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Abstract. We consider the following classes of quantified boolean formulas. Fix a finite set of basic boolean
functions. Take conjunctions of these basic functions applied to variables and constants in arbitrary ways. Finally
quantify existentially or universally some of the variables. We prove the follodidgotomy theoremFor any

set of basic boolean functions, the resulting set of formulas is either polynomially learnable from equivalence
queries alone or else it is not PAC-predictable even with membership queries under cryptographic assumptions.
Furthermore, we identify precisely which sets of basic functions are in which of the two cases.
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1. Introduction

The problem of learning an unknown boolean formula under some determined protocol has
been widely studied. It is well known that, even restricted to propositional formulas, the
problemis hard (Angluin & Kharitonov, 1995; Kearns & Valiant, 1994) in the usual learning
models. Therefore, researchers have attempted to learn subclasses of propositional boolean
formulas, specially inside CNF and DNF. For exampd)NF formulas,k-term DNF
formulas, monotone-DNF formulas, Horn formulas, and their dual counterparts (Angluin,
1988; Berggren, 1993; Angluin, Frazier, & Pitt, 1992) have all been shown exactly learnable
using membership and equivalence queries in Angluin’s model (Angluin, 1988) while the
question of whether DNF formulas are learnable is still open. The more powerful formalism
of predicate logics is used in several applications of learning in artificial intelligence and
knowledge representation but its study, from the computational learning theory point of
view, is recent. See Maass & an(1995) and the further references in that paper.

In this paper, we study the complexity of learning some subclasses of quantified boolean
formulas called quantified boolean formulas over a b&siBhese formulas are still propo-
sitional formulas but augmented with the additional capability of quantification.

Let S = {Ry,..., Ry} be a finite set of logical relations. Define aw-FormulgS) to
be any boolean formula formed by quantified conjunctions of any number of clauses of the
form R (&, ..., &), whereq, ..., & are variables or constants aks the rank ofR;.

Example 1 Consider the problem of learning a boolean formula formed by a quantified
conjunction of clauses with three literals per clause. Every such formula can be expressed as
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a formula in3v-Formulg S) with the set of logical relationS = {Ry, R;, Ry, Rs}, defined
by:

Ro(X,y,2) =XVYyVz,
Ri(X,y,2) =XVvyVvz
Rx(X,y¥,2) =XV YyVz
R3(X,y,2)=XVvyVvzZ

The main result of this paper characterizes the complexity of lea@WAgormula S) for
every finite setS of logical relations. The most striking feature of this characterization is
that for anyS, 3v-FormulaS) is either polynomially learnable with equivalence queries
alone or, under some cryptographic assumptions, not polynomially predictable even with
membership queries. In fact, for the hardness result, it is enough to consider formulas with
existential quantifiers only or without constants. This dichotomy is somewhat surprising
since one might expect that any such large and diverse family of concept classes would
include some representatives of the many intermediate learning models such as exact learn-
ing with equivalence and membership queries, PAC learning with and without membership
queries and PAC-prediction without membership queries.

Furthermore, we give an interesting classification of the polynomially learnable classes.
We show that, in a sense that will be precised l&ef-ormulg S) is polynomially learnable
if and only if at least one of the following conditions holds:

(a) Every relation inSis definable by a CNF formula in which each clause has at most 2
literals.

(b) Every relation inSis definable by a CNF formula in which each clause has no negated
variables or has at most one negated variable and at most one affirmed variable.

(c) Everyrelation inSis definable by a CNF formula in which each clause has no affirmed
variables or has at most one affirmed variable and at most one negated variable.

(d) Every relation inS is the set of solutions of a system of linear equations over the
two-element field 0, 1}.

Itis interesting to compare this classification with some previous known results about the
learnability of quantifier-free formulas. First, notice that whede&NF are polynomially
learnable with equivalence queries, the equivalent result for quantified formulas is only
valid for k < 2. In fact, the gap beetween the learnability of quantifier-free and quanti-
fied formulas is even wider: whereas for every finite Satf logical relations, the class
of quantifier-free formulas iAv-FormulaS) is polynomially learnable with equivalence
queries, the full class of formulas contains only few learnable subclasses.

It is also interesting to point out that whereas some classes of quantifier-free formulas
over basis of infinite size are learnable, they turn out to be non-learnable in general if we
allow quantification even restricting the basis to some finite subset. Horn formulas are an
example of such feature. Notice that, whereas membership queries are of no help in the
learnability of quantified boolean formulas over a finite basis they turn out to be needed
to learn some classes of formulas obtained from infinite basis, such as monotone CNF or
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Horn CNF. This fact seems to suggest that membership queries make a difference exactly
when we are dealing with formulas built from basic relations of arbitrary arity.

