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Abstract. The asymptotic properties of temporal-difference learning algorithms with linear function approxi-
mation are analyzed in this paper. The analysis is carried out in the context of the approximation of a discounted
cost-to-go function associated with an uncontrolled Markov chain with an uncountable finite-dimensional state-
space. Under mild conditions, the almost sure convergence of temporal-difference learning algorithms with linear
function approximation is established and an upper bound for their asymptotic approximation error is determined.
The obtained results are a generalization and extension of the existing results related to the asymptotic behav-
ior of temporal-difference learning. Moreover, they cover cases to which the existing results cannot be applied,
while the adopted assumptions seem to be the weakest possible under which the almost sure convergence of
temporal-difference learning algorithms is still possible to be demonstrated.
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1. Introduction

The asymptotic properties of temporal-difference learning algorithms with linear function
approximation are considered in this paper. Temporal-difference learning with function ap-
proximation is a recursive parametric method for approximating a cost-to-go function as-
sociated with a Markov chain. Algorithms of this type aim at determining the optimal value
of the approximator parameter by using only the available observations of the underlying
chain. Basically, they update the approximator parameter whenever a new observation of
the underlying chain is available trying to minimize the approximation error. Temporal-
difference learning with function approximation represents an extension of the classical
temporal-difference learning algorithms (see e.g., Sutton, 1988) and has extensively been
analyzed in Tsitsiklis and Van Roy (1997). As opposed to temporal-difference learning
with function approximation, the classical temporal-difference learning algorithms are only
capable of predicting the value of the cost-to-go function.

The problems of the prediction and approximation of a cost-to-go function associated
with a stochastic system modelled as a Markov chain appear in the areas such as automatic
control and time-series analysis. Among several methods proposed for solving these prob-
lems (e.g., Monte Carlo methods in statistics and maximum likelihood methods in automatic
control; see e.g., Kumar and Varaiya, 1986), temporal-difference learning is probably the
most general. Moreover, it is efficient and simple to be implemented. Due to their excellent
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performances, temporal-difference learning algorithms have found a wide range of applica-
tion (for details see e.g., Bertsekas & Tsitsiklis, 1996; Sutton & Barto, 1998 and references
cited therein), while their asymptotic properties (almost sure convergence, convergence
in mean and probability, convergence of mean and rate of convergence) have been ana-
lyzed in a great number of papers (see Dayan, 1992; Dayan & Sejnowski, 1994; Jaakola,
Jordan, & Singh, 1994; Sutton, 1988; Tsitsiklis & Van Roy, 1997; see also Bertsekas &
Tsitsiklis, 1996; Sutton & Barto, 1998 and references cited therein). Although the existing
results provide a good insight into the asymptotic behavior of temporal-difference learning
algorithms, they practically cover only the case where the chain is geometrically ergodic
and are constrained to the case where the state-space of the underlying chain is countable.
However, this is too restrictive for applications such as the prediction and approximation
of a cost-to-go function associated with Markov chains appearing in the areas of queuing
theory and time-series analysis.

In this paper, the almost sure convergence and asymptotic approximation error of
temporal-difference learning algorithms with linear function approximation are analyzed.
The analysis is carried out in the context of the approximation of a discounted cost-to-
go function associated with an uncontrolled Markov chain with an uncountable finite-
dimensional state-space. The results of this paper are a generalization and extension of
those presented in Tsitsiklis and Van Roy (1997). Moreover, they cover cases to which
the previous results on temporal-difference learning cannot be applied, while the adopted
assumptions seem to be the weakest possible under which the almost sure convergence can
be demonstrated.

The paper is organized as follows. In Section 2, temporal-difference learning algorithms
with linear function approximation are formally defined and the assumptions under which
their analysis is carried out are introduced. A detailed comparison of the adopted assump-
tions with those of Tsitsiklis and Van Roy (1997) (as well as with the assumptions used in
other papers related to the asymptotic behavior of temporal-difference learning algorithms)
is also given in Section 2. The main results are presented in Section 3, where the almost sure
convergence of temporal-difference learning algorithms with linear function approximation
is established and an upper bound for their asymptotic approximation error is determined. In
Section 4, these results are illustrated by an example related to the queueing theory and not
covered by the previous results on temporal-difference learning. Subsidiary results which
are of crucial importance for obtaining the main ones are provided in Appendix.

2. Algorithm and assumptions

Temporal-difference learning algorithms with linear function approximation are defined by
the following difference equations:

θn+1 = θn + γn+1δn+1εn+1, n ≥ 0, (1)

δn+1 = g(Xn, Xn+1)+ αθT
n φ(Xn+1)− θT

n φ(Xn), n ≥ 0, (2)

εn+1 =
n∑

i=0

(αλ)n−iφ(Xi ), n ≥ 0. (3)
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{γn}n≥1 is a sequence of positive reals, whileα ∈ (0, 1), λ ∈ [0, 1] are constants.φ : Rd′ →
Rd and g : Rd′ × Rd′ → R are Borel-measurable functions.θ0 is an Rd-valued ran-
dom variable defined on a probability space(Ä,F,P), while {Xn}n≥0 is an Rd′ -valued
homogeneous Markov chain defined on the same probability space. In the case of temporal-
difference learning algorithms with general, non-linear function approximation, the Eqs. (2)
and (3) are replaced by the following ones:

δn+1 = g(Xn, Xn+1)+ α f (θn, Xn+1)− f (θn, Xn), n ≥ 0,
(4)

εn+1 =
n∑

i=0

(αλ)n−i∇θ f (θi , Xi ), n ≥ 0,

where f : Rd × Rd′ → R is a Borel-measurable function which is differentiable in the first
argument. In order to get a practically implementable algorithm, (4) should be rewritten in
the following way:

εn+1 = αλεn +∇θ f (θn, Xn), n ≥ 0,

whereε0 = 0. Let

f∗(x) = E

( ∞∑
n=0

αng(Xn, Xn+1)

∣∣∣∣∣X0 = x

)
, x ∈ Rd′

(provided that f∗(·) is well-defined and finite). In the context of dynamic programming,
f∗(·) is interpreted as a discounted cost-to-go function associated with the Markov chain
{Xn}n≥0 (for details see e.g., Bertsekas, 1976). The task of the algorithm (1)–(3) is to
approximate the functionf∗(·). It determines the optimal valueθ∗ of the approximator
parameterθ ∈ Rd such thatθT

∗ φ(·) (i.e., f (θ∗, ·) in the case of non-linear approximation)
is the best approximator off∗(·) among{θTφ(·)}θ∈Rd (i.e., among{ f (θ, ·)}θ∈Rd in the case
of non-linear approximation). Ifλ = 1 and if{Xn}n≥0 has a unique invariant measureµ(·),
the algorithm (1)–(3) determinesθ∗ ∈ Rd such thatθT

∗ φ(·) approximatesf∗(·) optimally
in the L2(µ)-sense, i.e., it looks for the minimum of the functionJ∗(θ) =

∫
(θTφ(x) −

f∗(x))2µ(dx), θ ∈ Rd (see Theorems 1 and 2).
Throughout the paper, the following notation is used.R+ andR+0 are the sets of positive

and non-negative reals (respectively).‖·‖ denotes both the Euclidean vector norm and
the matrix norm induced by the Euclidean vector norm (i.e.,‖A‖ = sup‖θ‖=1 ‖Aθ‖ for
A ∈ Rd×d). P(x, ·), x ∈ Rd′ , is the transition probability of{Xn}n≥0 (i.e., P(Xn+1 ∈
B | Xn) = P(Xn, B) w.p.1,∀B ∈ Bd′ , n ≥ 0), while

g̃(x) =
∫

g(x, x′)P(x, dx′), x ∈ Rd′
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(provided thatg̃(·) is well-defined and finite). Forx ∈ Rd′ and B ∈ Bd′ , let P0(x, B) =
I B(x) (I B(·) stands for the indicator function ofB) and

Pn+1(x, B) =
∫

P(x′, B)Pn(x, dx′), n ≥ 0.

