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Abstract. The asymptotic properties of temporal-difference learning algorithms with linear function approxi-
mation are analyzed in this paper. The analysis is carried out in the context of the approximation of a discounted
cost-to-go function associated with an uncontrolled Markov chain with an uncountable finite-dimensional state-
space. Under mild conditions, the almost sure convergence of temporal-difference learning algorithms with linear
function approximation is established and an upper bound for their asymptotic approximation error is determined.
The obtained results are a generalization and extension of the existing results related to the asymptotic behav-
ior of temporal-difference learning. Moreover, they cover cases to which the existing results cannot be applied,
while the adopted assumptions seem to be the weakest possible under which the almost sure convergence of
temporal-difference learning algorithms is still possible to be demonstrated.
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1. Introduction

The asymptotic properties of temporal-difference learning algorithms with linear function
approximation are considered in this paper. Temporal-difference learning with function ap-
proximation is a recursive parametric method for approximating a cost-to-go function as-
sociated with a Markov chain. Algorithms of this type aim at determining the optimal value
of the approximator parameter by using only the available observations of the underlying
chain. Basically, they update the approximator parameter whenever a new observation of
the underlying chain is available trying to minimize the approximation error. Temporal-
difference learning with function approximation represents an extension of the classical
temporal-difference learning algorithms (see e.g., Sutton, 1988) and has extensively been
analyzed in Tsitsiklis and Van Roy (1997). As opposed to temporal-difference learning
with function approximation, the classical temporal-difference learning algorithms are only
capable of predicting the value of the cost-to-go function.

The problems of the prediction and approximation of a cost-to-go function associated
with a stochastic system modelled as a Markov chain appear in the areas such as automatic
control and time-series analysis. Among several methods proposed for solving these prob-
lems (e.g., Monte Carlo methods in statistics and maximum likelihood methods in automatic
control; see e.g., Kumar and Varaiya, 1986), temporal-difference learning is probably the
most general. Moreover, it is efficient and simple to be implemented. Due to their excellent
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performances, temporal-difference learning algorithms have found a wide range of applica-
tion (for details see e.g., Bertsekas & Tsitsiklis, 1996; Sutton & Barto, 1998 and references
cited therein), while their asymptotic properties (almost sure convergence, convergence
in mean and probability, convergence of mean and rate of convergence) have been ana-
lyzed in a great number of papers (see Dayan, 1992; Dayan & Sejnowski, 1994; Jaakola,
Jordan, & Singh, 1994; Sutton, 1988; Tsitsiklis & Van Roy, 1997; see also Bertsekas &
Tsitsiklis, 1996; Sutton & Barto, 1998 and references cited therein). Although the existing
results provide a good insight into the asymptotic behavior of temporal-difference learning
algorithms, they practically cover only the case where the chain is geometrically ergodic
and are constrained to the case where the state-space of the underlying chain is countable.
However, this is too restrictive for applications such as the prediction and approximation
of a cost-to-go function associated with Markov chains appearing in the areas of queuing
theory and time-series analysis.

In this paper, the almost sure convergence and asymptotic approximation error of
temporal-difference learning algorithms with linear function approximation are analyzed.
The analysis is carried out in the context of the approximation of a discounted cost-to-
go function associated with an uncontrolled Markov chain with an uncountable finite-
dimensional state-space. The results of this paper are a generalization and extension of
those presented in Tsitsiklis and Van Roy (1997). Moreover, they cover cases to which
the previous results on temporal-difference learning cannot be applied, while the adopted
assumptions seem to be the weakest possible under which the almost sure convergence can
be demonstrated.

The paper is organized as follows. In Section 2, temporal-difference learning algorithms
with linear function approximation are formally defined and the assumptions under which
their analysis is carried out are introduced. A detailed comparison of the adopted assump-
tions with those of Tsitsiklis and Van Roy (1997) (as well as with the assumptions used in
other papers related to the asymptotic behavior of temporal-difference learning algorithms)
is also given in Section 2. The main results are presented in Section 3, where the almost sure
convergence of temporal-difference learning algorithms with linear function approximation
is established and an upper bound for their asymptotic approximation error is determined. In
Section 4, these results are illustrated by an example related to the queueing theory and not
covered by the previous results on temporal-difference learning. Subsidiary results which
are of crucial importance for obtaining the main ones are provided in Appendix.

