
Machine Learning 34, 131–149 (1999)
c© 1999 Kluwer Academic Publishers. Manufactured in The Netherlands.

Using Decision Trees to Construct a Practical Parser

MASAHIKO HARUNO mharuno@hip.atr.co.jp
ATR Human Information Processing Research Laboratories, 2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto
619-02, Japan

SATOSHI SHIRAI shirai@cslab.kecl.ntt.co.jp
YOSHIFUMI OOYAMA ooyama@cslab.kecl.ntt.co.jp
NTT Communication Science Laboratories, 2-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-02, Japan

Editors: Claire Cardie and Raymond Mooney

Abstract. This paper describes a novel and practical Japanese parser that uses decision trees. First, we construct
a single decision tree to estimate modification probabilities; how one phrase tends to modify another. Next, we
introduce a boosting algorithm in which several decision trees are constructed and then combined for probability
estimation. The constructed parsers are evaluated using the EDR Japanese annotated corpus. The single-tree
method significantly outperforms the conventional Japanese stochastic methods. Moreover, the boosted version
of the parser is shown to have great advantages; (1) a better parsing accuracy than its single-tree counterpart for
any amount of training data and (2) no over-fitting to data for various iterations. The presented parser, the first
non-English stochastic parser with practical performance, should tighten the coupling between natural language
processing and machine learning.

Keywords: stochastic parsing, decision tree, boosting, dependency grammar, corpus linguistics

1. Introduction

With the recent availability of large annotated corpora, there has been growing interest in
stochastic parsing methods so as to replace labor-intensive rule compilation by automated
learning algorithms. Conventional parsers with practical levels of performance require a
number of sophisticated rules that have to be hand-crafted by human linguists. It is time-
consuming and cumbersome to maintain these rules for two reasons.

• The rules are specific to the application domain.
• Specific rules handling infrequent and colloquial expressions create side effects. Such

rules often deteriorate the overall performance of the parser. It is generally difficult to
decide whether to include a specific rule, particularly when the number of rules becomes
large.

The stochastic approach, on the other hand, has the potential to overcome these difficul-
ties. Because it induces stochastic rules to maximize overall performance against training
data, it not only adapts to any application domain but also avoids over-fitting to the data. Now

132 M. HARUNO, S. SHIRAI AND Y. OOYAMA

that machine learning techniques are mature enough to deal with real-world applications,
it is promising to try to construct practical parsers by using machine learning methods.

In the late 80s and early 90s, the induction and parameter estimation of probabilistic
context free grammars (PCFGs) from corpora were intensively studied. Because these
grammars comprise only nonterminal and part-of-speech tag symbols, their performances
were not good enough to be used in practical applications (Charniak, 1993). A broader
range of information, in particular lexical (i.e., word-level) information, was found to be
essential in disambiguating the syntactic structures of real-world sentences.

The SPATTER parser (Magerman, 1995) replaced the pure PCFG with transformation
(extension and labeling) rules that are augmented with a number of lexical attributes. The
parser controlled the applications of each rule by using the lexical constraints induced by
using a decision tree algorithm (Breiman et al., 1984). The extension can take on any of
the following five values:right , left, up, unary, androot, each representing an extension
of a syntactic tree node. The decision tree model is grown using the following questions,
whereX is either word, part-of-speech, label, or extension, andY is either left or right. The
SPATTER parser attained 87% an accuracy and was the first to make stochastic parsers a
practical choice.

• What is theX at the current node?
• What is theX at the node to theY?
• What is theX at the node two nodes to theY?
• What is theX at the current node’s first child from theY?
• What is theX at the current node’s second child from theY?

Another type of high-precision parser, one based on dependency analysis, was intro-
duced by Collins (1996). Dependency analysis first segments a sentence into syntacti-
cally meaningful sequences of words and then considers the modification of each segment.
Figure 1 illustrates a sample dependency structure. Each modification is represented as
a triple of nonterminal symbols with a direction (right or left). For example,NP S VP1

constructed from [John Smith] andannouncedmeans that aNP (John Smith) modifies aVP
(announced his resignation) and constructs aS. Collins’ parser computes the likelihood that
each segment modifies the other by using large corpora. These modification probabilities
are conditioned by the head words of the two segments,2 the distance between them, and
other syntactic features.

Although these two parsers have shown a similar performance, the keys to their successes
are slightly different. The SPATTER parser performance greatly depends on the feature
selection ability of the decision tree algorithm rather than its linguistic representation.

Figure 1. Sample dependency structure.

USING DECISION TREES 133

On the other hand, dependency analysis plays an essential role in Collins’ parser for effi-
ciently extracting information from corpora.

In this paper, we describe a practical Japanese dependency parser that uses decision
trees. The task of the parser is to output bracketed text from an input sequence of Japanese
characters.

In the Japanese language, dependency analysis has been shown to be powerful because
segment (bunsetsu) order in a sentence is relatively free compared to European languages.
Japanese dependency parsers generally proceed in three steps.

1. Segment a sentence into a sequence of bunsetsu.
2. Prepare a modification matrix, each value of which represents how one bunsetsu is likely

to modify another.
3. Find optimal modifications in a sentence by dynamic programming.

The most difficult part is the second step, how to construct a sophisticated modification
matrix. With conventional Japanese parsers, the linguist must classify the bunsetsu and
select appropriate features to compute modification values. The parsers also suffer from
application domain diversity and the side effects of specific rules.