A few but not many Dichotomy results in complexity theory are already known. The first
one is a dichotomy result for the generalized satisfiability decision problem by Schaefer
(1978). The others known to us concern the H-coloring of graphs (Hell 8eNg1990),
the subgraph homeomorphism (Fortune, Hopcroft, & Wyllie, 1980), the decomposition
of graphs (Dor & Tarsi, 1997), the inverse generalized satisfiability problem (Kavvadias &
Sidderi, 1996), the generalized satisfiability counting problem (Creignou & Hermann,
1996), and the approximability of minimization and maximization problems (Creignou,
1995; Khanna, Sudan, & Trevisan, 1997; Khanna, Sudan, & Williamson, 1997). It is
remarkable that most of the dichotomy results shown before are in the framework of gen-
eralized satisfiability problems proposed by Schaefer. Our result is inspired as well by the
framework and techniques of Schaefer which allow us to compare the complexity of dif-
ferent problems on generalized quantified boolean formulas. For example, from Schaefer’s
Dichotomy Theorem (Schaefer, 1978) and the Dichotomy Theorem of this paper can be
inferred that, in this framework, learnability is slightly harder than satisfiability.

The aim of this paper is to study the complexity of learning generalized quantified boolean
formulas, but some intermediate results are interesting in themselves. In particular, the
technigue used in the semantic characterization of weakly antimonotone logical relations
could be useful in characterizing other logical relations defined as the conjunction of some
restricted kinds of clauses.

2. Definitions and notation
2.1. Learning models

Most of the terminology used in this section comes from Angluin & Kharitonov (1995).
Let X denote{0, 1}*; binary strings will represent both examples and concept names. Let
x be a string,|x| denotes its length, and for every constart {0, 1}, |x|, denotes the
number of occurrences ofin x. For any natural numbar, X" = {x € X : [x| < n}. A
representation of concepfer representation clag< is any subset oK x X. We interpret

an elementu, x) of X x X as consisting of @&oncept name @nd anexample x The
examplex is a member of the concept if and only if (u, x) e C. Define theconcept
represented by as

Ke(u) = {x: (u,x) eC}
Theset of concepts represented®ys
{Ke(u) 1u e X}
In this paper we use two models of learning, both of which are fairly standard: Angluin’s

model of exact learning from equivalence queries (Angluin, 1988) and the model of PAC-
prediction with membership queries as defined by Angluin & Kharitonov (1995).
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LetH be arepresentation class. A learning algorithm with queries is an algoAittiat
takes as input a bourglon the size of the target concept representation and a boond
the length of the examples. It may make any number of queries or requests, the responses
to which are determined by the unknown target concept must eventually halt with an
output concept name The concepKy (v) is interpreted ag\'s guess of the target concept.
The most common kinds of queries are thembershimnd theequivalencegueries. A
membership query takes a strirge X as input and returns 1 ¥ € ¢ and O otherwise.

An equivalence query takes a concept ndnas input and returngesif ¢ = Ky (h) and a
counterexampla € ¢ A Ky (h) otherwise. A runs in polynomial timéf its running time
(counting one step for oracle call) is bounded by a polynomialandn.

We say thatA successfullyexactly learnsa representation of concegisif and only if
for all positive integers, n, for all concept names e X8, whenA is run with inputss and
n, and oracles determined by= K¢ (u), A outputs a concept namesuch that = Ky (v).

If C = 'H we say thatA learnsproperly C, otherwise we say thah learnsimproperlyC.
A representation of concepfsis polynomially learnabléf and only if there is a learning
with queries algorithmA that runs in polynomial time and successfully learns exattly

A prediction with membership algorithnor pwm-algorithm is a possibly randomized
algorithm A that takes as input a bousan the size of the target concept representation, a
boundn on the length of examples, and an accuracy baunid may make three different
kinds of oracle calls, the responses to which are determined by the unknown target concept
c and the unknown distributio® on X[, as follows:

e A membership query takes a strirge X as input and returns 1¥ € c and 0 otherwise.

e Arequestfor arandom classified example takes no input and returng & gairwherex
is a string chosen independently accordingptandb = 1 if x € candb = 0 otherwise.

e Arequest for an element to predict takes no input and returns a stchgsen indepen-
dently according td.

A may make any humber of membership queries or requests for random classified exam-
ples. HoweverA must eventually make one and only one request for an element to predict
and eventually halt with an output of 1 or 0 without making any further oracle calls. The
output is interpreted a8’s guess of how the target concept classifies the element returned
by the request for an element to prediét.runs in polynomial timéf its running time
(counting one step per oracle call) is bounded by a polynomiglinand Ye.

We say thatA successfullypredictsa representation of concepfsif and only if for
all positive integers andn, for all positive rationalg, for all concept names e XI8l,
when A is run with inputss, n, ande, and oracles determined by= K¢ (u) andD, A asks
membership queries that are ¥hand the probability is at mogtthat the output ofA is
not equal to the correct classificationxby K. (u), wherex is the string returned by the
(unique) request for an element to predict. We can sayAlmedictsC in PAC sense, with
the additional help of membership queries. See Valiant (1984) for a formal definition of
the PAC model.

A representation of conceptsis polynomially predictable with membership queries
if and only if there is apwmalgorithm A that runs in polynomial time and success-
fully predictsC. If a representation of concepts is learnable in polynomial time with
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membership and equivalence queries then it is polynomially predictable with membership
queries.

To compare the difficulty of learning problems in the prediction model we use the
prediction-preserving reducibility with membership quer&s defined by Angluin &
Kharitonov (1995). Itis denoted bypwmand it extends Pitt & Warmuth's (199f)ediction-
preserving reducibilityto the presence of membership queries.