2. Algorithm and assumptions

Temporal-difference learning algorithms with linear function approximation are defined by
the following difference equations:

Ont1 = On + Ynr10n+16n41, N =0, 1)

Snt1 = 9(Xn, Xnt1) + @) ¢ (Xnp1) = 6y ¢ (Xn), N=0, @

eni1 =y (@)"'p(X)), n>0. €)

i=0
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{¥n}n=1is @ sequence of positive reals, while= (0, 1), 1 [0, 1] are constantg: R —
RYandg : RY x RY — R are Borel-measurable functiong is an R%-valued ran-

dom variable defined on a probability spage, 7, P), while {Xn}n=0 is an R -valued
homogeneous Markov chain defined on the same probability space. In the case of temporal-
difference learning algorithms with general, non-linear function approximation, the Egs. (2)
and (3) are replaced by the following ones:

Sn1 = 9(Xn, Xny1) + af (6n, Xny1) — F(6n, Xn), N>0,

@
n
enp1= Y (@) Vpf (6, %), n=0,

i=0

wheref : RY x RY — Ris a Borel-measurable function which is differentiable in the first
argument. In order to get a practically implementable algorithm, (4) should be rewritten in
the following way:

ent1 = aren+ Vo T (On, Xn), N=>0,

wheregg = 0. Let

fu(X) = E( a"g(Xn, Xnt1)
n=0

XO:X), x € RY

(provided thatf,(-) is well-defined and finite). In the context of dynamic programming,
f.(-) is interpreted as a discounted cost-to-go function associated with the Markov chain
{Xn}nso (for details see e.g., Bertsekas, 1976). The task of the algorithm (1)—(3) is to
approximate the functiorf, (). It determines the optimal valug of the approximator
paramete € RY such tha# ¢ (-) (i.e., f (6., -) in the case of non-linear approximation)

is the best approximator df.(-) among{fT ¢ () }gcre (i.€., amond f (8, -)}ycre in the case

of non-linear approximation). if = 1 and if{ X, }n>0 has a unique invariant measyré),

the algorithm (1)—(3) determines € RY such tha®, ¢ (-) approximatesf, (-) optimally

in the L?(u)-sense, i.e., it looks for the minimum of the functiop®) = f(9T¢(x) -
f.(x))2u(dx), 0 € RY (see Theorems 1 and 2).

Throughout the paper, the following notation is usRd.andR{ are the sets of positive
and non-negative reals (respectivel)|| denotes both the Euclidean vector norm and
the matrix norm induced by the Euclidean vector norm (i|lé\)| = supg_, | A9|| for
A € R¥9). P(x,.), x € RY, is the transition probability of Xn}n=0 (i.e., P(Xns1 €
B| Xn) = P(Xpn, B)yw.p.1,VB € BY, n > 0), while

§(x) = /g(x, X)P(x,dx), xe RY
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(provided thatj(-) is well-defined and finite). Fax € RY andB e BY, let Py(x, B) =
Is(X) (Ig(-) stands for the indicator function &) and

Prr1(X, B) = / P(x', B)P,(x,dx), n=>0.
Fort € R, letn(n,t) = sup(j > n: Zij;nly.H <t}, n>0.
In this paper, the algorithm (1)—(3) is analyzed under the following assumptions:

Al. {nyn}n=1 converges and & limn_. Ny, < oo.
A2. {Xn}n=0 has a unique invariant probability measure).
A3. There exists a Borel-measurable functipnR? — Ry such that

lp(x)| < ¥(x), ¥xeRY, (5)
/gz(x, XYP(x, dx) < ¥2(x), Vxe RY,

> a"(Pay?)(x) < 00, V¥xeRY, (6)
n=0
/ Y2 (x)p(dx) < oo, @)
where(P,y?)(x) = [ ¥2(X') Pa(x, dX).
A4,
n-1
Tim n% " g%(Xi, Xis1) <00 wp.L, (®)

i=0
nImen*1§¢(xi)g<xi+j,xi+j+1) - f $()(P(0udx) wp.l j =0,
- ©
nImen‘1§¢(xi)¢T<xi+,-) =/¢(x)(Pj¢T>(x)u(dx> wpl j >0
- (10)

where(P;§)(x) = [ §(x")Pj(x, dx) and(Pj¢ ") (x) = [¢T(X)P;j(x, dX).
A5. [¢(x)¢T (x)u(dx) is positive definite.