Stochastic dependency parsers like Collins’, on the other hand, define a set of attributes
and condition the modification probabilities by all of the attributes regardless of the bunsetsu
type. These methods can encompass only a small number of features if the probabilities are
to be precisely evaluated from a finite number of data. Our method, in contrast, constructs
a more sophisticated modification matrix by using decision trees. It automatically selects
a sufficient number of significant attributes according to the bunsetsu type. We can use
arbitrary numbers of attributes to potentially increase the parsing accuracy.

Natural languages are full of exceptional and colloquial expressions, and it is difficult for
machine learning algorithms, as well as human linguists, to judge whether a specific rule
is relevant in terms of the overall performance. Because the maximal likelihood estimator
(MLE) emphasizes the most frequent phenomena, an exceptional expression is placed in the
same class as a frequent one. To tackle this problem, we investigate a mixture of sequentially
generated decision trees. Specifically, we use the Adaboost algorithm (Freund & Schapire,
1997) which iteratively performs two procedures:

1. construct a decision tree based on the current data distribution
2. update the distribution by focusing on data not well explained by the constructed tree

The final modification probabilities are computed by mixing all of the decision trees ac-
cording to their performance. The sequential decision trees gradually change from broad
coverage to specific exceptional trees that cannot be captured by a general tree. In other
words, the method incorporates not only general expressions but also infrequent specific
ones.

The rest of this paper is organized as follows. Section 2 summarizes our dependency
analysis for the Japanese language. Section 3 introduces our feature setting for learning and
explains decision tree models that compute modification probabilities. Section 4 presents

134 M. HARUNO, S. SHIRAI AND Y. OOYAMA

experimental results obtained by using the EDR Japanese annotated corpora. Section 5
relates our parser research to other research from both natural language processing and
machine learning viewpoints. Finally, Section 6 concludes the paper.

2. Dependency analysis in the Japanese language

This section overviews dependency analysis in the Japanese language. The parser generally
performs the following three steps.

1. Segment a sentence into a sequence of bunsetsu.
2. Prepare a modification matrix, each value of which represents how one bunsetsu is likely

to modify the other.
3. Find optimal modifications in a sentence by a dynamic programming technique.

Because there are no explicit delimiters between words in Japanese, input sentences
are first word segmented, part-of-speech tagged, and then chunked into a sequence of
segments (bunsetsu). Bunsetsu basically consists of a set of non-function words+ function
words, although its definition greatly depends on the user and usage. In our system, word
segmentation and part-of-speech tagging are performed by the Japanese morphological
analyzing program Chasen (Matsumoto et al., 1997). Then, the output from the tagger
is passed to an automatic bunsetsu segmenter (developed by Fujio & Matsumoto (1997)).
The bunsetsu segmenter is implemented in Perl and contains 1311 rules in the form of
regular expressions to determine the bunsetsu boundaries. The first step yields, for the
following example, the sequence of bunsetsu displayed below. The Japanese expressions in
the parenthesis represent the internal structures of the bunsetsu (word segmentations). Note
here that postpositional particles (e.g.,GA, WO, NO, andNI) provide much of the functional
information that word order typically provides in English.

Example.

kinou-no yuugata-ni kinjo-no kodomo-ga wain-wo
yesterday-NO evening-NI neighbor-NO children-GA wine-WO

Yesterday evening, the neighboring children drank

nomu+ta
drink+PAST

the wine

The second step of parsing is to construct a modification matrix whose values represent the
likelihood that one bunsetsu modifies another in a sentence.

In the Japanese language, almost all practical parsers assume the following two constraints
(Yoshida, 1972). Although there are a small number of exceptions (i.e., inversion) for these
two constraints, the majority of them can be avoided by devising corpus annotations and

USING DECISION TREES 135

Table 1. Modification matrix for sample sentence.

kinou-no

yuugata-ni 0.70 yuugata-ni

kinjo-no 0.07 0.10 kinjo-no

kodomo-ga 0.10 0.10 0.70 kodomo-ga

wain-wo 0.10 0.10 0.20 0.05 wain-wo

nomu-ta 0.03 0.70 0.10 0.95 1.00

Figure 2. Modification set for sample sentence.

bunsetsu definitions. These two constraints with careful bunsetsu definitions can improve
the parsing performance by cutting off excessive modification candidates.

1. Every bunsetsu except the last one modifies exactly one posterior bunsetsu.
2. No modification crosses other modifications in a sentence.

Table 1 illustrates a modification matrix for the example sentence. In the matrix, the
columns and rows represent anterior (preceding) and posterior (following) bunsetsu, res-
pectively. For example, the first bunsetsu ‘kinou-no’ modifies the second ‘yuugata-ni’ with
a score of 0.70 and the third ‘kinjo-no’ with a score of 0.07. The aim of this paper is to
generate a modification matrix by using decision trees.

The final step of parsing optimizes the entire dependency structure by using the values
in the modification matrix. A probabilistic bottom-up chart parsing algorithm (Kay, 1980;
Charniak, 1993) is adopted to determine the optimal dependencies, and produce the best
parse.

Before going into the details of our method, we introduce here the notations that will be
used in this paper. LetS be the input sentence.S comprises a bunsetsu setB of lengthm
({b1, . . . ,bm}) in which bi represents thei th bunsetsu. We defineD to be a modification
set; D = {mod(1), . . . ,mod(m− 1)}, in which mod(i) is the bunsetsu which is modified
by thei th bunsetsu. Because of the first assumption above, the length ofD is alwaysm−1.
Therefore,D fully specifies the structure of the parsed text. Using these notations, the result
of the third step for the example can be given asD = {2, 6, 4, 6, 6} as displayed in figure 2.