Definition 2 LetC andC’ be representations of concepts. LeandT be elements not
in X. ThenC is pwm-reducibleo C’, denoted <yum C’, if and only if there exist three
mappingsy, f, andh with the following properties:

1. There is a nondecreasing polynongauch that for all natural numbessandn and for
u e X, g(s, n, u) is a stringu’ of length at mosg(s, n, |ul).

2. For all natural numbers and n, for every stringu € X[, and for everyx e X[,
f(s,n, x) is a stringx’ andx € K¢ (u) if and only if X’ € Ke/(g(s, n, u)). Moreover,
f is computable in time bounded by a polynomiakim, and|x|, hence there exists a
nondecreasing polynomiakuch thaix’| < t(s, n, |[X|).

3. For all natural numbers and n, for every stringue X8, and for everyx’ e X,
h(s, n, X) is either, T, orastringx € X. If h(s, n, x") = T thenx’ € K¢ (g(s, h, u)),
if h(s, n,x’) = L thenx’ ¢ K¢ (g(s, n, u)), and otherwiseX’ € K¢ (g(s, n, u)) if and
only if x € K¢(u). Moreoverh is computable in time bounded by a polynomiajm,
and|x'|.

In (2), and independently in (3), the expressione‘Ks(u)” can be replaced with
“x € Ke(u)”, as discussed in Angluin & Kharitonov (1995).

The only properties of this reducibility that are needed in this paper were shown in
Angluin & Kharitonov (1995):

Lemma 3. The pwm-reduction is transitive.e., let C,C’ andC” be representations of
conceptsif C <pwmC’ <pwmC” thenC <pum C".

Lemma 4. LetC and(C’ be representations of concepts.Cli<pym C’ andC’ is polyno-
mially predictable with membership querigbenC is also polynomially predictable with
membership queries.

2.2. Logical preliminaries

Let V ={Xq, Xo, ...} be an infinite set of boolean variables. A literal is a variable or
its negation. A clause is a disjunction of literals. An assignment is a vecte. iRor

any assignmerite X and for any integef, t[j] € {0, 1} denotes thgth component of.
Logical operators\{, A, —) can also be applied to assignments meaning that they are
operated component-wise. Given two assignméntndty, tit, denotes the assignment
obtained concatenatirgandt,.
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A logic relation of rankk (k integer) is a subset of0, 1}¥. There exists an unique
assignment of length 0, we calljit

We use the ternformulain a large sense, to mean any well-formed formula, formed
from variables, constants, logical connectives, parentheses, logical relation symbols, and
existential and universal quantifiers.

LetS={Ry,..., Ry} be any finite set where ead®) is a logical relation of rank;. R
denotes both the logical relation and its symbol. The set of formulas formed by conjunctions
of relations inS with constants is denoted Formu&. Specifically, FormuléS) is the
smallest set of formulas such that:

e ForallR e Sofrankk, R(yy, ..., Yk) € FormulgS) wherey; e V U {0, 1}forl <i < k.
e ForallF, G € FormulaS), F A G € FormulgS).

The set ofgquantified boolean formulas over the basisd8noted byav-FormulaS), is
the smallest set of formulas such that:

e ForallF € FormulaS), F € 3v-FormulgS).
e ForallF € 3v-FormulaS) and for all§ € V, 3¢ F andVéF are in3v-Formulg S).

We call 3-FormulgS) the subset ofiv-FormulgS) that we obtain if we allow only
existential quantifiers.

Each formulaF defines a logical relationH] if we apply the usual semantics of first-
order logic and the variables are taken in lexicographical order. For every set of logical
relations S we define RelatiotB) ={[F]: F € FormulaS)}. Analogously, we define
3v-Relation(S) and3-RelationS) as the set of logical relations obtained from formulas
in 3V-Formulga S) and3-Formulg S) respectively.

For any set of formulag, we defineCr as the representation of concepts formed from
formulas inF. More precisely,C+ contains all the tuples of the forrif, x) where f
represents a formula i andx is a model satisfying .

Example 5 Consider the basis introduced in Example 1. Edte following formula:

F = VX15|X2VX3 Rl(X17 X2, X3)
A Ri(Xs, X3, X2)
A Ra(X4, X5, 0)
A Ra(1, Xe, X2)

F is a formula in3v-FormulaS) over the free variables,, Xs, andxg. [F] contains
exactly all the assignments over these variables satisfying

[FI={ (0,0,0)
(0.1,0)
(1,0,0) }

F can also be regarded as a concefin rormulxs) [F], being its set of examples.
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A clause ishijunctiveif it has at most 2 literals. A clauselwrn (resp.antihorn) if it has
at most one affirmed (resp. negated) variable. A clauseskly monotonéresp.weakly
antimonotongif it is (i) the disjunction of affirmed variables (resp. negated variables)
or (ii) the disjunction of at most two literals with at most one negated (resp. affirmed)
variable. That is, a weakly antimonotone clause is a horn clause where we only allow
rules like(y:...yn — 0) and(y; — Y;) where everyy; is a variable or a constant. The
logical relationR of rankk is bijunctive (resp. horn, antihorn, weakly monotone, weakly
antimonotone) ifR(xy, ..., Xx) is logically equivalent to some CNF formula where each
clause is bijunctive (resp. horn, antihorn, weakly monotone, weakly antimonotone). The
logical relationR of rankk is affineif R(xy, ..., Xk) is logically equivalent to some system
of linear equations over the two-element fi¢0d 1}.