For t ∈ R+, let η(n, t) = sup{ j ≥ n :
∑ j−1

i=n γi+1 ≤ t}, n ≥ 0.
In this paper, the algorithm (1)–(3) is analyzed under the following assumptions:

A1. {nγn}n≥1 converges and 0< limn→∞ nγn <∞.
A2. {Xn}n≥0 has a unique invariant probability measureµ(·).
A3. There exists a Borel-measurable functionψ : Rd′ → R+0 such that

‖φ(x)‖ ≤ ψ(x), ∀x ∈ Rd′ , (5)∫
g2(x, x′)P(x, dx′) ≤ ψ2(x), ∀x ∈ Rd′ ,

∞∑
n=0

αn(Pnψ
2)(x) <∞, ∀x ∈ Rd′ , (6)∫

ψ2(x)µ(dx) <∞, (7)

where(Pnψ
2)(x) = ∫ ψ2(x′)Pn(x, dx′).

A4.

lim
n→∞n−1

n−1∑
i=0

g2(Xi , Xi+1) <∞ w.p.1, (8)

lim
n→∞n−1

n−1∑
i=0

φ(Xi )g(Xi+ j , Xi+ j+1) =
∫
φ(x)(Pj g̃)(x)µ(dx) w.p.1, j ≥ 0,

(9)

lim
n→∞n−1

n−1∑
i=0

φ(Xi )φ
T (Xi+ j ) =

∫
φ(x)(Pjφ

T )(x)µ(dx) w.p.1, j ≥ 0,

(10)

where(Pj g̃)(x) =
∫

g̃(x′)Pj (x, dx′) and(Pjφ
T )(x) = ∫ φT (x′)Pj (x, dx′).

A5.
∫
φ(x)φT (x)µ(dx) is positive definite.

Remark. Due to the Jensen inequality and A3,∫
|g(x, x′)|P(x, dx′) ≤ ψ(x), ∀x ∈ Rd′ ,∫ ∫

g2(x, x′)P(x, dx′)µ(dx) ≤
∫
ψ2(x)µ(dx) <∞, (11)
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Consequently,̃g(·) is well-defined and finite, as well as

|g̃(x)| ≤ ψ(x), ∀x ∈ Rd′ . (12)

Then, A3, implies∫
‖φ(x)(Png̃)(x)‖µ(dx) ≤

∫
ψ(x)(Pnψ)(x)µ(dx)

≤
(∫

ψ2(x)µ(dx)

)1/2(∫
(Pnψ

2)(x)µ(dx)

)1/2

=
∫
ψ2(x)µ(dx) <∞, n ≥ 0, (13)∫

‖φ(x)(Pnφ
T )(x)‖µ(dx) ≤

∫
ψ(x)(Pnψ)(x)µ(dx)

≤
(∫

ψ2(x)µ(dx)

)1/2(∫
(Pnψ

2)(x)µ(dx)

)1/2

=
∫
ψ2(x)µ(dx) <∞, n ≥ 0. (14)

Therefore,
∫
φ(x)φT (x)µ(dx) and the right-hand sides of (9) and (10) are well-defined and

finite.

Assumption A1 is satisfied ifγn = n−1, n ≥ 1, which is a typical choice for the stepsize
of stochastic approximation algorithms (see e.g., Ljung, Pflug, & Walk, 1992). It implies
thatη(n, t), n ≥ 0, are well-defined and finite for allt ∈ R+, as well as that

η(n,t)−1∑
i=n

γi+1 ≤ t <
η(n,t)∑
i=n

γi+1; ∀t ∈ R+, n ≥ 0, (15)

lim
n→∞

η(n,t)∑
i=n

γi+1 = t, ∀t ∈ R+. (16)

Assumption A2 requires{Xn}n≥0 to exhibit an asymptotic stationarity. It is satisfied if
{Xn}n≥0 is positive Harris (see e.g., Meyn & Tweedie, 1993, Chapter 10). Assumptions
of this type are standard for the analyses of temporal-difference learning algorithms, as
well as in the analyses of stochastic approximation algorithms operating in a Markovian
environment (see Benvensite, Metivier, & Priouret, 1990, Part II; Bertsekas & Tsitsiklis,
1996 and references cited therein).

Assumption A3 corresponds to the growth rate ofg(·, ·) andφ(·). It requires them not to
grow too fast so that their upper boundψ(·) satisfies (6) and (7). The role of A3 is to ensure
that f∗(·), A andb (introduced in (20) and (21)) are well-defined and finite. Assumption A3
is satisfied ifg(·, ·) andφ(·) are globally bounded or ifg(·, ·) andφ(·) are locally bounded
and there exists a constantK ∈ R+ such that‖Xn‖ ≤ K w.p.1,n ≥ 0. It is important to
notice that A3 allows{(Pnψ

2)(x)}n≥0 to grow exponentially asn→∞ for anyx ∈ Rd′ .
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Assumption A4 requires{Xn}n≥0 to exhibit certain “degree of stability”. The role of
A4 is to provide that{An}n≥1 and{bn}n≥1 (defined in (18) and (19)) converge toA andb,
respectively. As A3 implies (11), (13) and (14), it can easily be deduced from Lemma 9
(given in Appendix) that (9), (10) and

lim
n→∞n−1

n−1∑
i=0

g2(Xi , Xi+1) =
∫ ∫

g2(x, x′)P(x, dx′)µ(dx) <∞ w.p.1

are satisfied if A3 holds and if{Xn}n≥0 is positive Harris (for the definition and further
details see e.g., Meyn and Tweedie, 1993). It should be emphasized that A4 represents one
of the weakest sample-path properties related to the stability of{Xn}n≥0.

Assumption A5 is a “persistency of excitation” condition. These conditions are typi-
cal for the areas of system identification, adaptive control and adaptive signal processing
(see e.g., Chen & Guo, 1991; Solo & Kong, 1995). Assumption A5 requires{φ(Xn)}n≥0

to be sufficiently rich with respect to all directions inRd at the asymptotic steady-state
characterized by the invariant measureµ(·), i.e., it demands thatµ(x : θTφ(x) 6= 0) = 1,
∀θ ∈ Rd. If {Xn}n≥0 has a finite state-space{x1, . . . , xm}, A5 is implied by the requirement
thatµ(x = xi ) > 0, 1 ≤ i ≤ m, and that [φ(x1) · · ·φ(xm)] is a full row-rank matrix.
Without A5, only the almost sure convergence of{5θn}n≥0 could be demonstrated, where
5 is the projection operator onto the space spanned by the rows of

∫
φ(x)φT (x)µ(dx).

The asymptotic properties of temporal-difference learning algorithms have been consid-
ered in several papers (Dayan 1992; Dayan & Sejnowski, 1994; Jaakola, Jordan, & Singh,
1994; Sutton, 1988; Tsitsiklis & Van Roy, 1997; see also Bertsekas & Tsitsiklis, 1996; Sut-
ton & Barto, 1998 and references cited therein). Among these papers, Tsitsiklis and Van Roy
(1997) contains probably the strongest results. The results of this paper are a generalization
and extension of those presented in Tsitsiklis and Van Roy (1997). Due to the fact that
{Xn}n≥0 is positive Harris if it is irreducible, aperiodic and positive and if its state-space is
countable, Lemma 9 (given in Appendix) directly implies that A2–A5 are just a special case
of Assumptions 1–3 adopted in Tsitsiklis and Van Roy (1997). It is particularly important
to emphasize that Assumption 4 of Tsitsiklis and Van Roy (1997) is not necessary that A2–
A5 hold. In other words, using the results of this paper, the convergence of the algorithm
(1)–(3) can be shown under only Assumptions 1–3 of Tsitsiklis and Van Roy (1997) (note
that this is possibly only if the state-space of{Xn}n≥0 is countable; otherwise, irreducibility,
aperiodicity and positiveness are not sufficient for the positive Harris recurrence). On the
other hand, Assumption 4 is the most restrictive among the assumptions adopted in Tsitsik-
lis and Van Roy (1997). It practically covers only the case where{Xn}n≥0 is geometrically
ergodic and implies that there exist a constantC ∈ R+ and a Borel-measurable function
ψ : Rd′ → R+0 such that (5) and the following relation hold:

(Pnψ
p)(x) ≤ Cψ p(x); ∀x ∈ Rd′ , ∀p ∈ [1,∞), n ≥ 0. (17)