3. Decision trees for dependency analysis

3.1. Linguistic feature types used for learning

This section explains the concrete feature set we use for learning.
Training and test instances for the decision tree algorithm contain 13 features that rep-

resent any unordered combination of two bunsetsu,bi andbj , in a sentence: five features

136 M. HARUNO, S. SHIRAI AND Y. OOYAMA

Table 2. Linguistic feature types used for learning.

No. Two bunsetsu No. Others

1 Lexical information of head word 6 Distance between two bunsetsu

2 Part-of-speech of head word 7 Particle ‘wa’ between two bunsetsu

3 Type of bunsetsu 8 Punctuation between two bunsetsu

4 Punctuation

5 Parentheses

describe bunsetsubi (features 1–5 in Table 2); five features describe bunsetsubj (features
1–5 in Table 2); the remaining three features describe the relationship betweenbi andbj

(features 6–8 from Table 2). The class value for each instance (i.e.,yesor no) indicates
whether or not a modification relation exists betweenbi andbj .

Both No. 1 and No. 2 concern the head word of the bunsetsu. No. 1 takes values of frequent
words or thesaurus categories (NLRI, 1964). No. 2, on the other hand, takes values of part-
of-speech tags. No. 3 deals with bunsetsu types which consist of functional word chunks
or the part-of-speech tags that dominate the bunsetsu’s syntactic characteristics. No. 4 and
No. 5 are binary features and correspond to punctuation and parentheses, respectively.
No. 6 represents how many bunsetsu exist between the two bunsetsu. Possible values in
our setting are A (0), B (0∼ 4), and C (≥5). No. 7 deals with the post-positional particle
‘wa’ which greatly influences the long distance dependency of subject-verb modifications.
Finally, No. 8 addresses the punctuation between the two bunsetsu. The detailed values of
each feature type are summarized in the Appendix.

Table 3 illustrates the instances generated from the example sentence discussed in
Section 2. Each row in the table corresponds to one instance. t-noun and c-noun in the
table represent a temporal noun and a common noun, respectively. Note also thatno
in italic and no in Roman mean the Japanese post positional particle ‘no’ and a binary
value ‘no’, respectively. In this setting, the decision tree algorithm automatically and con-
secutively selects the significant features for discriminating modify/non-modify (yes/no)
relations.

3.2. Stochastic model and decision trees

The stochastic dependency parser assigns the most plausible modification setDbest to a
sentence in terms of the training data distribution.

Dbest= argmaxD P(D | S) = argmaxD P(D | B)

Although modifications in a sentence are in fact dependent on each other as revealed
in the two constraints in Section 2, it is generally difficult to efficiently determine what
range of modifications should be considered in the online computation of the modification
probability of two bunsetsu. In addition, the learning of such dependencies should require

USING DECISION TREES 137

Table 3. Training data generated from the example sentence.

Anterior bunsetsu Posterior bunsetsu Pair

1 2 3 4 5 1 2 3 4 5 6 7 8 Class

kinou t-noun no no no yuugata c-noun ni no no A no no yes

kinou t-noun no no no kinjo c-noun no no no B no no no

kinou t-noun no no no kodomo c-noun ga no no B no no no

kinou t-noun no no no wain c-noun wo no no B no no no

kinou t-noun no no no nomu verb verb no no B no no no

yuugata c-noun ni no no kinjo c-noun no no no A no no no

yuugata c-noun ni no no kodomo c-noun ga no no B no no no

yuugata c-noun ni no no wain c-noun wo no no B no no no

yuugata c-noun ni no no nomu verb verb no no B no no yes

kinjo c-noun no no no kodomo c-noun ga no no A no no yes

kinjo c-noun no no no wain c-noun wo no no B no no no

kinjo c-noun no no no nomu verb verb no no B no no no

kodomo c-noun ga no no wain c-noun wo no no A no no no

kodomo c-noun ga no no nomu verb verb no no B no no yes

wain c-noun wo no no nomu verb verb no no A no no yes

large amounts of training data. Therefore, we adopt an alternative independence assumption
(as usual) for efficient learning from a limited amount of training data and for efficient
computation.

P(D | B) =
m−1∏
i=1

P(yes| bi , bj , fi j) (1)

By assuming the independence of modifications,P(D | B) can be transformed as Eq. (1).
P(yes| bi , bj , fi j)means the probability that a pair of bunsetsubi andbj have a modification
relation given the feature setsfi j defined in Table 2. We use decision trees to dynamically
select appropriate features for each combination of bunsetsu (as shown in Table 3) from
fi j .

Let us first consider the single tree case. We slightly changed C4.5 (Quinlan, 1993)
programs to be able to extract class frequencies at every node in the decision tree because
our task is regression rather than classification. Figure 3 is the simplified and unpruned
decision tree generated from the training data shown in Table 3. Each node and edge in the
tree is labeled with a feature name and its value, respectively. They indicate that the data
are split by the feature according to its values. The feature and values are selected so as to
maximally separate class labels of the data. The finally separated class values are attached
to each leaf node of the tree. In the current example, the decision tree first selects the feature
Distance at the top node. If its value is A and the value of the next feature anterior type isno,
the class of data is then determined as yes. The rest of the data can be correctly classified

138 M. HARUNO, S. SHIRAI AND Y. OOYAMA

Figure 3. Simple decision tree generated from example data.

in the same way. Note here that we can extract the class frequencies from each node. For
example, the circled node of depth 1 stores five examples of Table 3 whose distance values
are A. The class frequency at this node is (yes, no)= (3, 2). We can therefore compute at
this node the probability of yes as 3/(3+ 2) = 0.6.