We can extend the definitions above to formulas and sets of relations: The fofmula
is bijunctive (resp. horn, antihorn, weakly monotone, weakly antimonotone, affing) if [
is bijunctive (resp. horn, antihorn, weakly monotone, weakly antimonotone, affine). The
set S of logical relations is bijunctive (resp. horn, antihorn, weakly monotone, weakly
antimonotone, affine) if everR € Sis bijunctive (resp. horn, antihorn, weakly monotone,
weakly antimonotone, affine).

Thedegreeof a logical relationR of rankk, is the minimum valuel < k such thaiR can
be expressed astaCNF formula. Analogously, the degree of a form#as the degree of
the logical relation F]. The degreeof a finite set of logical relationS is the maximum of
the degrees of all relations B

3. The dichotomy theorem

This section states and proves the main result of this paper:

Theorem 6 (Dichotomy Theorem for Learnability). Let S be a finite set of logical
relations. If S satisfies one of the conditia@s—(d) below thenCav.rormuias) IS polyno-
mially exactly learnable with improper equivalence queries. Othemnlgemulas) iS Not
polynomially predictable with membership queries under the assumption that public key
encryption systems secure against chosen ciphertext attack exist.

(a) S is bijunctive.

(b) S is affine.

(c) S is weakly monotone.

(d) S is weakly antimonotone.

We refer the reader to Angluin & Kharitonov (1995) for definitions of the cryptographic
concepts.

Schaefer (1978) proves a similar dichotomy theorem for the satisfiabily-¢ormula
(S). He shows that this problem is polynomial-time solvable if and onfyig bijunctive,
horn, antihorn or affine. Otherwise the problem is PSPACE-complete (NP-complete if we
take only3-FormulaS)). We can note here that if a basssgdoes not fall in the classes in
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Schaefer’s theorem then the representation of conéspEormulaS) is not polynomial-

time evaluable, i.e., given an example and a representation of a concept, it is not possible
to decide in polynomial time whether the example is a member of the concept, unless
P = PSPACE.

From the comparison of both theorems it follows that, in this framework, learning is
slightly harder than deciding satisfiability. More precisely, satisfiability wBénhorn is
polynomial-time decidable, but for polynomial time learnability we must guaranteéthat
falls in a more restricted class, namely the weakly antimonotone sets.

Observe that for the negative results only existential quantifiers are needed. In Dalmau
(1997) a proof of the negative result, in the case that constants are not allowed, can be found.
Therefore, the main theorem does not change at all if we are restricted to formulas without
universal quantifiers or without constants.

From now on, a set of logical relatior&will be called abasic setif Sis bijunctive,
weakly monotone, weakly antimonotone, or affine and the representation of coB¢epts
FormulgS) formed from a basic s&d will be calledbasic representation of concepts

Here is a bird’s eye view of the proof.

(a) The efficient learnability of basic classes follows from the following results

(i) the expressive power of formulas over basic sets is essentially the same with and

without using quantifiers, and
(i) inconsequence the learning problem can be reduced to quantifier-free formulas that

are contained in some already known learnable classes.
(b) For the non-learnability results, we show that

(i) the quantified formulas over any non-basic set can express a double implication

Xy — zorits dual.
(i) Then we show that this implication is enough to simulate boolean circuits, which

are hard to learn under cryptographic assumptions.

The rest of the paper is structured as follows:

Section 3.1 contains exclusively results about relations and their expressivity power. No
learning notions are involved. This section is organizated as follows: Section 3.1.1 con-
tains item (a(i)). Section 3.1.2 contains some characterizations of some classes in semantic
terms, that is, in terms of what elements are in the relation, rather that in terms of defining
formulas as in the definitions. These alternative semantic definitions are easier to handle
in Section 3.1.3 wich contains item (b(i)). Finally, item (a(ii)) is shown in Section 3.2 and
Section 3.3 contains item (b(ii)).

3.1. Resultsin logic

3.1.1. Closure under quantification. In this section, we show that some sets of logic
relations are “closed” under quantification. More precisely, we prove that ifaafédgical
relations is bijunctive, weakly monotone, weakly montonone of affine, then quantifiers do
not help to obtain a more reduced representation. Later on, we will use this property to
show the learnability of quantified boolean formulas constructed using these families of
basis.
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Let us state the main result of this section:

Lemma 7. If Sis a bijunctiveresp. weakly monotone of degreeveeakly antimonotone
of degree d affine set of logical relations theBvV-Formula(S) is bijunctive(resp. weakly
monotone of degree, dveakly antimonotone of degree alffine).

The proof of this result is rather simple. The underlying idea consists in that, by simple
substitutions, it is possible to eliminate the quantifiers from inside to outside without in-
creasing too much the size of the formula. The same analysis can handle bijunctive, weakly
monotone and weakly antimonotone relations, since they all have been defined as a CNF
using a particular set of clauses. Affine basis require some particular treatment instead.

