 1— p), which might alternatively be
represented by the parametewherep(a) = 1/(1+ e 22), (al) The density Dirichlé® (p | u = (1.3,1.3)) in
traditional p-space P(p) o« p®3(1 — p)°®3. (a2) The density, approximated by a Gaussian. Note how poorly the
Gaussian tails match the true density. (b1) The same density transformegijmace P (a) o« p(a)-3(1—p(a))L3.

(b2) The Gaussian approximationarspace. In both cases the Gaussian approximation is made by matching the
first two derivatives of lod® at the maximum. The Gaussians have varianﬁ&e 1/(8(uj—1)) anda§ =1/2u)
respectively, where; = 1.3. The vertical lines in (a) are equally spacedpirthe vertical lines in (b) show the
corresponding values af

3.2. Softmax Laplace approximation

Let us assume a Gaussian prior on the one unconstrained directisparce so that the
Dirichlet distribution oma is

P@lu,e) =

1 ()i - 2
Zs(U) l._[ pi ()" exp[—e(a- n)-/2]. (16)

Let us approximat&s(u) using Laplace’s method. We know that the maximum ié at
such that the corresponding; is u; /u. The curvature matrisM that we require is given
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by (cf. Eq. (13))

2

ad api
Mij = 9 0a logP(a|u,e) = ua_a; +enin; = Ui pi — pipj] +eninj. (17)

The determinant di is readily evaluated using the identities

1,1 BAT'ggAT? _
A+ At == and deth + = (detA)(1+ pgA 1),
[A + Bgd] 11 BgAig tA + Bod] = (detA)(1+ A Q)
(18)
and we obtain
Zs(u) ~ ]‘[ ' (2m)'/2dett/2M (19)
i
1/2
=(2n)'/21_[ I@iui/<elzu'1l_[f1i> (20)
i i
I p_”‘*% I TR
ST U e (21)
wherex = (27)'/2/(e'/?1) is independent afi.
We are now ready to approximate the marginal likelihood:
P(F|u)~ Zs(F+u)/Zs(u) (22)
_ LR+ upFitii=z  yu-: (23)

(F 4+ u)F+u—z I, Wiz

3.3. Traditional Laplace approximation

We need the version of the Laplace approximation in which the density is multiplied by &
delta function:

= det1/2A

d'x 8(x - n)e XA = (277) . 24
/ VIMAIn @4)
We now approximaté (F | u):
P = /d' pP(F | p)P(® | U) (25)
1/2
~ l—[ ﬁiFi+Uifl(2ﬂ)(l—l)/2der A1 (26)
i

Vi A-1n Zpir(U)
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wherep = (Ff +u —1)/(F+u—1)and

82
Aj=— Z(Fi +u; — 1) log p; (27)
api 9p; i o
p=p
1
= §j (K +u —1)? (28)
i
1
=(F+u—-1Dsj— (29)
Pi
so that
AN =1/(F+u—1) (30)
and
det?A = (F+u—1)~"2]]p" (31)
i

Thus, the traditional Laplace method gives

- AFH-Ui—% L (27[)('71)/2
P(Flu) x~ 1|_[ B (F4+u—DU-D/2 Zpi(u) .
(B U _ 1\Fitui-3 (-2
TR +u-pod et e @

(F+u—DHFtu—3  Zpi(u)

3.4. Results

Four simple experiments were performed, witk= 20 in all cases.

In the first experiment, all; were setto 1, and a probability vecfowas drawn from the
corresponding Dirichlet distribution using the method described by Gelman et al. (1995)
The vectorF was then set tdNp for a range of values o, the effective number of data
points (this fake data set thus has non-integer ‘counts’). The three methods of evaluatir
P(F | u) were compared as a function Nf. This first experiment tests the ability of the
methods to evaluate the marginal likelihood wheruglire 1 and this prior is well matched
to the data source. In the second experiment we keep the same data source, but cha
the model’s prior tau; = 0.05 for alli. This tests the accuracy of the methods for the
case when the assumed prior expecgsthat is more ‘spiky’ than the data source. The
third experiment reverses the situation: the probability veeierdrawn from the Dirichlet
distribution withu; = 0.05, and we find the marginal likelihoods when the priorlyas- 1
and thus expects an overly ‘smoofin’ Finally, the fourth experiment looks at the case
u; = 0.05 (source) and; = 0.05 (model).