However, this is too restrictive for applications such as the prediction and approximation of a
cost-to-go function associated with Markov chains appearing in the areas of queueing theory
and time-series analysis (note that (17) implies|||Pn(x, ·)|||ψ p ≤ C,∀p ∈ [1,∞), n ≥ 0, and
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that typically|||Pn(x, ·)|||ψ p →∞asn→∞ in the cases where{Xn}n≥0 is not geometrically
ergodic; for the definition of|||·|||ψ p see e.g., Meyn and Tweedie, 1993). As opposed to
Tsitsiklis and Van Roy (1997), the assumptions of this paper require{Xn}n≥0 only to satisfy
certain laws of large numbers, allow{(Pnψ

2)(x)}n≥0 to grow exponentially asn→∞ for
any x ∈ Rd′ and cover the case where{Xn}n≥0 is positive Harris (note that laws of large
numbers are probably the weakest sample-path properties related to the stability of Markov
chains; also note that{Xn}n≥0 is geometrically ergodic if and only if{Xn}n≥0 is positive
Harris and if there exists a constantρ ∈ (1,∞) such that

∑∞
n=0 ρ

n‖(Pn − µ)(x, ·)‖ <∞,
∀x ∈ Rd′ , where‖·‖ denotes the total variation of a signed measure; for further details see
e.g., Meyn and Tweedie, 1993). Due to this, A1–A5 cover a broader class of Markov chains
of practical interest than the previous results on temporal-difference learning. The area of
queueing theory is particularly rich in the examples of Markov chains satisfying A1–A5
and not being covered by the assumptions under which the previous results on temporal-
difference learning have been obtained. Such an example related to the waiting times of
GI/G/1 queue is provided in Section 4, while Dai (1995) gives directions how A1–A5 can
be verified in the context of queueing networks.

Besides the fact that A1–A5 are more general than those of Tsitsiklis and Van Roy (1997)
and include cases not covered by the results presented therein, they seem to be the weakest
conditions under which the almost sure convergence of the algorithm (1)–(3) is still possible
to be shown. The rationale for this comes out from the fact that stochastic approximation
algorithms in general converge if and only if their noise satisfies a law of large numbers (see
Clark, 1984; Kulkarni & Horn, 1996; Wang, Chong, & Kulkarni, 1996. See also the note
at the end of the paper) and from the fact that (8)–(10) themselves express laws of large
numbers for functionals of{Xn}n≥0. It is also important to emphasize the methodological
differences between the analyses carried out in Tsitsiklis and Van Roy (1997) and here.
The results presented in Tsitsiklis and Van Roy (1997) (as well as in other papers related
to the convergence of temporal-difference learning) have been obtained by using the gen-
eral approach to the asymptotic analysis of stochastic approximation algorithms based on
martingale convergence arguments and the Poisson equation (for details see Benvensite,
Metivier, & Priouret, 1990, Part II). However, A1–A5 do not guarantee that there exist
unique Borel-measurable functionsU : Rd+2d′ → Rd×d andv : Rd+2d′ → Rd satisfying
the following Poisson equations:

U (z)−
∫

U (z′)5(z, dz′) = A(z)− A, ∀z ∈ Rd+2d′ ,

v(z)−
∫
v(z′)5(z, dz′) = b(z)− b, ∀z ∈ Rd+2d′ ,

where

5(z, B) =
∫

I B(x
′, x′′, αλy+ φ(x′))P(x′, dx′′),

A(z) = y(αφ(x′)− φ(x)),
b(z) = yg(x, x′),
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for B ∈ Bd+2d′ , x, x′ ∈ Rd′ , y ∈ Rd and z = (x, x′, y) (I B(·) denotes the indicator
function of B), while A andb are defined in (20) and (21) (given in Section 3). As this is
of a crucial importance for the analysis carried out in Tsitsiklis and Van Roy (1997), the
approach used therein is completely inapplicable to the asymptotic analysis of temporal-
difference learning algorithms under the assumptions A1–A5. Instead, the algorithm (1)–(3)
is analyzed in this paper by using the approach which is based on the ideas standing behind
the results presented in Tadi´c (1997) and which is closer to the ODE methodology (see e.g.,
Kushner & Clark, 1978).

3. Convergence analysis

The main results are presented in this section. These results are contained in Theorems 1
and 2. In Theorem 1, the almost sure convergence of the algorithm (1)–(3) is demonstrated.
In Theorem 2, an interpretation of the algorithm limit is provided and an upper bound for
the asymptotic approximation error is determined in terms ofα, λ and the error of the
L2(µ)-optimal linear approximation off∗(·). Lemmas 1–5, as well as Lemmas 7–9 (given
in Appendix) are prerequisites for Theorems 1 and 2.

Throughout this section, the following notation is used. Let

An+1 =
n∑

i=0

(αλ)n−iφ(Xi )(αφ(Xn+1)− φ(Xn))
T , n ≥ 0, (18)

bn+1 =
n∑

i=0

(αλ)n−iφ(Xi )g(Xn, Xn+1), n ≥ 0, (19)

A = −
∫
φ(x)φT (x)µ(dx)+ α(1− λ)

∞∑
n=0

(αλ)n
∫
φ(x)(Pn+1φ

T )(x)µ(dx),

(20)

b =
∞∑

n=0

(αλ)n
∫
φ(x)(Png̃)(x)µ(dx), (21)

while θ∗ = −A−1b (provided thatA, b and θ∗ are well-defined and finite). Then, the
algorithm (1)–(3) can be rewritten as follows:

θn+1 = θn + γn+1(An+1θn + bn+1), n ≥ 0. (22)

Let ϑn = θn − θ∗, Unn = I andVnn = 0, n ≥ 0, while

Unj = (I + γ j Aj ) · · · (I + γn+1An+1), 0≤ n < j,

Vnj =
j∑

i=n+1

Ui j γi (Ai θ∗ + bi ), 0≤ n < j,

en(t) = 2ϑT
n

(
Un,η(n,t) − I − t A

)
ϑn + ϑT

n Un,η(n,t)Vn,η(n,t)

+ ∥∥(Un,η(n,t) − I )ϑn

∥∥2; t ∈ R+, n ≥ 0
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(I denotes thed × d unit matrix). Then, it is straightforward to verify that

ϑ j = Unjϑn + Vnj , 0≤ n ≤ j, (23)∥∥ϑη(n,t)∥∥2 = ‖ϑn‖2+ 2tϑT
n Aϑn + en(t); ∀t ∈ R+, n ≥ 0. (24)

In the next lemma, it is shown thatA, b andθ∗ are well-defined and finite. The proof is
based on similar ideas as the corresponding result of Tsitsiklis and Van Roy (1997).

Lemma 1. Let A2, A3 and A5 hold. Then, f∗(·), A, b andθ∗ are well-defined and finite.
Moreover, A is negative definite and

f∗(x) =
∞∑

n=0

αn(Png̃)(x), ∀x ∈ Rd′ . (25)

Proof: Due to (12)–(14),

|(Png̃)(x)| ≤ (Pnψ)(x) ≤ 1+ (Pnψ
2)(x); ∀x ∈ Rd′ , n ≥ 0,

E(|g(Xn, Xn+1)| | X0 = x) =
∫ ∫
|g(x′, x′′)|P(x′, dx′′)Pn(x, dx′)

≤ (Pnψ)(x) ≤ 1+ (Pnψ
2)(x) <∞; ∀x ∈ Rd′ , n ≥ 0,

∞∑
n=0

(αλ)n
∫
‖φ(x)(Pn+1φ

T )(x)‖µ(dx) ≤ (1− αλ)−1
∫
ψ2(x)µ(dx) <∞,

∞∑
n=0

(αλ)n
∫
‖φ(x)(Png̃)(x)‖µ(dx) ≤ (1− αλ)−1

∫
ψ2(x)µ(dx) <∞.

Consequently,

E(g(Xn, Xn+1) | X0 = x) =
∫ ∫

g(x′, x′′)P(x′, dx′′)Pn(x, dx′)

= (Png̃)(x); ∀x ∈ Rd′ , n ≥ 0,
∞∑

n=0

αn|(Png̃)(x)| ≤ (1− α)−1+
∞∑

n=0

αn(Pnψ
2)(x) <∞, ∀x ∈ Rd′ .

Then, it is obvious thatf∗(·), A andb are well-defined and finite, as well as that (25) holds.
On the other hand, owing to the Jensen inequality,∫

(θT (Pnφ)(x))
2µ(dx) ≤

∫ ∫
(θTφ(x′))2Pn(x, dx′)µ(dx)

=
∫
(θTφ(x))2µ(dx); ∀θ ∈ Rd, n ≥ 0.
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Therefore,∣∣∣∣ ∫ θTφ(x)(Pnφ
T )(x)θµ(dx)

∣∣∣∣ ≤ (∫ (θTφ(x))2µ(dx)

)1/2

×
(∫

(θT (Pnφ)(x))
2µ(dx)

)1/2

≤
∫
(θTφ(x))2µ(dx); ∀θ ∈ Rd, n ≥ 0.