Remark Due to the Jensen inequality and A3,
/|g<x, X)IP(x,dx) < ¥ (x), VxeR’,

/ / 92(x, X)P(x, dX)p(dx) < f Y2(x)u(dx) < oo, (11)
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Consequenthyg(-) is well-defined and finite, as well as
10| < ¥ (x), V¥xe R (12)

Then, A3, implies

/II(P(X)(PnQ)(X)IIM(dX) = /W(X)(Pnl/f)(X)/L(dX)

1/2 1/2
< ( / wz(xm(dx)> ( / (in2>(x>u(dx>)

- /I/fz(x),u(dx) <00, Nn>0, (13)

/I|¢(X)(Pn¢T)(X)|IM(dX) = /l//(X)(Pnlﬂ)(X)M(dX)

1/2 1/2
< ( / wz(xwdx)) ( / (inzxx)u(dx))

- /wz(x)ﬂ(dx) <00, n>0. (14)

Therefore,[ ¢ (x)¢T (x)1(dx) and the right-hand sides of (9) and (10) are well-defined and
finite.

Assumption Al is satisfied if, = n—1, n > 1, which is a typical choice for the stepsize
of stochastic approximation algorithms (see e.g., Ljung, Pflug, & Walk, 1992). It implies
thatn(n, t), n > 0, are well-defined and finite for dlle R™, as well as that

n(n,t)—1 n(n,t)
> v St< ) oy VteRLnx0, (15)
i=n i=n
n(n,t)
; _ +
lim. > na=t VteR% (16)

i=n

Assumption A2 require$X,}n=0 to exhibit an asymptotic stationarity. It is satisfied if
{Xn}n>0 is positive Harris (see e.g., Meyn & Tweedie, 1993, Chapter 10). Assumptions
of this type are standard for the analyses of temporal-difference learning algorithms, as
well as in the analyses of stochastic approximation algorithms operating in a Markovian
environment (see Benvensite, Metivier, & Priouret, 1990, Part II; Bertsekas & Tsitsiklis,
1996 and references cited therein).

Assumption A3 corresponds to the growth ratg6f -) and¢ (). It requires them not to
grow too fast so that their upper boutid-) satisfies (6) and (7). The role of A3 is to ensure
that f,.(-), Aandb (introduced in (20) and (21)) are well-defined and finite. Assumption A3
is satisfied ifg(-, -) and¢ (-) are globally bounded or (-, -) and¢ () are locally bounded
and there exists a constaiit € R™ such that| X,|| < K w.p.1,n > 0. It is important to
notice that A3 allows(P,¥?)(X)}n=0 to grow exponentially as — oo for anyx € RY".
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Assumption A4 require$X,}n=o0 to exhibit certain “degree of stability”. The role of
A4 is to provide thaf An}n>1 and{bn}n>1 (defined in (18) and (19)) converge foandb,
respectively. As A3 implies (11), (13) and (14), it can easily be deduced from Lemma 9
(given in Appendix) that (9), (10) and

n—1
lim n‘lzgz(xi, Xit1) :f/ g?(x, X)P(x, dX)u(dx) < oo w.p.1
i=0

n—o0

are satisfied if A3 holds and {fX,}n>0 is positive Harris (for the definition and further
details see e.g., Meyn and Tweedie, 1993). It should be emphasized that A4 represents one
of the weakest sample-path properties related to the stabilit{gf,>o.

Assumption A5 is a “persistency of excitation” condition. These conditions are typi-
cal for the areas of system identification, adaptive control and adaptive signal processing
(see e.g., Chen & Guo, 1991; Solo & Kong, 1995). Assumption A5 reqid¥€Xn)}n=o0
to be sufficiently rich with respect to all directions Rf' at the asymptotic steady-state
characterized by the invariant measyre), i.e., it demands that(x: 0T ¢ (x) # 0) = 1,

Vo € RY. If {Xn}n=0 has afinite state-spa¢e, ..., Xn}, A5 is implied by the requirement
thatu(Xx = %) > 0,1 <i < m, and that §(X1) - - - ¢ (Xm)] is a full row-rank matrix.
Without A5, only the almost sure convergence i, }n-o could be demonstrated, where
I is the projection operator onto the space spanned by the royig 6f)¢ T (x)u(dx).