P(yes| bi , bj , fi j) ' PDT(yes| bi , bj , fi j)∑m
k>i PDT(yes| bi , bk, fik)

(2)

In the case of the pruned decision tree, by using the class frequencies, we can also compute
the probabilityPDT(yes| bi , bj , fi j) which is the Laplace estimate of the empirical likeli-
hood thatbi modifiesbj at the leaf of the constructed decision tree DT. Note that it is nece-
ssary to normalizePDT(yes| bi , bj , fi j) to approximateP(yes| bi , bj , fi j). By considering
all candidates posterior tobi , P(yes| bi , bj , fi j) is computed using a heuristic rule (2).
Such a normalization technique is also utilized by Collins (1996). It is of course reasonable
to normalize class frequencies instead of the probabilityPDT(yes| bi , bj , fi j). Equation
(2) tends to emphasize long distance dependencies more than is true for frequency-based
normalization.

Let us extend the above to use a set of decision trees. As briefly mentioned in Section 1,
a number of infrequent and exceptional expressions appear in any natural language phe-
nomenon; they deteriorate the overall performance of application systems. It is also difficult
for automated learning systems to detect and handle these expressions because exceptional
expressions are placed in the same class as frequent ones. To tackle this difficulty, we gener-
ate a set of decision trees by introducing the Adaboost (Freund & Schapire, 1997) algorithm
illustrated in figure 4. The algorithm first sets the weights to 1 for all (training) examples
(step 2 in figure 4) and repeats the following two proceduresT times (step 3 in figure 4).

1. A decision tree is constructed by using the current weight vector ((A) in figure 4)
2. The same training data are then parsed by using the tree and the weights of correctly

handled data are reduced ((B) and (C) in figure 4)

The final probability seth f is then computed by mixingT trees according to their per-
formance (step 4 in figure 4). Usingh f instead ofPDT(yes| bi , bj , fi j) in Eq. (1) generates
a boosted version of the dependency parser. The sequential decision trees gradually change

USING DECISION TREES 139

1. Input: sequence ofN training examples〈e1, w1〉, . . . , 〈eN , wN〉 in whichei and
wi represent an example and its weight.

2. Initialize the weight vectorwi = 1 for i = 1, . . . , N
3. Do for t = 1, 2, . . . , T

(A) Call C4.5 providing it with the weight vectorwi s and Construct a modification
probability setht

(B) Let Error be a set of training examples that are not correctly classified byht

Compute the pseudo error rate ofht :

εt =
∑

i⊂Error wi /
∑N

i=1wi

if εt ≥ 1
2 , then abort loop

βt = εt
1−εt

(C) For training examples correctly predicted byht , update the weight vector to bewi = wi βt

4. Output a final probability set:

h f =
T∑

t=1

(
log

1

βt

)
ht

/
T∑

t=1

(
log

1

βt

)

Figure 4. Combining decision trees by the Adaboost algorithm.

from broad coverage to specific exceptional trees that cannot be captured by a general tree.
In other words, the method incorporates not only general expressions but also infrequent
specific ones.

4. Experimental results

We evaluated the proposed parser using the EDR Japanese annotated corpus (EDR, 1995).
The experiment consisted of two parts. One evaluated the single-tree parser and the other the
boosting counterpart. In the rest of this section, parsing accuracy refers only to precision;
this means out of all the individual dependencies the system assigns, how many of those
are correct in terms of the annotated corpus.

We do not show recall because we assume every bunsetsu modifies only one posterior
bunsetsu. The features used for learning were non head-word features (i.e., types 2 to 8
in Table 2). Section 4.1.4 investigates lexical information of head words such as frequent
words and thesaurus categories. Before going into the details of the experimental results,
we summarize here how the training and test data were constructed.

1. After all of the sentences in the EDR corpus were word-segmented and part-of-speech
tagged, they were then chunked into a sequence of bunsetsu.

2. All bunsetsu pairs were compared with the EDR bracketing annotation (correct segmen-
tations and modifications). If a sentence contained a pair inconsistent with the EDR
annotation, the sentence was removed from the data.

140 M. HARUNO, S. SHIRAI AND Y. OOYAMA

3. All data examined (total number of sentences: 207,802, total number of bunsetsu:
1,790,920) were divided into 20 files. The training and test data were completely
differentiated. The training data (50,000 sentences) were the first 2500 sentences of the
20 files. The test data (10,000 sentences) were the 2,501st to 3,000th sentences of each
file.

Because there are no explicit delimiters between words in Japanese, the primary task is to
word segment and part-of-speech tag the input sentences. The part-of-speech information
contained in the EDR corpus is too coarse to be used in parsing. We hence employed only
bracketing information of the corpus. We used for the POS tagging a Japanese morpholog-
ical analyzing program Chasen (Matsumoto et al., 1997) to make use of the fine-grained
tag information to address the syntactic ambiguities. After the part-of-speech tagging, a
sequence of bunsetsu was automatically generated by utilizing the automatic bunsetsu seg-
menter developed by Fujio and Matsumoto (1997). The bunsetsu segmenter is implemented
in Perl and contains 1,311 segmentation rules.