Consequently,

θT Aθ = −
∫
(θTφ(x))2µ(dx)+ α(1− λ)

∞∑
n=0

(αλ)n
∫
θTφ(x)(Pn+1φ

T )(x)θµ(dx)

≤ −
(

1− α(1− λ)
∞∑

n=0

(αλ)n

)∫
(θTφ(x))2µ(dx)

= −(1− α)(1− αλ)−1θT

(∫
φ(x)φT (x)µ(dx)

)
θ, ∀θ ∈ Rd.

Then, it is obvious thatA is negative definite, as well as thatθ∗ is well-defined and
finite. 2

In the next lemma, it is demonstrated that{An}n≥1 and{bn}n≥1 satisfy the law of large
numbers. The proof is essentially based on Lemmas 8 and 9 (given in Appendix). Among
the prerequisites of Theorem 1, the results presented in Lemma 2 are probably the most
important.

Lemma 2. Let A1–A4 hold. Then,

lim
n→∞n−1

n∑
i=1

Ai = A w.p.1, (26)

lim
n→∞n−1

n∑
i=1

bi = b w.p.1. (27)

Moreover, there exist non-negative random variables K′ and K′′ defined on(Ä,F,P) such
that

lim
n→∞n−1

n−1∑
i=0

i∑
j=0

(αλ)i− j ‖φ(Xi )‖‖φ(X j )‖= K ′ w.p.1, (28)

lim
n→∞n−1

n−1∑
i=0

i+1∑
j=0

(αλ)i− j ‖φ(Xi+1)‖‖φ(X j )‖= K ′′ w.p.1. (29)
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Proof: Due to A3, A4 and Lemma 8,

lim
n→∞n−1

n−1∑
i=0

‖φ(Xi )‖2

=
∫
‖φ(x)‖2µ(dx) ≤

∫
ψ2(x)µ(dx) <∞ w.p.1, (30)

lim
n→∞n−1

n−1∑
i=0

i∑
j=0

(αλ)i− jφ(X j )g(Xi , Xi+1)

=
∞∑

n=0

(αλ)n
∫
φ(x)(Png̃)(x)µ(dx) w.p.1,

lim
n→∞n−1

n−1∑
i=0

i∑
j=0

(αλ)i− jφ(X j )φ
T (Xi )

=
∞∑

n=0

(αλ)n
∫
φ(x)(Pnφ

T )(x)µ(dx) w.p.1,

lim
n→∞n−1

n−1∑
i=0

i∑
j=0

(αλ)i− jφ(X j )φ
T (Xi+1)

=
∞∑

n=0

(αλ)n
∫
φ(x)(Pn+1φ

T )(x)µ(dx) w.p.1

(in order to get (30), setj = 0 in (10)), wherefrom (26) and (27) follow. On the other hand,
Lemma 8 and (30) imply that there exists a non-negative random variableK ′ such that (28)
holds. LetK ′′ = (αλ)−1K ′. Then, it can easily be deduced that (29) holds, too. 2

The asymptotic properties of{Unj }0≤n≤ j and{Vnj }0≤n≤ j are dealt with in the next lemma.
The proof is essentially based on the results of Lemma 2.

Lemma 3. Let A1–A4 hold. Then, there exist N0 ∈ F and a positive random variable L
defined on(Ä,F,P) such thatP(N0) = 0 and such that the following relations hold on
Nc

0:

lim
n→∞ sup

n≤ j≤η(n,t)
‖Unj − I ‖≤ Lt, ∀t ∈ (0, 1), (31)

lim
n→∞‖Un,η(n,t) − I − t A‖≤ Lt2, ∀t ∈ (0, 1), (32)

lim
n→∞ sup

n≤ j≤η(n,t)
‖Vnj‖=0, ∀t ∈ (0, 1). (33)

Proof: Let K = K ′ + K ′′ (K ′ andK ′′ are defined in the statement of Lemma 2). Due to
Lemmas 2 and 7, there existsN0 ∈ F such thatP(N0) = 0 and such that the following
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relations hold onNc
0:

lim
n→∞ sup

n≤ j≤η(n,t)

∥∥∥∥∥ j∑
i=n

γi+1(Ai+1− A)

∥∥∥∥∥= 0, ∀t ∈ R+, (34)

lim
n→∞ sup

n≤ j≤η(n,t)

∥∥∥∥∥ j∑
i=n

γi+1(bi+1− b)

∥∥∥∥∥= 0, ∀t ∈ R+, (35)

lim
n→∞

η(n,t)∑
i=n

γi+1

i∑
j=0

(αλ)i− j ‖φ(Xi )‖‖φ(X j )‖≤ K ′t, ∀t ∈ R+, (36)

lim
n→∞

η(n,t)∑
i=n

γi+1

i+1∑
j=0

(αλ)i− j ‖φ(Xi+1)‖‖φ(X j )‖≤ K ′′t, ∀t ∈ R+. (37)

Since

‖An+1‖ ≤
n∑

i=0

(αλ)n−i ‖φ(Xn)‖‖φ(Xi )‖ +
n+1∑
i=0

(αλ)n−i ‖φ(Xn+1)‖‖φ(Xi )‖, n ≥ 0,

it follows from (36) and (37) that the following relation also holds onNc
0:

lim
n→∞

η(n,t)∑
i=n

γi+1‖Ai+1‖ ≤ Kt, ∀t ∈ R+. (38)

Let L = ‖A‖+K 2 exp(K ). Letω be an arbitrary sample fromNc
0 (for the sake of notational

simplicity,ω does not explicitly appear in the relations and expressions which follow in the
proof). It is straightforward to verify that

Unj = I +
j−n∑
i=1

∑
n<m1<···<mi≤ j

γmi Ami · · · γm1 Am1, 0≤ n ≤ j,

Vnj =
j−1∑

i=n+1

Ui+1, j γi+1Ai+1

i−1∑
k=n

γk+1(Ak+1θ∗ + bk+1)

+
j−1∑
i=n

γi+1(Ai+1θ∗ + bi+1), 0≤ n ≤ j,

j∏
i=n+1

(1+ γi ‖Ai ‖)= 1+
j−n∑
i=1

∑
n<m1<···<mi≤ j

γm1

∥∥Am1

∥∥ · · · γmi

∥∥Ami

∥∥, 0≤ n ≤ j .

Consequently,∥∥∥∥∥Unj − I −
j−1∑
i=n

γi+1Ai+1

∥∥∥∥∥≤ j−n∑
i=2

∑
n<m1<···<mi≤ j

γm1

∥∥Am1

∥∥ · · · γmi

∥∥Ami

∥∥
≤
η(n,t)−n+1∑

i=2

∑
n<m1<···<mi≤η(n,t)+1

γm1

∥∥Am1

∥∥ · · · γmi

∥∥Ami

∥∥
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=
η(n,t)+1∏
i=n+1

(1+ γi ‖Ai ‖)− 1−
η(n,t)∑
i=n

γi+1‖Ai+1‖

≤
(

1+ (η(n, t)− n+ 1)−1
η(n,t)∑
i=n

γi+1‖Ai+1‖
)η(n,t)−n+1

− 1−
η(n,t)∑
i=n

γi+1‖Ai+1‖; ∀t ∈ R+,

0≤ n ≤ j ≤ η(n, t),

‖Vnj‖≤
(

1+ sup
n≤k≤l≤η(n,t)

‖Ukl‖
η(n,t)∑
i=n

γi+1‖Ai+1‖
)

· sup
n≤k≤η(n,t)

∥∥∥∥∥ k∑
i=n

γi+1(Ai+1θ∗ + bi+1)

∥∥∥∥∥; ∀t ∈ R+, 0≤ n ≤ j ≤ η(n, t).