The asymptotic properties of temporal-difference learning algorithms have been consid-
ered in several papers (Dayan 1992; Dayan & Sejnowski, 1994; Jaakola, Jordan, & Singh,
1994; Sutton, 1988; Tsitsiklis & Van Roy, 1997; see also Bertsekas & Tsitsiklis, 1996; Sut-
ton & Barto, 1998 and references cited therein). Among these papers, Tsitsiklis and Van Roy
(1997) contains probably the strongest results. The results of this paper are a generalization
and extension of those presented in Tsitsiklis and Van Roy (1997). Due to the fact that
{Xn}n=0 is positive Harris if it is irreducible, aperiodic and positive and if its state-space is
countable, Lemma 9 (given in Appendix) directly implies that A2—A5 are just a special case
of Assumptions 1-3 adopted in Tsitsiklis and Van Roy (1997). It is particularly important
to emphasize that Assumption 4 of Tsitsiklis and Van Roy (1997) is not necessary that A2—
A5 hold. In other words, using the results of this paper, the convergence of the algorithm
(1)—(3) can be shown under only Assumptions 1-3 of Tsitsiklis and Van Roy (1997) (note
that this is possibly only if the state-space ¥, }n-0 iS countable; otherwise, irreducibility,
aperiodicity and positiveness are not sufficient for the positive Harris recurrence). On the
other hand, Assumption 4 is the most restrictive among the assumptions adopted in Tsitsik-
lis and Van Roy (1997). It practically covers only the case wh&ign-o is geometrically
ergodic and implies that there exist a const@né R™ and a Borel-measurable function
¥ : RY — R{ such that (5) and the following relation hold:

(PayP)(X) < CyP(x); VxeRY, Vpe[l,o0), n>0. (17)

However, this is too restrictive for applications such as the prediction and approximation of a
cost-to-go function associated with Markov chains appearing in the areas of queueing theory
and time-series analysis (note that (17) impli€&(x, -)[l,» < C,Vp € [1, 00),n > 0, and
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thattypically|| P, (X, )l ,» — ocoasn — oointhe cases whefen}n=ois notgeometrically
ergodic; for the definition of|-||,» see e.g., Meyn and Tweedie, 1993). As opposed to
Tsitsiklis and Van Roy (1997), the assumptions of this paper re¢Xirk,-o only to satisfy
certain laws of large numbers, alldP,v2)(X) }n=0 to grow exponentially as — oo for

anyx € RY and cover the case whefX,}n=0 is positive Harris (note that laws of large
numbers are probably the weakest sample-path properties related to the stability of Markov
chains; also note thdiX,}n>0 is geometrically ergodic if and only ifX,}n>0 is positive

Harris and if there exists a constant (1, co) such thad o2, p"[|(Pn — 1) (X, )|l < oo,

vx € RY, where|-|| denotes the total variation of a signed measure; for further details see
e.g., Meyn and Tweedie, 1993). Due to this, A1-A5 cover a broader class of Markov chains
of practical interest than the previous results on temporal-difference learning. The area of
queueing theory is particularly rich in the examples of Markov chains satisfying A1-A5
and not being covered by the assumptions under which the previous results on temporal-
difference learning have been obtained. Such an example related to the waiting times of
GI/G/1 queue is provided in Section 4, while Dai (1995) gives directions how A1-A5 can
be verified in the context of queueing networks.

Besides the fact that A1-A5 are more general than those of Tsitsiklis and Van Roy (1997)
and include cases not covered by the results presented therein, they seem to be the weakest
conditions under which the almost sure convergence of the algorithm (1)—(3) is still possible
to be shown. The rationale for this comes out from the fact that stochastic approximation
algorithms in general converge if and only if their noise satisfies a law of large numbers (see
Clark, 1984; Kulkarni & Horn, 1996; Wang, Chong, & Kulkarni, 1996. See also the note
at the end of the paper) and from the fact that (8)—(10) themselves express laws of large
numbers for functionals ofXn}n>o. It is also important to emphasize the methodological
differences between the analyses carried out in Tsitsiklis and Van Roy (1997) and here.
The results presented in Tsitsiklis and Van Roy (1997) (as well as in other papers related
to the convergence of temporal-difference learning) have been obtained by using the gen-
eral approach to the asymptotic analysis of stochastic approximation algorithms based on
martingale convergence arguments and the Poisson equation (for details see Benvensite,
Metivier, & Priouret, 1990, Part Il). However, A1-A5 do not guarantee that there exist
unique Borel-measurable functiobks: R+ — RIxd gandy: R+ . RY satisfying
the following Poisson equations:

U@ —/U(z’)l‘[(z,dz) — A(2) — A, Vze R
v(2) — / v(Z)T(z,dZ) = b(z) — b, Vze R
where

M(z,B) = / Ig(X', X", ary + ¢ (X)) P(X, dX"),

A(2) = y(ap(X) — (X)),
b(z) = yg(x, x),
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for B e B x, x € R,y e Rl andz = (x,x,y) (Ig(-) denotes the indicator
function of B), while A andb are defined in (20) and (21) (given in Section 3). As this is

of a crucial importance for the analysis carried out in Tsitsiklis and Van Roy (1997), the
approach used therein is completely inapplicable to the asymptotic analysis of temporal-
difference learning algorithms under the assumptions A1-A5. Instead, the algorithm (1)—(3)
is analyzed in this paper by using the approach which is based on the ideas standing behind
the results presented in TadiL997) and which is closer to the ODE methodology (see e.g.,
Kushner & Clark, 1978).

3. Convergence analysis

The main results are presented in this section. These results are contained in Theorems 1
and 2. In Theorem 1, the almost sure convergence of the algorithm (1)—(3) is demonstrated.
In Theorem 2, an interpretation of the algorithm limit is provided and an upper bound for
the asymptotic approximation error is determined in terms&,0f and the error of the
L2(u)-optimal linear approximation of,(-). Lemmas 1-5, as well as Lemmas 7-9 (given
in Appendix) are prerequisites for Theorems 1 and 2.

Throughout this section, the following notation is used. Let

Anit = Y @) (X (@p(Xnp1) — (X)), n=0, (18)
i=0
by = (@)™ $(X)g(Xn, Xnp1), N =0, (19)

i=0

A = = [ 9006700 +a@ =) Y @) [ 900(PrasTI00(AY,
n=0

(20)
b= (an)" / ¢ () (Pn@) () (dx), (21)
n=0
while 6, = —A~1b (provided thatA, b and#, are well-defined and finite). Then, the
algorithm (1)—(3) can be rewritten as follows:
9n+1 = en + J/n+l(An+19n + bn+1)7 n= 0. (22)

Let l?'n = en - 8*, Unn = I anann = 0, n Z O, Whlle
Unj = (L +¥A) (I + ¥h11An), 0=<n <],

i
Vhj = Z Uijn (A6, +b), 0<n<]j,

i=n+1
en(t) = 29, (Unyinp — | —tA)9, + O Un ity Vant)
+ ” (Un,n(n’t) - |)I9n 2, t S R+, n Z 0
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(I denotes the x d unit matrix). Then, it is straightforward to verify that

#j = UnjOn + Vnj, 0<n<j, (23)
(%000 | = 19alI% + 2607 A%y + en(t); ¥t € RY, n=>0. (24)

In the next lemma, it is shown tha&t, b andé, are well-defined and finite. The proof is
based on similar ideas as the corresponding result of Tsitsiklis and Van Roy (1997).

Lemmal. Let A2, A3and A hold. Then f.(.), A, b andg, are well-defined and finite.
Moreover A is negative definite and

.00 =) a"(Pd)(x). Vx e R™. (25)

n=0

Proof: Due to (12)—(14),

I(PhG)(X)] < (Pay)(X) < 1+ (P2 (x); Vx e RY, n>0,
E(Ig(Xn,Xn+1)||Xo=X)=//Ig(X’,X”)IP(XZdX”)Pn(x,dX’)
< (Pa)(X) <1+ (PYd)(x) <00; VxeRY, n>0,

> @) [ 100(PassTI00 (@ = (L= k) [ ¥00m(d < oo,
n=0
> @ [ 1000P 00l = A= * [ ¥200un < .
n=0

Consequently,

E(@(Xn, Xns1) [ Xo =X) = /[ g(x', x")P(X', dx") Py(x, dX')
= (Pd)(x); ¥xeRY, n>0,

S P < A—a) T+ Y a"(PpA(x) < 00, ¥x e RY.
n=0 n=0

Then, it is obvious thaf,(-), A andb are well-defined and finite, as well as that (25) holds.
On the other hand, owing to the Jensen inequality,

/ O (Pagp) (x))?u(dx) < / / (0T P (X))?Pa(x, dX)(dX)

= /(9T¢(x))2u(dx); vo e RY n>0.