The second step detected the modification relations existing in the EDR corpus. Due to
the difference between our definition of bunsetsu and that used in the EDR corpus, some dis-
crepancies in the bunsetsu boundaries occurred. We removed from the data those sentences
that contained the boundary discrepancies. The errors in the part-of-speech tagging were
handled as they were by a learning algorithm. Because the detection of bunsetsu boundaries
is much easier than part-of-speech tagging, the removal of inconsistent sentences has little
effect on the use of the resulting parser in which all bunsetsu segmentations are performed
according to our bunsetsu definition.

The third step is the construction of the completely disjoint training and test data for
learning. For both data, we took the same numbers of sentences from 20 different files in
order to avoid imbalances in the genres of the texts.

4.1. Single tree experiments

In the single tree experiments, we evaluated the following four properties of the new de-
pendency parser.

• Tree pruning and parsing accuracy
• Number of training sentences and parsing accuracy
• Significance of features other than Head-word Lexical Information
• Significance of Head-word Lexical Information

4.1.1. Pruning and parsing accuracy.Table 4 summarizes the parsing accuracy with
various confidence levels of pruning. The number of training sentences was 10,000. In
C4.5 programs, a larger value of confidence means weaker pruning and 25% is commonly
used in various domains (Quinlan, 1993). Our experimental results show that 75% pruning
attains the best performance, i.e., weaker pruning than usual. In the remaining single tree
experiments, we used the 75% confidence level. Although strong pruning treats infrequent
data as noise, parsing involves many exceptional and infrequent modifications as mentioned

USING DECISION TREES 141

Table 4. Pruning confidence level vs. parsing accuracy.

Confidence level (%) 25 50 75 95

Parsing accuracy (%) 82.01 83.43 83.52 83.35

before. Our result means that information included only in small numbers of samples is
useful for disambiguating the syntactic structure of sentences.

4.1.2. The amount of training data and parsing accuracy.Table 5 and figure 5 show how
the number of training sentences influences the parsing accuracy for the same 10,000 test
sentences. They illustrate the following two characteristics of the learning curve.

1. The parsing accuracy rapidly rises up to 30,000 sentences and is almost flat at around
50,000 sentences.

2. The maximum parsing accuracy is 84.33% at 50,000 training sentences.

We will discuss the maximum accuracy of 84.33%. Compared to recent stochastic English
parsers that have yielded 86 to 87% accuracy (Collins, 1996; Magerman, 1995), our result

Table 5. Number of training sentences vs. parsing accuracy.

Number of training sentences 3000 6000 10000 20000 30000 50000

Parsing accuracy (%) 82.07 82.70 83.52 84.07 84.27 84.33

Figure 5. Learning curve of single-tree parser.

142 M. HARUNO, S. SHIRAI AND Y. OOYAMA

is not so attractive at a glance. The main reason behind this lies in the difference between
the two corpora used: Penn Treebank (Marcus, Santorini, & Marcinkiewicz, 1993) and
EDR corpus (EDR, 1995).

Penn Treebank was also used to induce part-of-speech (POS) taggers because the corpus
contains very precise and detailed POS markers as well as bracket annotations. In addition,
English parsers incorporate the syntactic tags that are contained in the corpus. The EDR
corpus, on the other hand, contains only coarse POS tags.

We had to introduce a Japanese POS tagger (Matsumoto et al., 1997) to make use of fine-
grained information for disambiguating syntactic structures. Only the bracket information
in the EDR corpus was considered. We conjectured that the difference between the parsing
accuracies was due to the difference of the corpus information available. Other research
seems to support the conjecture.

Fujio and Matsumoto (1997) constructed another EDR-based dependency parser by using
a similar method to Collins (1996). The performance of the parser was 80.48% precision.
Furthermore, the features they used were exactly the same as ours although the possible
values of each feature slightly differed. They also employed the same part-of-speech tagger
and bunsetsu segmenter. Although we do not exactly know what portion of the EDR corpus
was used as their 200,000 training and 10,000 test sentences, a comparison of the two
parsers gives some indication for the characteristics of the EDR corpus because of the
great similarity in our settings. The two parsers’ difference in performance probably arises
mainly from the feature selection ability of the decision tree algorithm.

4.1.3. Significance of non head-word features.We will now summarize the significance of
each non head-word feature introduced in Section 3. The influence of the lexical information
of head words will be discussed in the next section. Table 6 illustrates how the parsing accu-
racy is reduced when each feature is removed. The number of training sentences was 10,000.
In the table, ant and post represent the anterior and the posterior bunsetsu, respectively.

Table 6. Change in parsing accuracy when each attribute is removed.

Feature Accuracy decrease (%)

ant POS of head −0.07

ant bunsetsu type +9.34

ant punctuation +1.15

ant parentheses ±0.00

post POS of head +2.13

post bunsetsu type +0.52

post punctuation +1.62

post parentheses ±0.00

distance between two bunsetsu +5.21

punctuation between two bunsetsu +0.01

‘wa’ between two bunsetsu +1.79

USING DECISION TREES 143

Table 6 clearly demonstrates that the most significant features are anterior bunsetsu type
and distance between the two bunsetsu. This result may partially support an often used
heuristic, that the bunsetsu modification distance be as short range as possible, provided the
modification is syntactically possible. In particular, we need to concentrate on the types of
bunsetsu to attain a higher level of accuracy. Most features contribute, to some extent, to the
parsing performance. In our experiment, information on parentheses has no effect on the
performance. The reason may be that EDR contains only a small number of parentheses.
One exception in our features is anterior POS of head. We currently hypothesize that this
drop in accuracy arises from two reasons.