We begin with some claims of easy proof:

Let F be aformulaoveY, leté € V be avariable and aliteral or a constant. We define
F[ ]asthe formulaformed frorr by replacing each occurrenceoby w. If W Cc Visa
set of variables theﬁ[ -1 denotes the result of substitutimgfor every occurrence of every
variable inWw. Mult|ple substltunons are denoted by expressions suéf ?is ] with
obvious meaning.

w'? w”

Claim 8. Letxe V beavariable. If F is a bijunctivéresp. weakly monotone of degree
d, weakly antimonotone of degree dffine formula then F[é] and F[i] are bijunctive
(resp. weakly monotone of degregvaeakly antimonotone of degree alffine).

LetC = xvC’ andD = X v D’ be two clauses, wher€’ is the rest of claus€,
and similarly forD andD’. That is, the two clauses contain two opposite literals. Then the
clauseC’ v D’, containing all literals of the two clauses except for the two opposite literals
is called theesolventof C and D with respect to the variabbe, denoted byR (C, D, x).

Claim 9. Letx e V be avariable. Let ¢and G be a pair of clauses that contain the
literal x andx respectively. If gand G are bijunctive(resp. weakly monotone of degree d
weakly antimonotone of degreg dhenR (Cy, Cx, X) is bijunctive(resp. weakly monotone
of degree d weakly antimonotone of degree.d

We note here that in the case of general horn (resp. antihorn) clauses, although the
resolvent of two horn (resp. antihorn) clauses is a horn (resp. antihorn) clause, we cannot
guarantee that degree does not increase.

Claim 10. For every variable xe V and for every formula FYxF = F[g] A F[’i].

Claim 11. For every variable ¥V and for every CNF formula F such that =
Ncee,usus C Where G, Gk, and G are sets of clauses that contain the literathe literal
X, and none of them respectivelyre following equivalence hold3xF = A¢ g, c.cc,

R(Cyx, Cz, X) A Aceg C



216 V. DALMAU

From Claims 8-11 we can derive the following lemma:

Lemma 12. Let F be a bijunctive(resp. weakly monotone of degree weakly anti-
monotone of degree)dormula. Thenfor every variable xe V, VxF and3ax F are both
bijunctive(resp. weakly monotone of degreenkakly antimonotone of degregfdrmulas.

The analogous result for affine functions is proved differently.

Lemma 13. Let F be an affine formula. Thefor every variable xe V, YxF and3ax F
are both affine.

Proof: Let F be equivalent to a system of linear equations over the two element field
{0, 1}. To prove the caseéx F we only need to apply Claims 8 and 10 or, even easier, note
thatvx F = 0 if x appears irF, andvx F = F otherwise. So we only need to consider the
casedx F. We can take some equation that contains the variajdeparatex in one side

of the equation and substitute the other side in the rest of equations. This process gives us
a system of equations equivalentoF. ]

We can eliminate systematically the quantifiers from inside to outside preserving the
bijunctivity (resp. weakly monotonicity of degreke weakly antimonotonicity of degresk
affinity) obtaining Lemma 7.

3.1.2. Semantic characterizationsIn this section, we give semantic characterizations of
some sets of logical relations. Other semantic characterizations can be found in Schaefer
(1978). Semantic characterizations are more convenientto our purposes than the definitions
given in Section 2.2. This is because, as we will see in the next section, we are interested
in the logical relations generated by some relatidthat doesnot belong to a particular
class. Inthese cases, using the semantic characterizations we can infer that there exist some
assignment irR not satisfying determined property and establish consequences from this
fact.

The following characterization of horn relations is well known (see Papadimitriou (1994),
for example).

Lemma 14 (Papadimitriou, 1994. Problem 4.4.7.). Let R be a logical relation. R is
horn (resp. antihornif and only if forallt,t’ e R, t At' € R (resp. tvt' € R).

At this point we show a characterization of the weakly antimonotone relations. We need
the following notation:

Lett e {0, 1}¥ be an assignment of lengkrand letT = {iy, ..., ij} be asetof indices
1<i; <--- <ij <k. The projectiort | T is defined to be the assignment of arjtgiven
by t|T = (t[i1].....t[i;]). Analogously, for every relatiolR of rankk, the projection
R| T is defined to be the relation of arity

RIT={t|T:teR)
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Thatis,R|T = [E|X|1, e, E|X|k_I R(Xq, ..., x)] where{lq, ..., |k7j} ={1,...,k} - T,
and therefordR | T € 3-Relation{R}).

We havet | = 1 andR| @ is the relation 1 ifR # ¢ and 0 otherwise.

Let R be a logical relation of rank andt € {0, 1} be an assignment. We say that
t is j-compatiblé with R, if for every subsefl c {1, ...,k} of size|T| <] we have
t|T € R|T. Assignment. is always 0-compatible with the empty relation.

The notion of j-compatibility is the key to characterize weakly antimonotone logical
relations.

Lemmal5. LetR bealogicalrelationofrank k. The following conditions are equivalent
(a) R is weakly antimonotone.
(b) For every TC({1,...,k} and every assignmentet{O, 1}/T! not in R| T and |T|-
compatible with RT:
(i) Itlo=0, or
(i) |tlo=21land|t|y < 1.
(c) For every TC{1,...,k} and every assignmentet{0, 1}'"! not in R|T and |T|-
compatible with RT:
() Itlo <1, and
(i) If [tjo = 1then|t|; < 1.