250 V. TADIC

Therefore,

172
< ( f (9T¢(X))2M(dx)>

1/2
X ( / <9T(Pn¢)(x))2u(dx))

< /(9T¢(X))2M(dx); Vo e R, n=o0.

‘ f 0T (X)(Png ") (X)0 L (dX)

Consequently,

07 A0 = — [ 0790020 + (@~ 1) D @h)" [ 67600 (PrssdT 0001 (A
n=0

< —(1 a1 1) Z(ak)”) [ @600
n=0
= —(1—a)(1—ak)IGT(f¢(X)¢T(X)M(dX))9, Vo € RY.

Then, it is obvious thatA is negative definite, as well as thé} is well-defined and
finite. O

In the next lemma, it is demonstrated th#}n>1 and{bn}n>1 satisfy the law of large
numbers. The proof is essentially based on Lemmas 8 and 9 (given in Appendix). Among
the prerequisites of Theorem 1, the results presented in Lemma 2 are probably the most
important.

Lemma?2. Let Al-A4hold. Then

n
lim Nty A=A wpl (26)
*© i—1
n
lim n—t Z bi=b w.p.l (27)

i=1

Moreover there exist non-negative random variablesadd K” defined o2, 7, P) such
that

n-1 i
lim n=t 7% @n) e (ol (Xpll=K' w.p., (28)
i=0 j=0
n—-1i+1 o
lim 07t > @) X lg (Xl =K” w.p.l. (29)

n—o0

o

j=0
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Proof: Due to A3, A4 and Lemma 8,

n-1
lim =t g (X1
i=0

= / ¢ 0112 (dx) < f Y2(0u(dx) < oo w.p.l, (30)
n-1 i
lim n™) > @) (X)X, Xitn)
i=0 j=0

= Y@ [ 200ROuE wpl
n=0

n—1 i
lim 7ty % (@) (XeT (X))

i=0 j=0

=Y (@n" / $0)(PapT)Ou(dX) w.p.L,
n=0

n-1 i
Jim n=ty 7> @n) g (X' (Xisr)

i=0 j=0

=D (@ / $ () (PrsadN)OOREX)  W.p.1
n=0

(in order to get (30), sgt = 0 in (10)), wherefrom (26) and (27) follow. On the other hand,
Lemma 8 and (30) imply that there exists a non-negative random vaHalsiech that (28)
holds. LetK” = («x)~1K’. Then, it can easily be deduced that (29) holds, too. O

The asymptotic properties ¢ }o<n<j and{Vyj}o<n<j are dealt with in the next lemma.
The proof is essentially based on the results of Lemma 2.

Lemma 3. Let Al-A4 hold. Then, there existd\e F and a positive random variable L
defined on(2, F, P) such thatP(Np) = 0 and such that the following relations hold on
N§:

lim  sup [|Up— 1] <Lt, Vte(0,1), (31)
M=% n<j<n(n,t)
Tim (Un oy = | = Al < Lt?, Vte (0,1), (32)
— 00

lim  sup [[Vyll=0, Vte(01). (33)

M= n<j<n(n,t)

Proof: LetK = K’ 4+ K” (K" andK” are defined in the statement of Lemma 2). Due to
Lemmas 2 and 7, there exidiy € F such thatP(Np) = 0 and such that the following
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relations hold oriN§:

j
lim sup | > yisa(Aa—A)|=0, VteR" (34)
= n<j<nnt || iZn
j
lim  sup ZM+1(bi+1 —b)| =0, VvteR" (35)
n—oo n<j<n(n,t) i
n(n.t)
I|m Z V+1Z(0M)' Hig (X Wi (Xpll <K't, vte R, (36)
J:
n(n,t) i+1
I|m Z Yi+l Z(Ol?u)' J||<1>(X|+1)||II¢(XJ)|I <K"t, vteR". (37)