• In many cases, the POS of the head word can be determined from the bunsetsu type.
• Our POS tagger sometimes assigns verbs for verb-derived nouns.

4.1.4. Significance of head-word lexical information.We focused on the head-word
feature by testing the following four lexical sources with the 10,000 training sentences.
The first and the second are the 100 and 200 most frequently occurring words. The third
and the fourth are derived from a broadly used Japanese thesaurus, Word List by Semantic
Principles (NLRI, 1964). Level 1 and Level 2 classify words into 15 and 67 categories,
respectively.

1. 100 most frequent words
2. 200 most frequent words
3. Word List Level 1
4. Word List Level 2

Table 7 displays the parsing accuracy when each of the above four head word lexical
information was used in addition to the previous features. In all cases, the performance was
worse than 83.52% which was attained without them. More surprisingly, more head word
information yielded a poorer performance.

Why does lexical information not improve the parsing accuracy even though it has been
reported to be very effective for parsing European languages? In the Japanese language,
functional words such as post positional particles offer stronger clues for dependency struc-
tures than is true in European languages. Note here that these most influential word forms
are utilized in another feature, type of bunsetsu (No. 3 in Table 2). The other lexical infor-
mation may have to be more elaborate to further improve the parsing accuracy of Japanese
texts. It may be helpful to incorporate more structured lexical information (case frame
information) as done by Collins (1997). We briefly discuss problems involved in the word
statistics and thesaurus information we used in turn.

Table 7. Head word information vs. parsing accuracy.

Head word information added 100 words 200 words Level 1 Level 2

Parsing accuracy (%) 83.34 82.68 82.51 81.67

144 M. HARUNO, S. SHIRAI AND Y. OOYAMA

For frequently occurring words, there remains the possibility that the performance was
worsened because we considered directly a limited number (100 and 200) of words.
Other research (Fujio & Matsumoto, 1997) has reported that consideing all content words
with the same smoothing technique as Collins slightly improves the parsing accu-
racy.

The preprocessing of the head word co-occurrence might be helpful even for our decision
tree learning method. For example, a feature used for learning may be a quantized co-
occurrence probability between two head words. Anyway, these two results indicate that
word statistics does not have as strong an impact in parsing the EDR corpus as it does in
European language corpora. The potential reason for the difference may be that the EDR
corpus comprises more diverse genres of texts than Penn Treebank (Wall Street Journal
articles). We need further research to test this possibility.

The result from Word List by Semantic Principles involves more sensitive and compli-
cated problems. First, the categories of the thesaurus may be too coarse to be used in parsing.
Second, the entries of the thesaurus contain only 30,000 words. These two shortcomings
of the thesaurus may deteriorate the overall performance. Therefore, further investigation
of other thesauri (Ikehara, Yokoo, & Miyazaki, 1991) and clustering techniques (Charniak,
1997) might improve the parsing performance.

In summary, it may now be safely said, at least for the Japanese corpus, that we
cannot expect lexical information of content words to always improve the perform-
ance.

4.2. Boosting experiments

This section reports experimental results on the boosting version of our parser. In all
experiments, pruning confidence levels were set to 55%. Table 8 and figure 6 show the
parsing accuracy when the number of training examples was increased. Because the number
of iterations in each data set changed between 5 and 8, we will show the accuracy by
combining the first five decision trees. In figure 6, the dotted line plots the learning of the
single tree case (identical to figure 5) for reader convenience. The characteristics of the
boosted version can be summarized as follows compared to the single tree version.

• The learning curve rises more rapidly with a small number of examples. It is surprising
that the boosted version with 10,000 sentences performs better than the single tree version
with 50,000 sentences.
• The boosted version significantly outperforms the single tree counterpart for any number

of sentences although they use the same features for learning.

Table 8. Number of training sentences vs. parsing accuracy.

Number of training sentences 3000 6000 10000 20000 30000 50000

Parsing accuracy (%) 83.10 84.03 84.44 84.74 84.91 85.03

USING DECISION TREES 145

Table 9. Number of iterations vs. parsing accuracy.

Number of iteration 1 2 3 4 5 6

Parsing accuracy (%) 84.32 84.93 84.89 84.86 85.03 85.01

Figure 6. Learning curve of boosting parser.

Next, we discuss how the number of iterations influences the parsing accuracy. Table 9
shows the parsing accuracy for various iteration numbers when 50,000 sentences were used
as the training data. The results have two characteristics.

• The parsing accuracy rises up rapidly at the second iteration.
• No over-fitting to the data can be seen. The performance of each generated tree falls to

around 30% at the final iteration stage, showing that the trees become more specialized.

5. Related work

We first relate our work to other research in the parsing community. Although recent so-
phisticated English parsers (Magerman, 1995; Charniak, 1997) have replaced PCFG with
transformation (extension and labeling) rules that are augmented with several attributes (in
particular, lexical information), we adopt dependency analysis because the word order in
Japanese, particularly the bunsetsu order, is relatively free compared to European languages.
Our approach is, in spirit, similar to Collins’ dependency-based English parser. The main
difference lies in the feature selection process. Collins’ type parser (Collins, 1996; Fujio &
Matsumoto, 1997) predefines a set of features and conditions the modification probabilities

146 M. HARUNO, S. SHIRAI AND Y. OOYAMA

by all of the attributes regardless of the bunsetsu type. The method can incorporate only a
small number of features to precisely evaluate parameters from a finite amount of data.