(39)

Therefore and owing to (38),

lim
n→∞ sup

n≤ j≤η(n,t)

∥∥∥∥∥Unj − I −
j−1∑
i=n

γi+1Ai+1

∥∥∥∥∥ ≤ f (Kt), ∀t ∈ R+, (40)

where f (t) = exp(t) − t − 1, t ∈ R (note that limn→∞(η(n, t) − n) = ∞, ∀t ∈ R+, and
that f (·) is increasing onR+0 ). On the other hand,∥∥∥∥∥ j∑

i=n

γi+1(Ai+1θ∗ + bi+1)

∥∥∥∥∥≤
∥∥∥∥∥ j∑

i=n

γi+1(Ai+1− A)

∥∥∥∥∥‖θ∗‖
+
∥∥∥∥∥ j∑

i=n

γi+1(bi+1− b)

∥∥∥∥∥, 0≤ n ≤ j,

‖Unj − I ‖≤ sup
n≤ j≤η(n,t)

∥∥∥∥∥Unj − I −
j−1∑
i=n

γi+1Ai+1

∥∥∥∥∥
+ sup

n≤ j≤η(n,t)

∥∥∥∥∥ j∑
i=n

γi+1(Ai+1− A)

∥∥∥∥∥+ t‖A‖;

∀t ∈ R+, 0≤ n ≤ j ≤ η(n, t), (41)

‖Ui j ‖≤1+ sup
n≤k≤l≤η(k,t)

‖Ukl − I ‖; ∀t ∈ R+,

0≤ n ≤ i ≤ j ≤ η(n, t), (42)



254 V. TADI Ć

‖Un,η(n,t) − I − t A‖≤
∥∥∥∥∥Un,η(n,t) − I −

η(n,t)−1∑
i=n

γi+1Ai+1

∥∥∥∥∥
+
∥∥∥∥∥ η(n,t)−1∑

i=n

γi+1(Ai+1− A)

∥∥∥∥∥
+‖A‖

(
t −

η(n,t)−1∑
i=n

γi+1

)
; ∀t ∈ R+, n ≥ 0 (43)

(for obtaining (41) use (15)). Due to (16) and (40)–(43),

lim
n→∞ sup

n≤ j≤η(n,t)

∥∥∥∥∥ j∑
i=n

γi+1(Ai+1θ∗ + bi+1)

∥∥∥∥∥= 0, ∀t ∈ R+, (44)

lim
n→∞ sup

n≤ j≤η(n,t)
‖Unj − I ‖≤ ‖A‖t + f (Kt), ∀t ∈ R+, (45)

lim
n→∞ sup

n≤i≤ j≤η(n,t)
‖Ui j ‖<∞, ∀t ∈ R+, (46)

lim
n→∞‖Un,η(n,t) − I − t A‖≤ f (Kt), ∀t ∈ R+. (47)

Since f (Kt) ≤ K 2t2 exp(Kt), ∀t ∈ R+, it can easily be deduced from (38), (39) and
((44)–(47) that (31)–(33) hold. This completes the proof. 2

The almost sure boundedness of{ϑn}n≥ is shown in the next lemma. The proof essentially
relies on the results of Lemma 3.

Lemma 4. Let A1–A5hold. Then, sup0≤n ‖ϑn‖ <∞ on Nc
0 (N0 is defined in the statement

of Lemma3).

Proof: Let λmin andλmax be the minimal and maximal eigenvalue of−A (respectively).
Let ω be an arbitrary sample fromNc

0 (for the sake of notational simplicity,ω does not
explicitly appear in the relations and expressions which follow in the proof). Letτ =
min{1, λ−1

max, 4
−1L−1λmin} (L is defined in the statement of Lemma 3) andρ = 1−2−1λminτ .

Obviously, 0< ρ < 1, while Lemma 3 implies that there existsK ∈ R+ (depending onω)
such that

sup
n≤ j≤η(n,t)

max{‖Unj‖, ‖Vnj‖} ≤ K , n ≥ 0. (48)

Let n0 = 0 andnk+1 = η(nk, τ ), k ≥ 0. Due to Lemma 3, there existsk0 ≥ 0 (depending
onω) such that∥∥Unk,nk+1 − I − τ A

∥∥ ≤ 2Lτ 2, k ≥ k0. (49)
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Since A is negative definite (due to Lemma 1) andτλmax < 1, I + τ A is non-negative
definite. Consequently,‖I + τ A‖ = 1− λminτ . Therefore and owing to (49),∥∥Unk,nk+1

∥∥ ≤ ∥∥Unk,nk+1 − I − τ A
∥∥+ ‖I + τ A‖ ≤ ρ, k ≥ k0

(note that 1− λminτ + 2Lτ 2 ≤ ρ). Then, (23) and (48) yield∥∥ϑnk+1

∥∥ ≤ ρ∥∥ϑnk

∥∥+ K , k ≥ 0,

wherefrom sup0≤k ‖ϑnk‖ <∞ follows. As

‖ϑ j ‖ ≤ K
∥∥ϑnk

∥∥+ K ; nk ≤ j ≤ nk+1, k ≥ 0

(due to (23) and (48)), it is obvious that sup0≤n ‖ϑn‖ <∞. This completes the proof. 2

In the next lemma, the asymptotic behavior of{ϑ j − ϑn}0≤n≤ j and {en(t)}n≥0,
t ∈ R+, is dealt with. The proof is based on the results of Lemmas 3 and 4.

Lemma 5. Let A1–A5 hold. Then, there exists a positive random variable M defined on
(Ä,F,P) such that the following relations hold on Nc

0 (N0 is defined in the statement of
Lemma3):

lim
n→∞‖ϑn+1− ϑn‖=0, (50)

lim
n→∞ sup

n≤ j≤η(n,t)
‖ϑ j − ϑn‖≤Mt, ∀t ∈ (0, 1), (51)

lim
n→∞‖en(t)‖≤Mt2, ∀t ∈ (0, 1). (52)

Proof: Due to Lemma 4, there exists a non-negative random variableK defined on
(Ä,F,P) such that‖ϑn‖ ≤ K , n ≥ 0, onNc

0. Since

‖ϑ j − ϑn‖≤ K‖Unj − I ‖ + ‖Vnj‖, 0≤ n ≤ j,

|en(t)| ≤2K 2
∥∥Un,η(n,t) − I − t A

∥∥+ K 2
∥∥Un,η(n,t) − I

∥∥2

+ K
∥∥Un,η(n,t)

∥∥∥∥Vn,η(n,t)

∥∥; ∀t ∈ (0, 1), n ≥ 0,

onNc
0 (due to (23)), Lemma 3 implies that (50)–(52) holdNc

0 (note that sup0≤n ‖Un,η(n,t)‖ <
∞, ∀t ∈ (0, 1), on Nc

0). 2

The almost sure convergence of the algorithm (1)–(3) is demonstrated in the next theorem.
The proof is based on the similar ideas as the results of Tadi´c (1997).

Theorem 1. Let A1–A2 hold. Then, limn→∞ θn = θ∗ w.p.1.
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Proof: Obviously, it is sufficient to show that limn→∞ ϑn = 0 onNc
0 (N0 is defined in the

statement of Lemma 3). Letλmin andλmax be the minimal and maximal eigenvalue of−A
(respectively). Letω be an arbitrary sample fromNc

0 (for the sake of notational simplicity,
ω does not explicitly appear in the relations and expressions which follow in the proof).

SinceϑT
n Aϑn ≤ −λmin‖ϑn‖2, n ≥ 0, (24) implies

∥∥ϑη(n,t)∥∥2 ≤ ‖ϑn‖2− 2λmint‖ϑn‖2+ en(t); ∀t ∈ R+, n ≥ 0. (53)

Now, let us show that limn→∞ ‖ϑn‖ = 0. Suppose the opposite. Then, there existδ ∈ R+

andn0 ≥ 0 (both depending onω) such that‖ϑn‖ ≥ δ, n ≥ n0. Therefore and owing to
(53), ∥∥ϑη(n,t)∥∥2 ≤ ‖ϑn‖2− 2λminδ

2t + en(t); ∀t ∈ R+, n ≥ n0. (54)

Due to Lemma 5 and (54),

lim
n→∞
‖ϑn‖2 ≤ lim

n→∞

∥∥ϑη(n,t)∥∥2 ≤ lim
n→∞
‖ϑn‖2− 2λminδ

2t + Mt2, ∀t ∈ (0, 1).