i=n j=0

Since
n+1

I Antall < X:(ot/\)n "l Xl (X0 | + 2:(00»)n Nl Xnr) XD, n=0,

it follows from (36) and (37) that the following relation also holds Nt

n(n,t)
Tim > vl Al < Kt Vte R (38)
I=n

LetL = ||All+KZexp(K). Letw be an arbitrary sample froid$ (for the sake of notational
simplicity, w does not explicitly appear in the relations and expressions which follow in the
proof). It is straightforward to verify that

j—n
UnJ=I+Z Z Yo Am - Vi Am, 0= <,

i=1 n<mp<--<m;<j

j—1
VnJ = Z U|+1 ]V+1A|+12Vk+1(Ak+19 + bk+1)
i=n+1 k=n
-1

+ ) viaa(Apab + b, 0<n<j,

i=n

j jI=n
[Ta+niap=1+3" > vfAnl vl Al

O<n<j.
i=n+1 i=1 n<mg<--<m<j
Consequently,
Unj — | _ZV+1A|+1 <Z Z lenAmln"'Vmi ”Ami ”
i=2 n<mp<--<m;<j

n(n,t)—n+1

< Z Z Ymy ” Am, ” T Vmy ” Am ”

i=2 n<mp<---<m<n(n,t)+1
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n(n,H+1 n(n,t)
= [ @+nlAD-1=>" nallAul
i=n+1 i=n

n(n,t) n(n,t)—n+1
< <1+ .t —n+HH" mlnAmn)
i=n
n(n,t)

—1- Y yullAal; VteR',
i=n
0<n<j<nht),

n(n.b)
[ Vhjll = <1+ sup  [|Ukll Z )4+1||Ai+1||)

n<k<l<n(n,t) i=n
k
sup Yirr(Aiabe + i) |; Vte RT, 0<n<j<nnt).

n<k<n(n,t) || i=n
(39)

Therefore and owing to (38),
im  sup |Up =1 =) naAg| < f(Ky, vteR", (40)

N=n<j<n(nt i=n

where f (t) = expt) —t — 1,t € R(note that lim_ . (n(n,t) — n) = oo, V¥t € R, and
that f () is increasing orR;). On the other hand,

i i
‘ZM+1(Ai+19*+bi+1) < ZVH—l(AH-l—A) (A
i=n i=n
i
+ Z)’l+1(bi+1—b), 0O<n<j,
i=n
-1
IUnj— 11 sup [Unj—1 =) yaAgn
n<j<n(n,t) i=n
i
+ sup Y nia(Ags— A +HIA;
n<j<n(nt) || i=n

vte RY, 0<n<j<n(nt), (41)

JUijll<14+ sup |lUgq—1]; VteR",
n<k<l<n(k,t)

O<n<i=<j<nnt, (42)
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n(nH—1
Unnny — 1 —tAII < |Unyon — 1 — Z Yi+1Ai+1
i=n
n(n,t)—1
+ Y vinAa—A
i=n

n(ntH—-1
+IIAII<t— > ml); VieR", n>0 (43)

i=n

(for obtaining (41) use (15)). Due to (16) and (40)—(43),

i
im  sup |} ya(Aabs +biig)| =0, Ve R, (44)
=% n<j<n(nt) || iZn
lim  sup [[Un — I <[IAJt + f(Kt), VteR", (45)
M=% n<j<n(nt)
lim  sup |Ujll<oo, VteRT, (46)
M=% n<i<j<n(n.t)
nﬁ [Unynt — | —tA] < f(Kt), Vte R, (47)
— 00

Since f (Kt) < K2t?exp(Kt), vVt € R*, it can easily be deduced from (38), (39) and
((44)—(47) that (31)—(33) hold. This completes the proof. O

The almost sure boundednesg®f},- is shown in the nextlemma. The proof essentially
relies on the results of Lemma 3.

Lemmad4. LetAl-A5hold. Thensup_, [9n] < oo on N§(Nois defined in the statement
of Lemma3).