Our decision tree method offers more sophisticated feature selection which automati-
cally detects the most significant types of attributes according to the bunsetsu type. We
can therefore make use of arbitrary numbers of attributes that may contribute to the parsing
accuracy. These potential features for learning have been enumerated in the many papers
on hand-compiled parsers. For example, Kameda (1996) considers many features (types of
characters, similarity of bunsetsu sequence, etc.). Collins incorporates subcategorization
frames in his extended generative model (Collins, 1997) and reports a 2.3% improvement
in performance over his dependency model (Collins, 1996). Such structured lexical infor-
mation should be useful in our decision tree based parsers.

There are also some interesting points from the machine learning viewpoint. Various
kinds of re-samplingtechniques have been studied in statistics (Efron, 1979; Efron &
Tibshirani, 1993) and machine learning (Breiman, 1996; Hull, Pedersen, & Sch¨utze,
1996; Freund & Schapire, 1997). The Adaboost method was designed to construct a high-
performance predictor by iteratively calling a weak learning algorithm (one slightly better
than random guessing). An empirical work has reported that the method greatly improves the
performance of the decision-tree, k-nearest-neighbor, and other learning methods (Freund
& Schapire, 1996; Drucker & Cortes, 1996). In the context of natural language processing,
Haruno & Matsumoto (1997) has reported that the Adaboost improves the performance of
their lexicalised Japanese part-of-speech tagger that makes use of hierarchical context trees
(Rissanen, 1983). However, most of these experiments were done with a small number of
examples and no asymptotic results were reported.

We tested the proposed algorithm by using one million pieces of training data (50,000
sentences) in a real-world parsing task. Our results confirmed the usefulness of the Adaboost
algorithm both in the rapidity of the learning curve improvement and in an improved
performance after enough data had been given to the parser.

The following two theorems (Schaipre et al., 1997; Bartlett, 1998) may be worth men-
tioning in the context of natural language processing. The first theorem is relevant for any
voting-based classification method such as boosting and bagging (Breiman, 1996). It ex-
plains the generalization error of any voting algorithm in terms of the margin (Vapnik, 1995;
Cortes & Vapnik, 1995) (no dependence on the number of iterations). The second theorem
gives the probability bound of the small margin in terms of the training errors of the base
hypotheses. The margin is intuitively the distance between an example and a classification
boundary. Therefore, the greater the margin is, the easier the classification becomes.

From the two theorems, the Adaboost algorithm is found to produce a larger margin
hypothesis on the training example set (Theorem 2) and then to yield smaller generalization
errors (Theorem 1). It can therefore deal with the originally small-margin instances which
correspond to the infrequent and difficult expressions from the viewpoint of natural language
processing (NLP). Further research will be promising in relating NLP and margin-related
learning algorithms such as Adaboost and Support Vector Machine (Vapnik, 1995; Cortes
& Vapnik, 1995).

Let H denote the space from which each base hypothesis is chosen; a base hypothesis
h ∈ H is a mapping from an instance spaceX to class{−1,+1}. We assume that examples
are generated independently at random according to some fixed but unknown distribution

USING DECISION TREES 147

D over X × {−1,+1}. The training set is a list ofm pairsS = 〈(x1, y1), . . . , (xm, ym)〉
chosen according toD. We useP(x,y)∼ D[A] to denote the probability of the eventA when
the example(x, y) is chosen according toD andP(x,y)∼ S[A] to denote the probability with
respect to choosing an example uniformly at random from the training set. We abbreviate
these byPD[A] and PS[A].

The majority vote rule that is associated withf gives the wrong prediction on the example
(x, y)only if y f (x) ≤ 0. Also, the margin (feasibility of classification) of an example(x, y)
in this case is simplyy f (x).

Theorem 1 states that with high probability, the generalization error of any majority vote
hypothesis can be bounded in terms of the number of training examples with a margin below
thresholdθ , plus an additional term which depends on the number of training examples,
the VC-dimension (Vapnik, 1995; Kearns & Vazirani, 1994) ofH , and the thresholdθ .

Theorem 1. Let D be a distribution over X× {−1,+1}, and let S be a sample of m
examples chosen independently at random according to D. Suppose the base hypothesis
space H has VC-dimension d, and let δ > 0. Assume that m≥ d ≥ 1. Then, with
probability at least1− δ over the random choice of the training set S, every weighted
average function f∈ C satisfies the following bound for allθ > 0:

PD[y f (x) ≤ 0] ≤ PS[y f (x) ≤ θ] + O

[
1√
m

(
d log2(m/d)

θ2
+ log

(
1

δ

))1/2]
Theorem 2 states that a fraction of the training examples for whichy f (x) ≤ θ decreases

to zero exponentially fast with the number of base hypotheses (boosting iterationT).

Theorem 2. Suppose the base learning algorithm when called by Adaboost, generates
hypotheses with weighted training errorsε1, ε2, . . . , εT . Then, for any θ, the following
inequality holds.

P(x,y)∼S[y f (x) ≤ θ] ≤
T∏

t=1

√
4ε1−θ

t (1− εt)1+θ

6. Conclusion

We have described a new Japanese dependency parser that uses decision trees. First, we
introduced the single tree parser to clarify the basic characteristics of our parser. The ex-
perimental results show that the new parser achieves an accuracy of 84% significantly
outperforming conventional stochastic parsers for Japanese. Next, the boosted version of
our parser was introduced. The promising results of the boosting parser can be summarized
as follows.