The results are shown in figure 2. In the cases where the assumed0.05, the
traditional method is not plotted because it fails utterly on account of some compgments
having negative exponents. The traditional method is at its best wherarge (e.g., 1),
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Figure2 Comparison of the two Laplace approximations with the correct answer in four experimental situations
(two data sources, and two priors.) The probability vectors produced by the two sources are (with their componer
in rank order) fon; = 1: p = [0.23, .17, .17, .074, .064, .040, .034, .034, .032, .026, .026, .025, .017, .016, .015,
.010, .0082, .0038, .0027, .000057] anddpr= 0.05,p = [.69, .29, .012, .00095, .00030, 7.5e-5, 7.5e-5, 5.2e-5,
3.9e-5, 1.0e-5, 9.1e-6, 2.8e-7, 8.0e-9, 1.2e-13, 1.7e-15, 6.3e-18, 6.2e-19, 6.6e-21, 7.7e-24, 5.3e-26].

and the data come from a source that matches this prior, and the amount of data is lar
The softmax method is superior for most parameter settings, but it is not globally superiol
in the limit of large amounts of data in all bingwhere both methods perform well) the
traditional approximation can be a little more accurate.

4. Discussion

This paper’s aim is not to advocate the use of Laplace approximations; indeed a good ca
can be made for using other methods such as Markov chain Monte Carlo (see, for examp
Neal (1992)). And deterministic Bayesian approximations thabasts independerare
under development (MacKay, 1997). Butif MAP methagsused, this paper offers a way

of evaluating marginal likelihoods which satisfies these two desiderata:

1. We can make a Laplace approximation for any Dirichlet priors and any amount of date
Singularities will not be encountered, in contrast to the traditional MAP method.

2. In simple cases where the predictive distributjaip P(p)p is easy to compute, the
maximuma posterioriparameter$ are equal to the predictive distribution.
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In the cases where exact results are available this ‘softmax’ Laplace approximation |
often much more accurate than the traditional approximation. It seems plausible that the
advantages will carry over to the case of models with hidden variables.

The softmax parameterization also has the convenient property that any setting of tf
parameters is valid; there are no constraints. This makes it easy to integrate models intc
computational packages such as optimizers.

Appendix: The Dirichlet prior in the softmax basis

We sketch the proof that the density oaagiven in Eq. (10),
1
P@lu) = —— (@)Y ga-n,
@] u Zs(u)]i"[p.m g@-n

does indeed transform into the Dirichlet distribution opeiVe start with the special case
whereais confined to ah — 1 dimensional subspace satisfyimgn = «, so thaig() above
is a delta function. In this case we can represdny anl — 1 dimensional vectdb thus:

a==bh i=12...,1-1
-1
34

and similarly we can represepty anl — 1 dimensional vectoq:

Pi = G l,2,...,|—l

- =
=l

35
p=1-> a, (35)

Il
i

then we can find the density ovgr(which is proportional to the required density oygr
from the density oveb (which is proportional to the given density ovarby finding the
determinant of thél — 1) x (I — 1) Jacobian] given by

aqi ! Bpi 8aj
_ B 5D — D ) = D (i — — . 36
T = 2 3, ab, = ik Pi Pi Pk + Pi Pi pi (Bik — (P« — P1)) (36)

&
=
I
[

Defining thel — 1 dimensional vectorg = px— p; andny = 1, and using defl — xy]
= 1-x-y, which is easily proved by changing basis such tiataligned with one of the
coordinates, we find

1-1

detd = [ pi x det] — np™]

i=1

1-1 1-1 |
= pix(l—n-p+>=]_[pix(l—zpk*)ﬂ]_[pi. (37)

i=1 i=1
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So, foradeltafunctiog() in Eq. (10), neglecting constant factors which can be incorporated
into the normalizing constants, we find that

| |
P(p) = P@ap))/Idetd| o [ o s > p —1). (38)
i=1 i=1

This result is true for ang; so we can integrate over any normalized distributign and
the probability ovep will be the same.
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