However, this is impossible, since−2λminδ
2t + Mt2 < 0,∀t ∈(0, 2λminδ

2M−1).
Now, let us suppose thatlimn→∞ ‖ϑn‖ > 0. Then, there existsε ∈ R+ (depending on

ω) such thatlimn→∞ ‖ϑn‖ > 2ε. Let m′′0 = inf{n ≥ 0 : ‖ϑn‖ ≤ ε}, while m′k = inf{n ≥
m′′k : ‖ϑn‖ ≥ 2ε}, mk = sup{n ≤ m′k : ‖ϑn‖ ≤ ε} andm′′k+1 = inf{n ≥ m′k : ‖ϑn‖ ≤ ε}, k ≥
0. Obviously,{mk}k≥0, {m′k}k≥0 and{m′′k}k≥0 are well-defined, as well asmk < m′k < mk+1,
k ≥ 0, and∥∥ϑmk

∥∥≤ ε, ∥∥ϑmk+1

∥∥ > ε,
∥∥ϑm′k

∥∥ ≥ 2ε; k ≥ 0,

‖ϑn‖≥ ε; mk < n ≤ m′k, k ≥ 0. (55)

Consequently,

ε≤ ∥∥ϑm′k

∥∥− ∥∥ϑmk

∥∥ ≤ ∥∥ϑm′k − ϑmk

∥∥, k ≥ 0,
(56)

0≤ ε − ∥∥ϑmk

∥∥ < ∥∥ϑmk+1

∥∥− ∥∥ϑmk

∥∥ ≤ ∥∥ϑmk+1− ϑmk

∥∥, k ≥ 0.

Therefore and owing to Lemma 5,

lim
k→∞

∥∥ϑmk

∥∥ = ε. (57)

Now, let us show that

τ ′ = lim
k→∞

m′k−1∑
i=mk

γi+1 > 0.
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Suppose the opposite. Then, there exists a subsequence{m̃k, m̃′k}k≥0 of {mk,m′k}k≥0 such
that

lim
k→∞

m̃′k−1∑
i=m̃k

γi+1 = 0.

Consequently, for allt ∈ (0, 1), there exists̃k0(t) ≥ 0 (also depending onω) such that

m̃′k−1∑
i=m̃k

γi+1 ≤ t, k ≥ k̃0(t). (58)

Therefore,m̃′k ≤ η(m̃k, t), ∀t ∈ (0, 1), k ≥ k̃0(t). Then, Lemma 5 and (56) imply

ε ≤ lim
k→∞

∥∥ϑm̃′k − ϑm̃k

∥∥ ≤ Mt, ∀t ∈ (0, 1).

However, this is impossible, since the limit processt → 0+ yieldsε ≤ 0. Hence,τ ′ > 0.
Let τ = min{1, 2−1τ ′}. Then, for allt ∈ (0, τ ), there existsk0(t) ≥ 0 (also depending

onω) such thatγmk+1 ≤ t , k ≥ k0(t), and

m′k−1∑
i=mk

γi+1 > t, k ≥ k0(t).

Therefore,mk < η(mk, t) ≤ m′k, ∀t ∈ (0, τ ), k ≥ k0(t), which, together with (55), implies∥∥ϑη(mk,t)

∥∥ ≥ ε; ∀t ∈ (0, τ ), k ≥ k0(t).

Then, Lemma 5, (54), and (57) yield

ε2 ≤ lim
k→∞

∥∥ϑη(mk,t)

∥∥2 ≤ ε2− 2λminε
2t + Mt2, ∀t ∈ (0, τ ).

However, this is impossible, since−2λminε
2t + Mt2 < 0, ∀t ∈ (0, 2λminε

2M−1). Hence,
limn→∞ ‖ϑn‖ = 0. This completes the proof. 2

An interpretation of the almost sure limitθ∗ of {θn}n≥0 is provided in the next theorem.
Namely, an upper bound for the error of the approximation off∗(·) by θT

∗ φ(·) is determined
in the terms ofα, λ and the error of theL2(µ)-optimal linear approximation off∗(·). The
proof is based on similar ideas as the corresponding result of Tsitsiklis and Van Roy (1997).

Theorem 2. Let A2, A3 and A5 hold. Then,∫
(θT
∗ φ(x)− f∗(x))2µ(dx)

≤ (1− α)−2(1− αλ)2 inf
θ∈Rd

∫
(θTφ(x)− f∗(x))2µ(dx). (59)
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Proof: Due to (12) and (14),

|(Png̃)(x)| ≤ (Pnψ)(x) ≤ 1+ (Pnψ
2)(x); ∀x ∈ Rd′ , n ≥ 0,

∞∑
n=0

(αλ)n
∫
‖φ(x)(Png̃)(x)‖µ(dx) ≤ (1− αλ)−1

∫
ψ2(x)µ(dx) <∞, (60)

∞∑
n=0

(αλ)n
∫
‖φ(x)(Pn+1φ

T )(x)‖µ(dx) ≤ (1− αλ)−1
∫
ψ2(x)µ(dx) <∞. (61)

Therefore and owing to Lemma 1,

| f∗(x)| ≤
∞∑

n=0

αn(Pnψ)(x), ∀x ∈ Rd′ ,

∞∑
n=0

αn
∫
|(Png̃)(x′)|Pj (x, dx′)

≤
∞∑

n=0

αn(1+ (Pn+ jψ
2))(x)

≤ (1− α)−1+ α− j
∞∑

n=0

αn(Pnψ
2)(x) <∞; ∀x ∈ Rd′ , j ≥ 0, (62)

∞∑
n=0

∞∑
i=1

αn+iλn|(Pn+i g̃)(x)|

≤
∞∑

n=0

∞∑
i=0

αn+iλn(1+ (Pn+iψ
2)(x))

≤ (1− α)−1(1− αλ)−1+ (1− λ)−1
∞∑

n=0

αn(Pnψ
2)(x) <∞, ∀x ∈ Rd′ , (63)∫

‖φ(x)(Pn f∗)(x)‖µ(dx)

≤
∞∑

i=0

αi
∫
ψ(x)(Pn+iψ)(x)µ(dx)

≤
∞∑

i=0

αi

(∫
ψ2(x)µ(dx)

)1/2(∫
(Pn+iψ

2)(x)µ(dx)

)1/2

= (1− α)−1
∫
ψ2(x)µ(dx) <∞, n ≥ 0. (64)

According to Lemma 1 and (62),

(Pn f∗)(x) =
∞∑

i=0

αi (Pn+i g̃)(x); ∀x ∈ Rd′ , n ≥ 0.
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Then, (63) yields

α(1− λ)
∞∑

n=0

(αλ)n(Pn+1 f∗)(x)

= (1− λ)
∞∑

n=0

∞∑
i=1

αn+iλn(Pn+i g̃)(x)

= (1− λ)
∞∑

n=0

αn(Png̃)(x)
n−1∑
i=0

λi

=
∞∑

n=1

αn(Png̃)(x)−
∞∑

n=1

(αλ)n(Png̃)(x)

= f∗(x)−
∞∑

n=0

(αλ)n(Png̃)(x), ∀x ∈ Rd′ . (65)

On the other hand, (60), (61), (64) and (65) imply

A = −
∫
φ(x)φT (x)µ(dx)+ α(1− λ)

∫
φ(x)

( ∞∑
n=0

(αλ)n(Pn+1φ
T )(x)

)
µ(dx),

(66)

b =
∫
φ(x)

( ∞∑
n=0

(αλ)n(Png̃)(x)

)
µ(dx)

= −α(1− λ)
∫
φ(x)

( ∞∑
n=0

(αλ)n(Pn+1 f∗)(x)

)
µ(dx)+

∫
φ(x) f∗(x)µ(dx).

(67)

SinceAθ∗ + b = 0, (66) and (67) yield(∫
φ(x)φT (x)µ(dx)

)
θ∗ =

∫
φ(x)( f∗(x)+ h(x))µ(dx),

where

h(x) = α(1− λ)
∞∑

n=0

(αλ)n(θT
∗ (Pn+1φ)(x)− (Pn+1 f∗)(x)), x ∈ Rd′.

Let

θ̃∗ =
(∫

φ(x)φT (x)µ(dx)

)−1 ∫
φ(x) f∗(x)µ(dx)
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(due to A5 and (64),̃θ∗ is well-defined and finite). Then, it is straightforward to verify
that

∫
(θ̃T
∗ φ(x)− f∗(x))2µ(dx) = inf

θ∈Rd

∫
(θTφ(x)− f∗(x))2µ(dx),

(68)(∫
φ(x)φT (x)µ(dx)

)
(θ∗ − θ̃∗) =

∫
φ(x)h(x)µ(dx).