Proof: The equivalence between conditions (b) and (c) is immediate. We only need to
show the equivalence between conditions (a) and (b).

e [b=a]. For everyT, set of positions 6< i; < --- < ij < k and for every assignment
t € {0, 1}/T notin R| T and|T|-compatible withR| T we define

j
T [l
Ct — \/ Xi|[ ]
=1
where

ﬂ_{” it j =0
" 7 | % otherwise

If t satisfies (b(i)) thel€, is antimonotone and falls in type (i) of weakly antimonotone
clauses, otherwisesatisfies (b(ii)) C/ has at most two literals with at most one affirmed
literal and falls in type (ii) of weakly antimonotone clauses. TherefGfejs a weakly
antimonotone clause. From the constructio@pfand the assumptidnZ R| T itis clear
that for all assignments € {0, 1} that falsifyC,” we havet’ ¢ R.

For every logical relatiorR of rankk we defineF as the conjunction of all clauses
C! whereT C {1,...,k} andt ¢ R| T is a|T|-compatible withR| T assignment. We
show that F] = R:

— ltis clear that if F (t) = 0 thent falsifies some claus@tT, and therefore ¢ R.
— For the opposite fix an assignméng R. Then apply the following algorithm:
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Step 1. Assigni ;= 1,t; :=t, Ty :={1,...,k};

Step 2. If t; is |T;|-compatible withR | T; thenstop Otherwise there exists some
subsefl C Ty suchthat; |T ¢ R|T. Thenassigti ;1 :=¢t |T, T :=T,i 1=
i +1; gotostep 2.

Note that|T;| decreases in each step of the algorithm. Whign= @, t; = A is
0-compatible with the empty relation and therefore the stopping condition is always
reached and the algorithm always finds @hich is|T; |-compatible withR | T;. So,

F containsC;' that is falsified byt.

e [a=D]. If Ris a weakly antimonotone logical relation then for ev@rg {1, ..., k},
by Lemma 7,R| T is a weakly antimonotone logical relation. LEt= /\?=1 C; bea
CNF formula, where each clause is weakly antimonotone such at{ R|T. Let
t € R| T be a|T|-compatible withR| T assignment. By théT |-compatibility,t cannot
falsify any clause of less thdi | literals, and therefore must falsify a clause of exactly
|T| literalsC;. If C is of type (i) or (ii) in the definition of weakly antimonotone clauses
thent satisfies the conditions (b(i)) or (b(ii)) respectively. U

There exists a obvious dual characterization of the weakly monotone logical relations.

3.1.3. Mainresultinlogic. We are now ready to state the main result in logic that we need.
It says that every non-basic set of logical relations can express an implicatiofy |v z]
or its dual logical relation{ v y v Z].

Theorem 16. Let S be a finite non-basic set of logical relatiotien{[x v y v Z], [X V
y v Z]} N 3-RelationS) # 9.

The remainder of this section is devoted to the proof of Theorem 16. The following
results are from Schaefer (1978).

Lemma 17 (Schaefer, 1978). Let R be a logical relation which is not harrthen
{[x £ V], [X Vv y]l}N3-Relation{R}) # .

Lemma 18 (Schaefer, 1978). Let R be a logical relation which is not antiharthen
{[x # yl, [X v y]} N 3-Relation{R}) # ¥.

Corollary 19 (Schaefer, 1978). Let S be a finite set of relations which is not horn and
not antihorn then[x # y] € 3-Relation(S).

Lemma 20 (Schaefer, 1978). Let S be a finite set of logical relations which is not affine
and not bijunctivethen3-Relation(SU {[x # y]}) is the set of all logical relations.

The following lemmas will apply when condition (c(i)) or (c(ii)) in Lemma 15 fails.

LemmaZ2l. LetR bealogicalfunctionofrankk 2. Suppose thatthere is ak-compatible
with R assignment ¢ R that contains at least two zeroes. ThgrRy], [x Vv y]}N
Relation{R}) # @.
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Proof: LetV’'={xy,..., X} be a set ok variables. Let ki < j <k such that[i] =
t[j]=0. The assignment obtained by flipping either one of theibitsn t belongs toR

by thek-compatibility oft. Then [R(xy, .. xk)[’*évtm{x‘ X efxzyl[xvyl}. O
Lemma22. LetR bealogicalrelationofrankk 3. Suppose thatthereis a k-compatible
with R assignmentg R that contains exactly orie Then{[X v ¥V Z], [x # y], [x Vy]} N
3-Relation({R}) # @.

Proof: For every integer &i <k, for every assignmenti € {0, 1}%, and for every
constantb € {0, 1} we defineu;.p as the assignment obtained franreplacing thejth
element byb.

Let V' ={xy,..., X} be a set ok variables. Letx €V’ be the variable such that
t[i] = 0. By thek-compatibility oft we have ¥ € Randtj.o € Rforall j #1i.

For allt’ € {0, 1}* such that’ #t andt’[i] =0, t’ can be expressed Hs= /\J- £it[j]=0
tj—o, SO we can assumtée R, otherwise by Lemma 148 is not horn and by Lemma 17
{[xX £ vy], [x V y]} N 3-Relation{R}) # @.