• The boosted version achieves an accuracy of 85% outperforming the single-tree counter-
part regardless of the training data amount.
• No data over-fitting was seen when the number of iterations changed.

148 M. HARUNO, S. SHIRAI AND Y. OOYAMA

We now plan to continue our research in two directions. One is to make our parser available
to a broad range of researchers and to use their feedback to revise the features for learning.
Second, we will apply our method to other languages, say English. Although we have
focused on the Japanese language, it is straightforward to modify our parser to work with
other languages.

Appendix

Values for each feature type

Acknowledgments

We would like to thank three anonymous reviewers for their insightful and constructive
comments. We are also indebted to the two editors. Their insightful comments have greatly
improved the paper.

Notes

1. NP, S, and VP represent noun phrase, sentence, and verb phrase, respectively.
2. In the aboveNP S VPexample, the two head words areSmithandannounced.

References

Bartlett, P. (1998). The sample complexity of pattern classification with neural networks: The size of the weights
is more important than the size of network.IEEE Transaction on Information Theory, 44(2), 525–536.

Breiman, L. (1996). Bagging predictors.Machine Learning, 24(2), 123–140.
Breiman, L., Friedman, J., Olshen, R., & Stone, J. (1984).Classification and regression trees. Wadsworth.
Charniak, E. (1993).Statistical language learning. The MIT Press.

USING DECISION TREES 149

Charniak, E. (1997). Statistical parsing with a context-free grammar and word statistics.Proceedings of the 15th
National Conference on Artificial Intelligence(pp. 598–603).

Collins, M. (1996). A new statistical parser based on bigram lexical dependencies.Proceedings of the 34th Annual
Meeting of Association for Computational Linguistics(pp. 184–191).

Collins, M. (1997). Three generative, lexicalised models for statistical parsing.Proceedings of the 35th Annual
Meeting of Association for Computational Linguistics(pp. 16–23).

Cortes, C., & Vapnik, V. (1995). Support-vector networks.Machine Learning, 20(3), 273–297.
Drucker, H., & Cortes, C. (1996). Boosting decision trees.Advances in Neural Information Processing Systems 8

(pp. 479–485).
EDR. (1995).The EDR Electronic Dictionary Technical Guide.
Efron, B. (1979). Bootstrap: another look at the jackknife.The Annals of Statistics, 7(1), 1–26.
Efron, B., & Tibshirani, R. (1993).An introduction to the bootstrap. Chapman and Hall.
Freund, Y., & Schapire, R. (1996). Experiments with a new boosting algorithm.Proceedings of the 13th Interna-

tional Conference on Machine Learning(pp. 148–156).
Freund, Y., & Schapire, R. (1997). A decision-theoretic generalization of on-line learning and an application to

boosting.Journal of Computer and System Sciences, 55(1), 119–139.
Fujio, M., & Matsumoto, Y. (1997). Japanese dependency structure analysis based on statistics.Working Note on

Natural Lanuguage Processing NL117-12(pp. 83–90), in Japanese.
Haruno, M., & Matsumoto, Y. (1997). Mistake-driven mixture of hierarchical tag context trees.Proceedings of

the 35th Annual Meeting of Association for Computational Linguistics(pp. 230–237).
Hull, D.A., Pedersen, J.O., & Sch¨utze, H. (1996). Method combination for document filtering.Proc. ACM SIGIR

96 (pp. 279–287).
Ikehara, S., Yokoo, A., & Miyazaki, M. (1991). Semantic analysis dictionaries for machine translation (in

Japanese).Working Note on Natural Language and Communication 91-19. Institute of Electronics, Information
and Communication Engineers.

Kameda, M. (1996). A portable & quick Japanese parser: Qjp. Proceedings of the 16th International Conference
on Computational Linguistics(pp. 616–621).

Kay, M. (1980).Algorithm schemata and data structure in syntactic processing(Tech. rep. CLS-80-12). Xerox
PARC.

Kearns, M., & Vazirani, U. (1994).An introduction to computational learning theory. The MIT Press.
Magerman, D.M. (1995). Statistical decision-tree models for parsing.Proceedings of the 33rd Annual Meeting of

Association for Computational Linguistics(pp. 276–283).
Marcus, M., Santorini, B., & Marcinkiewicz, M.A. (1993). Building a large annotated corpus of English: The

Penn Treebank.Computational Linguistics, 19(2), 313–330.
Matsumoto, Y., Kitauchi, A., Yamashita, T., Hirano, Y., Imaichi, O., & Imamura, T. (1997).Japanese morpholo-

gical analyisis system chasen manual(NAIST Technical Report NAIST-IS-TR97007).
NLRI (National Language Research Institute). (1964).Word list by semantic principles. Syuei Syuppan (in

Japanese).
Quinlan, J. (1993).C4.5 programs for machine learning. Morgan Kaufmann Publishers.
Rissanen, J. (1983). A universal data compression system.IEEE Transaction on Information Theory, 29(5),

656–664.
Schaipre, R., Freund, Y., Bartlett, P., & Lee, W. (1997). Boosting the margin: A new explanation for the effec-

tiveness of voting methods.Proceedings of the 14th International Conference on Machine Learning(pp. 338–
347).

Vapnik, V. (1995).The nature of statistical learning theory. Springer-Verlag.
Yoshida, S. (1972). Japanese syntactic anaysis based on the modification between two bunsetsu.Transactions of

the Institute of Electronics, Information and Communication Engineers, 55-D(4), in Japanese.