Consequently,

∫
((θ∗ − θ̃∗)Tφ(x)− h(x))2µ(dx)

=
∫
((θ∗ − θ̃∗)Tφ(x))2µ(dx)+

∫
h2(x)µ(dx)− 2

∫
(θ∗ − θ̃∗)Tφ(x)h(x)µ(dx)

= −
∫
((θ∗ − θ̃∗)Tφ(x))2µ(dx)+

∫
h2(x)µ(dx). (69)

Since

∫
(θT
∗ (Pnφ)(x)− (Pn f∗)(x))2µ(dx) ≤

∫ ∫
(θT
∗ φ(x

′)− f∗(x′))2Pn(x, dx′)µ(dx)

=
∫
(θT
∗ φ(x)− f∗(x))2µ(dx), n ≥ 0

(due to the Jensen inequality), it follows from the Minkowski inequality that

(∫
h2(x)µ(dx)

)1/2

≤ α(1− λ)
∞∑

n=0

(αλ)n
(∫

(θT
∗ (Pn+1φ)(x)− (Pn+1 f∗)(x))2µ(dx)

)1/2

≤ α(1− λ)(1− αλ)−1

(∫
(θT
∗ φ(x)− f∗(x))2µ(dx)

)1/2

.

Then, (69) implies∫
((θ∗ − θ̃∗)Tφ(x))2µ(dx)≤

∫
h2(x)µ(dx) ≤ α2(1− λ)2(1− αλ)−2

×
∫
(θT
∗ φ(x)− f∗(x))2µ(dx).
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Therefore and owing to the Minkowski inequality,(∫
(θT
∗ φ(x)− f∗(x))2µ(dx)

)1/2

≤
(∫

((θ∗ − θ̃∗)Tφ(x))2µ(dx)

)1/2

+
(∫

(θ̃T
∗ φ(x)− f∗(x))2µ(dx)

)1/2

≤ α(1− λ)(1− αλ)−1

(∫
(θT
∗ φ(x)− f∗(x))2µ(dx)

)1/2

+
(∫

(θ̃T
∗ φ(x)− f∗(x))2µ(dx)

)1/2

.

Consequently,∫
(θT
∗ φ(x)− f∗(x))2µ(dx) ≤ (1− α)−2(1− αλ)2

∫
(θ̃T
∗ φ(x)− f∗(x))2µ(dx),

wherefrom (59) follows by (68). 2

4. Example

The purpose of this section is to illustrate the assumptions A1–A5 and to show that they can
be applied to Markov chains of practical interest which are not covered by Tsitsiklis and
Van Roy (1997). The example considered in this section is related to the queueing theory.

Let {Un}n≥1 and{Vn}n≥1 be i.i.d. R+-valued random processes defined on a probability
space(Ä,F,P), whileU andV areR+-valued random variables defined on the same prob-
ability space and having the same probability measures as{Un}n≥1 and{Vn}n≥1, respectively.
Let {Un}n≥1 and{Vn}n≥1 be mutually independent, whileX0 = 0 and

Xn+1 = (Xn +Un+1− Vn+1)+, n ≥ 0,

wheret+ = max{t, 0}, t ∈ R. Then, it can easily be deduced that{Xn}n≥0 is a homogeneous
Markov chain with the following transition probability:

P(x, B) = E
(
I B∩R+0 (x +U − V)

); x ∈ R, B ∈ B.

In the context of the queueing theory,Xn represents the waiting time of then-th cus-
tomer served in GI/G/1 queue with the first in – first out service discipline, whileUn+1 is
the service time of then-th customer andVn+1 is the interarrival time betweenn-th and
(n+ 1)-th customer (for details see e.g., Asmussen, 1987).

Lemma 6. Let E(U ) < E(V) and E(U2p+1) < ∞, where p∈ [1,∞) is a constant.
Then, {Xn}n≥0 is positive Harris with an invariant probability measureµ(·) satisfying
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∫
x2pµ(dx) <∞. Moreover, there exists a constant K∈ R+ such that

E
(
X2p

n

∣∣ X0 = x
) ≤ K (1+ x2p)n2p; ∀x ∈ R, n ≥ 0. (70)

Proof: Due to Asmussen (1987, Theorem XI.2.2),{Xn}n≥0 is positive Harris, while
Asmussen (1987, Theorem VIII.2.1) implies

∫
x2pµ(dx) <∞. Since

|Xn|2p≤
(
|X0| +

n∑
i=1

Ui

)2p

≤ 4pX2p
0 + 4p

(
n∑

i=1

Ui

)2p

, n ≥ 1,

E

(
n∑

i=1

Ui

)2p

≤ n2p−1
n∑

i=1

E
(
U2p

i

) = n2pE(U2p) <∞, n ≥ 1

(due to the Jensen inequality), it can easily be deduced that there exists a constantK ∈ R+

such that (70) 2

Theorem 3. Let E(U ) < E(V) and E(U2p+1) < ∞, where p∈ [1,∞) is a constant.
Suppose that

∫
φ(x)φT (x)µ(dx) is positive definite(µ(·) is the invariant probability mea-

sure of{Xn}n≥0) and that there exists a constant L∈ R+ such that

|g(x, x′)| ≤ L(1+ |x|p + |x′|p), ∀x, x′ ∈ R,

‖φ(x)‖≤ L(1+ |x|p), ∀x ∈ R.

Then, limn→∞ θn = θ∗ w.p.1 ({θn}n≥0 is generated by the algorithm(1)–(3),while θ∗ =
−A−1b, where A and b are defined in(20)and(21)).

Proof: Letψ(x) = 2p+1L(1+ |x|p + E(U2p)), x ∈ R. Since∫
g2(x, x′)P(x, dx′)≤ 3L2(1+ x2p + E((x +U − V)2p

+ ))

≤ 4p+1L2(1+ x2p + E(U2p)), ∀x ∈ R,

it can easily be deduced using Lemmas 6 and 9 that the conditions of Theorem 1 hold. This
completes the proof. 2

To the best of the present author’s knowledge, there are no results on the geometric
ergodicity of the waiting times of GI/G/1 queue under the conditions of Lemma 6 and
Theorem 3. Therefore, it seems that the assumptions of Tsitsiklis and Van Roy (1997) are
not likely to cover the example presented in this section. Moreover, it is straightforward to
extend the results of Theorem 3 to the case of GI/G/m, m > 1, queues. Furthermore, Dai
(1995) gives directions how A1–A5 can be verified in the context of queueing networks.
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5. Conclusion

The asymptotic properties of temporal-difference learning algorithms with linear func-
tion approximation have been analyzed in this paper. The analysis has been carried out in
the context of the approximation of a discounted cost-to-go function associated with an
uncontrolled Markov chain with an uncountable finite-dimensional state-space. Under mild
conditions and using entirely different arguments than those which the previous results
are based on, the almost sure convergence of temporal-difference learning algorithms with
linear function approximation has been established and an upper bound for their asymp-
totic approximation error has been determined. Moreover, the obtained results have been
illustrated by an example related to the queueing theory and not covered by the previous
results on temporal-difference learning.

The results of this paper are a generalization and extension of those presented in Tsitsiklis
and Van Roy (1997). In comparison with the assumptions adopted in Tsitsiklis and Van Roy
(1997), the assumptions of this paper are more general and cover a significantly broader
class of Markov chains of practical interest. The assumptions used in this paper allow
the chain to be positive Harris, while the analysis carried out in Tsitsiklis and Van Roy
(1997) practically covers only the case where the underlying chain is geometrically ergodic.
Furthermore, the assumptions adopted here seem to be the weakest possible under which
the almost sure convergence of temporal-difference learning algorithms with linear function
approximation is still possible to be demonstrated.