At this point, we can show that a simple implication (i.&.;f y]) can be generated from
R. We study two cases: Ifthere istiee Rsuchthat’ # 1€andt’[i] = 1 then Iet 1= j 7&| <Kk
be any integer. Let, be any variable itV — {x;, x;}, then(3x R(xq, . . X[V X' i) =
(X VX;). Otherwise, let’ € Rbe an assignment such thiag 1< andt’ [|] =1, IetW cV
be the set of variables; # x; such thaII [J] = 1 and letx, e V — {x} be any variable

different fromx;. Then(R(Xq, .. xk)[ ]) = (X VX).

The double implication (i.e. x[/\ y — z]) follows immediately: Letx; eV’ be a
variable not equal te; and letx, Xm € V — {X, Xj}. Then, we havgax; R(xq, ..., X) A
% V)[R = (%5 VRV X). m

The following result follows from Lemmas 21 and 22.

Lemma 23. Let R be alogical relation of rank k that is not weakly antimonotone. Then
{[xZ£yl,[XVvyVZ,[xVy]}N3-Relatior{R}) # 4.

Proof: LetT C {1,...,k} andt ¢ R|T be an|T|-compatible withR| T assignment
such that condition (c) in Lemma 15 is falsified. There are two cases according to what
condition is falsified. If condition (c(i)) is falsified thencontains at least two zeros and

by Lemma 21{[x # v], [x v y]} N 3-Relation({R | T}) # @. If condition (c(ii)) is falsified

then by Lemma 22[x # y], [X vV V¥ V 2], [x v y]} N 3-Relation{R | T}) # 4. O

By duality, we have:

Lemma 24. Let R be a logical relation of rank k that is not weakly monotone. Then
{IXx£vy]l,[xVvyVZ,[XVYy]}N3-Relation{R}) # 7.

Directly from Lemmas 23 and 24 we have:

Corollary 25. Let S be a finite set of logical relations that is not weakly monotone and
not weakly antimonotonehen{[x £ y],[X VYV Z], [X V Yy V Z]} N 3-Relation(S) # @.
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And now Theorem 16 follows from Corollary 25 and Lemma 20.

3.2. Basic classes are polynomially exactly learnable

In this section, we show efficient learnability results for the basic classes. We use the closure
under quantification shown in Section 3.1.1 to prove that in a certain sense each of these
classes is embedded in a known learnable class and therefore learnable using the algorithm
for the more general class. We start by a formal definition of embedding between classes
and a simple observation:

Definition 26 LetC, C’ be representations of concepts. We say thstembeddedh C’
if there exists a polynomiap such that for every concept nare X there exists some
concept name'’ € X such thatu’| < p(Ju]) andK¢(u) = Ker (U').

Observation 27 Let C be a representation of concepts which is polynomially exactly
learnable with equivalence queriestfi For every representation of conce@tembedded
in C, C’" is polynomially exactly learnable with equivalence querie®{in

Through the rest of this paperdenotes the number of variables. We only need a list of
learnable classes and to prove that every basic class is embedded in any of them. The only
learnable classes that we need are:

Theorem 28 (Angluin, 1988; Valiant, 1984). For all integers k> 0 the clasCx_cnr is
polynomially exactly learnable with @) proper equivalence queries.

Theorem 29 (Chen & Homer, 1997). LetbeCxs be the set of formulas formed by conjunc-
tions of equations over the two-element figdd1}. The clas<as is polynomially exactly
learnable with 4 1 proper equivalence queries.

These two classes satisfy another nice property: all elements in these classes have size
polynomial inn. Specifically:

e Forevery concept namein Cx_cnr, |u| € O(n®logn). (The logn factor appears because
writing down a variable name requires logdpits).
e For every concept namein Cas, [u| € O(n?logn).

If all the concepts in a representation clg@skave size polynomial im then we do not
need to worry about the length of the representation in order to show that any representation
class is embedded th since this condition is satisfied automatically. From this observation
and from Lemma 7 we can derive the following results:

Claim 30. Let S be a finite set of logical relations. The following conditions hold
¢ If S is a bijunctive set of logical relations th€8y.rormulas) is embedded iG,_cne.
¢ If Sisaweakly monotone of degree k set of logical relations@heg,mulxs) is embedded

in Cx—cNr.
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e If S is a weakly antimonotone of degree k set of logical relations tAeRormuias) iS
embedded i€_cNE.
o If S is an affine set of logical relations th€a,_rormulas) is embedded iGa;.

We are now ready for the positive learnability results. From the previous claim and
Observation 27 we can derive the following theorem:

Theorem 31. Let S be a finite set of logical relations. The following conditions hold

e If S is a bijunctive set of logical relations the&hy-rormulas) IS polynomially exactly
learnable with Qn?) equivalence queries i_cne.

e If S is a weakly monotone of degree k set of logical relations theRyrmulas) IS POlYy-
nomially exactly learnable with @*) equivalence queries i_cnr.

e If S is a weakly antimonotone of degree k set of logical relations tAeRormulas) iS
polynomially exactly learnable with @*) equivalence queries i@_cnr-

o If Sisan affine set of logical relations thés._rormulas) is polynomially exactly learnable
with n+ 1 equivalence queries ifas.

3.3. Boolean circuits are pwm-reducible to non-basic classes

In this section, we show that, in a sense made precise later, quantified boolean formulas from
non-basic sets of relations are not learnable. We showed in Section 3.1.3 that non-basic sets
can express the double implicatiofx[A y) — Z] or its dual counterpart. In this section,
we complete the proof by showing that sets of quantified formulas containing the double
implication can simulate boolean circuits which are known to be not learnable. Simulation
in the model of PAC-prediction with membership queries is characterizated by the notion
of pwm-reductionas defined above.

First, let us introduce the class of boolean circuits and the non-learnability result that
we will use as the basis of our reasoning. Cgt be the class of boolean circuits with
{Vv, A, —} gates and’gc the class of monotone boolean circuits, i.e., with rdgates.
Gates are denoted by natural numbers.

We consider the input variables as gates of fan-in 0. In Angluin & Kharitonov (1995), it
is shown that under some cryptographic assumptions boolean circuits are not polynomially
predictable with membership queries:

Theorem 32 (Angluin & Kharitonov, 1995). If there exist public key encryption systems
secure against chosen ciphertext attathen Cgc is not polynomially predictable with
membership queries.

The pwm-reduction from boolean circuits to quantified boolean formulas with non-
basic bases is divided in two stages. First, we prove that general boolean circuits are
pwm-reducible to monotone boolean circuits and then we show a pwm-reduction from
monotone boolean circuits to sets of quantified boolean formulas containing the implication.

Lemma 33. Cgc <pwmCmacC.
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Proof: LetC be a boolean circuit of sizmwith 1, ..., n as input gates. We can assume
that —-gates have in-going edges only from input gates, otherwise by using De Morgan’s
law repeatedly, we can move-gates towards the input gates.

Consider the circui€’ with 1,...,n,m+ 1,..., m+ n as input gates and containing
as main components subcircu@s andC,, defined as follows:

SubcircuitC; is obtained modifying slightly circui€. Replace every--gate with ante-
cesori with the new input gaten +1i.

Circuit C; receives as input,1..,n,m+ 1, ..., m+ n and the output gate 0 of circuit
C;. C; evaluates the following function:

vo If Vi:1<i<n, vji# vmy
@V, V1, -+, Uny Umals+- o> Umen) = 30 if Ji:1l<i<n, vi=vn =0
1 otherwise

wherev; denotes the value of gaite

It is easy to construct a monotone boolean circuit evaluating fungtierth size poly-
nomial inn.

For all natural numbesand for every concept representatioa Cgc suchthatu| < s, let
C be the boolean circuit withinput gates represented byletu’ be the representation of the
monotone boolean circu@’ obtained fronC as described above. We defo, n, u) = u'.
For every assignmentsandy of lengthn we definef (s, n, X) = xX and

x if x=¥y
hs,n,xyy=3 1L if Ji:1<i<nx =y =0
T otherwise

Clearly, f, g andh satisfy the conditions (1), (2) and (3) in Definition 2 and therefore define
a pwm-reduction.

Technical note: In the proof of this prediction with membership reduction and in the next
one, functionsf, g, h have been defined only partially to keep the proof clear. It is trivial
to extend the definition to obtain complete function preserving conditions (1), (2) and (3).

O

Lemma 34. Cumec <pwm I-Formula{x v y v z}).

Proof: Let C be a monotone boolean circuit whereis its number of gates. We can
represent each gajein C by a variablex; and construct the following formula:

Xo
F= HXil...HXir(p 0

whereois the outputgatdj; : 1 < j <r}isthe setthat contains exactly all thegates and
v-gates except the output gateandy is a conjunction that contains exactly the following
clauses:

e For eachn-gatei, ¢ contains the clausg; v X v x;, where| andk are the ancestors
ofi.
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e For eachv-gatei, ¢ contains the clause§ v Xj v x; andx Vv X V Xi, wherej andk
are the ancestors of

It is easy to show thaf andF denote complementary boolean functions.

For all natural numbes and for every concept representatiare Cygc such that
lul < s, let C be the monotone boolean circuit withinput gates represented by let
U’ be the representation of the boolean formialformed fromC as shown before. We de-
fineg(s, n, u) = u’. Forall assignment of lengthn we definef (s, n, X) = h(s, n, X) = X.
Clearly, f, g andh satisfy the conditions (1), (2) and (3) in the negated form of Definition
2 and therefore define a pwm-reduction. O

This reduction is very similar to the reduction from the evaluation of monotone boolean
circuit problem to the horn satisfiability problem, used to siwompleteness of the latter
problem (see, for example, Greenlaw, Hoover, & Ruzzo, 1995).

By duality we have:
Lemma 35. Cmsc <pwm CEI-FormuIa([xvyvi})-

We put the previous lemmas together with Theorems 16 and 32 and we obtain the
following result:

Corollary 36. Let S be a finite non-basic set of logical relatipttsen

(a) The sefi-Formula(S) containg[x vy v zjor[X vy vV z.

(b) The clas€ygc is pwm-reducible t€3.rormulacs)-

(c) The clas<gc is pwm-reducible t@5.rormuias) -

(d) The clasa.romulas) iS Not polynomially predictable with membership queries under
the assumption that public key encryption systems secure against CC-attack exist.

Finally, Theorem 6 follows from Theorem 31 and Corollary 36.
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Note

1. The notion of compatibility used in this paper differs only slightly from the compatibility defined by Kavvadias
& Sidderi (1996). Precisely, thg-compatibility corresponds exactly to thig — 1)-compatibility in the sense
of Kavvadias & Sidderi (1996).
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