Appendix

Lemma 7. Let A1 hold. Let{xn}n≥0 be a sequence of reals satisfying

lim
n→∞n−1

n−1∑
i=0

xi = x,

where x∈ R. Then,

lim
n→∞ sup

n≤ j≤η(n,t)

∣∣∣∣∣ j∑
i=n

γi+1(xi+1− x)

∣∣∣∣∣= 0, ∀t ∈ R+, (71)

lim
n→∞

η(n,t)∑
i=n

γi+1xi+1≤ t |x|, ∀t ∈ R+. (72)

Proof: Due to A1, there exists a constantc ∈ R+ such that

nγn+i ≤ c, n
∣∣γnγ

−1
n+1− 1

∣∣ ≤ c; n ≥ 1, i ≥ 0. (73)

Let

un =
n−1∑
i=0

(xi − x), n ≥ 1.
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Then,

j∑
i=n

γi+1(xi+1− x)

= ( j + 1)γ j+1u j+1− nγnun +
j∑

i=n

i
(
γi γ
−1
i+1− 1

)
γi+1ui , 1≤ n ≤ j .

Therefore and owing to (15) and (73),∣∣∣∣∣ j∑
i=n

γi+1(xi+1− x)

∣∣∣∣∣ ≤ c(2+ t + cn−1) sup
n≤i
|ui |; ∀t ∈ R+, 1≤ n ≤ j ≤ η(n, t),

j∑
i=n

γi+1xi+1 ≤ (t + cn−1)|x| + c(2+ t + cn−1) sup
n≤i
|ui |;

∀t ∈ R+, 1≤ n ≤ j ≤ η(n, t),

wherefrom (71) and (72) follow. 2

Lemma 8. Letα ∈ (0, 1) be a constant, while{xn}n≥0, {yn}n≥0 and{zn}n≥0 are sequences
of reals satisfying

lim
n→∞n−1

n−1∑
i=0

(
x2

i + y2
i

)
<∞,

lim
n→∞n−1

n−1∑
i=0

xi+ j yi = zj , j ≥ 0.

Then,
∑∞

n=0 α
n|zn| <∞ and

lim
n→∞n−1

n−1∑
i=0

i∑
j=0

αi− j xi yj =
∞∑

n=0

αnzn. (74)

Proof: Let

un= n−1
n−1∑
i=0

x2
i , n ≥ 1,

vn= n−1
n−1∑
i=0

y2
i , n ≥ 1,

zjn = n−1
n−1∑
i=0

xi+ j yi , n ≥ 1, j ≥ 0.



CONVERGENCE OF TEMPORAL-DIFFERENCE LEARNING 265

Obviously, there exists a constantc ∈ R+ such that max{un, vn} ≤ c, n ≥ 1. Therefore,

|zjn| ≤n−1

(
n−1∑
i=0

x2
i+ j

)1/2( n−1∑
i=0

y2
i

)1/2

≤ (1+ jn−1)1/2u1/2
n+ j v

1/2
n ≤ c(1+ jn−1)1/2; n ≥ 1, j ≥ 0.

Consequently,

|(1− in−1)zi,n−i | ≤ c(1− in−1)1/2, 0≤ i < n, (75)

|zn| ≤ c, n ≥ 0, (76)

wherefrom
∑∞

n=0 α
n|zn| <∞ follows. On the other hand,

n−1
n−1∑
i=0

i∑
j=0

αi− j xi yj −
∞∑

i=0

αi zi

=
n−1∑
i=0

αi (1− in−1)zi,n−i −
∞∑

i=0

αi zi

=
k−1∑
i=0

αi (1− in−1)(zi,n−i − zi )+
k−1∑
i=0

αi in−1zi

+
n−1∑
i=k

αi (1− in−1)zi,n−i −
∞∑

i=k

αi zi , 1≤ k ≤ n. (77)

Due to (75)–(77),∣∣∣∣∣n−1
n−1∑
i=0

i∑
j=0

αi− j xi yj −
∞∑

i=0

αi zi

∣∣∣∣∣
≤

k−1∑
i=0

|zi,n−i − zi | + 2c(1− α)−1αk + ck2n−1, 1≤ k ≤ n.

Consequently,

lim
n→∞

∣∣∣∣∣n−1
n−1∑
i=0

i∑
j=0

αi− j xi yj −
∞∑

i=0

αi zi

∣∣∣∣∣ ≤ 2c(1− α)−1αk, k ≥ 1,

wherefrom (74) results by the limit processk→∞. 2

Lemma 9. Let {Xn}n≥0 be an Rd-valued homogeneous Markov chain defined on the
probability space(Ä,F,P) and having a unique invariant probability measureµ(·). Let
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P(x, ·), x ∈ Rd, be the transition probability of{Xn}n≥0, while f : Rd( j+1) → R is a
Borel-measurable function satisfying∫ ∫

· · ·
∫
| f (x0, x1, . . . , xj )|P(xj−1, dxj ) · · · P(x0, dx1)µ(dx0) <∞ (78)

( j ≥ 0). If {Xn}n≥0 is positive Harris, then

lim
n→∞n−1

n−1∑
i=0

f (Xi , . . . , Xi+ j )

=
∫ ∫
· · ·
∫

f (x0, x1, . . . , xj )P(xj−1, dxj ) · · · P(x0, dx1)µ(dx0) w.p.1 .

(79)

Proof: Let 3 ∈ F be the event where (79) holds. Due to Meyn and Tweedie (1993,
Theorem 17.1.2) and (78), there existx ∈ Rd such thatP(3 | X0 = x) = 1. Therefore
and owing to Meyn and Tweedie (1993, Theorem 17.1.7),P(3 | X0 = x) = 1, ∀x ∈ Rd,
wherefromP(3) = 1 follows. This completes the proof. 2

Note

In Clark (1984), Kulkarni and Horn (1996), and Wang, Chong, and Kulkarni (1996) the following general result
has been established. Let

θn+1 = θn + γn+1h(θn)+ γn+1ξn+1, n ≥ 0,

where{γn}n≥1 is a sequence of positive reals satisfying A1,h : Rd → Rd is a continuous function fullfiling
h(θ∗) = 0 and(θ − θ∗)T h(θ) < 0, ∀θ ∈ Rd\{θ∗}, while θ∗ ∈ Rd is a deterministic vector and{ξn}n≥1 is an
Rd-valued random process. Then, limn→∞ θn = θ∗ w.p.1 only if

lim
n→∞n−1

n∑
i=1

ξi = 0 w.p.1.

Using this result and (22) (given in Section 3), it can easily be deduced that the algorithm (1)–(3) converges w.p.1
only if

lim
n→∞n−1

n∑
i=1

(Ai θ∗ + bi ) = Aθ∗ + b w.p.1, (80)

where{An}n≥1, {bn}n≥1, A andb are defined in (18)–(21) (given in Section 3), whileθ∗ = A−1b. Although A4

is only a sufficient condition for (80) (see Lemma 2), in this context it is hard (if possible at all) to imagine any

weaker condition leading to (80).
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Dai, J. G. (1995). On positive Harris recurrence of multiclass queueing networks: A unified approach via fluid

limit models.Annals of Applied Probability, 5, 49–77.
Dayan, P. D. (1992). The convergence ofTD(λ) for generalλ. Machine Learning, 8, 341–362.
Dayan, P. D. & Sejnowski, T. J. (1994).TD(λ) converges with probability 1.Machine Learning, 14, 295–301.
Jaakola, T., Jordan, M. I., & Singh, S. P. (1994). On the convergence of stochastic iterative dynamic programming

algorithms.Neural Computation, 6, 1185–1201.
Kulkarni, S. R. & Horn, C. S. (1996). An alternative proof for convergence of stochastic approximation algorithms.

IEEE Transactions of Automatic Control, 41, 419–424.
Kumar, P. R. & Varaiya, P. (1986).Stochastic Systems: Estimation, Identification and Adaptive Control. Englewood

Cliffs, NJ: Prentice Hall.
Kushner, H. J. & Clark, D. S. (1978).Stochastic Approximation Methods for Constrained and Unconstrained

Systems. Berlin: Springer Verlag.
Ljung, L., Pflug, G., & Walk, H. (1992).Stochastic Approximation and Optimization of Random Systems. Basel:
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Tadić, V. (1997). Convergence of stochastic approximation under general noise and stability conditions. In

Proceedings of the 36 IEEE Conference on Decision and Control.
Tsitsiklis, J. N. & Van Roy, B. (1997). An analysis of temporal-difference learning with function approximation.

IEEE Transactions on Automatic Control, 42, 674–690.
Wang, I.-J., Chong, E. K. P., & Kulkarni, S. R. (1996). Equivalent and sufficient conditions on noise sequences

for stochastic approximation algorithms.Advances in Applied Probability, 28, 784–801.

Received March 30, 1999
Revised April 21, 2000
Accepted May 9, 2000
Final manuscript