Proof: Let Amin andimax be the minimal and maximal eigenvalue-efA (respectively).
Let w be an arbitrary sample fromi§ (for the sake of notational simplicity, does not
explicitly appear in the relations and expressions which follow in the proof).rLet
min{1, A, 47 1L~ Amin} (L is defined in the statement of Lemma 3) angk 1—2- 1 pint.
Obviously, 0< p < 1, while Lemma 3 implies that there existse R* (depending om)

such that

sup - max{||Unjll, [IVnjll} = K, n=0. (48)

n<j<n(n,t)

Letng = 0 andny,1 = n(ng, t), kK > 0. Due to Lemma 3, there exidts > 0 (depending
onw) such that

[Unene: — 1 — TA| < 2L7% k> ko. (49)
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Since A is negative definite (due to Lemma 1) antln.x < 1, | + A is non-negative
definite. Consequentiyfl + t A|| = 1 — Anint. Therefore and owing to (49),

[Uncnea |l < [Unenes =1 = A +1IT + Al < o, k> ko
(note that 1— AminT + 2L 72 < p). Then, (23) and (48) yield
[#0c.]l = pllond + K, k=0,
wherefrom sug. [P, || < oo follows. As
19i1l < KO +K; mc<j <ngg1, k=0
(due to (23) and (48)), it is obvious that gup |||l < oo. This completes the proof. O

In the next lemma, the asymptotic behavior @f; — Pn}o<n<; and {&n(t)}n>o,
t € R*, is dealt with. The proof is based on the results of Lemmas 3 and 4.

Lemma 5. Let Al-A5 hold. Thenthere exists a positive random variable M defined on
(€2, F, P) such that the following relations hold onfNNo is defined in the statement of
Lemma3):

lim [[9n41 — Onll =0, (50)
n—o0
im  sup [|9; — Onll <Mt, Vte(0,1), (51)
N~ n<j<n(nt
Tim Jlen ()l < Mt%, vt € (0, 1). (52)
— 00

Proof: Due to Lemma 4, there exists a non-negative random varigbkiefined on
(€2, F, P) such that|9,|| < K, n > 0, onNg. Since

19 — Ol < K[[Unj — L+ [Vajll, 0<n <],
len ()] < 2K2[Un yinp — | —tA| + K2[Up o — 1|
+ K Hun,r](n.t) H ”Vn,r;(n,t)| ; Ve (0, 1), n=> 0,

onNg (dueto (23)), Lemma 3 implies that (50)—(52) hdldl (note that sug.,, [Un yn.p Il <
00, Vt € (0, 1), on N§). O

The almost sure convergence of the algorithm (1)—(3) is demonstrated in the next theorem.
The proof is based on the similar ideas as the results otTa897).

Theorem 1. Let A1-A2 hold. Thenlimp_, o 6, = 6, w.pl.
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Proof:  Obviously, it is sufficient to show that lim, . ¥n = 0 onNg (No is defined in the

statement of Lemma 3). L&t,in andimax be the minimal and maximal eigenvalue-efA

(respectively). Let be an arbitrary sample frod§ (for the sake of notational simplicity,

o does not explicitly appear in the relations and expressions which follow in the proof).
Sinced,] Ay < —Aminll9all%, n > 0, (24) implies

2
[990.0]” < 190017 = 2Amint[9a]1> + en(t); YVt e RT, n>0. (53)

Now, let us show that lim, . [|9n]l = 0. Suppose the opposite. Then, there ekistR*
andng > 0 (both depending ow) such that|#,| > 8, n > ng. Therefore and owing to
(53),

2
[%90.0]” < 190117 — 2Amind?t + €n(t); ¥t € R, n > no. (54)
Due to Lemma 5 and (54),

lim (902 < im |20 |° < M [[90]% — 2mind%t + M2, ¥t € (0, 1).
n—oo n—oo n—oo

However, this is impossible, sinee2imind?t + Mt? < 0, Vt € (0, 2Amind?M ~1).

Now, let us suppose th#im . [|9a]l > 0. Then, there exists € R* (depending on
w) such thatimp_, o [[9n]l > 2¢. Letmg = inf{n > 0 : |9 < &}, while m; = inf{n >
my - [9all > 2e}, Mg = sugn < my : [|9q]| < e} andmy; = inf{n > m : [|9,]| < e}, k >
0. Obviously{m}k>o, {m}k=0 and{m; }x-o are well-defined, as well as, < m, < M.,
k>0, and

[9m ]| <& | Omaa] > & | Ow ]| = 265 k=0,
[9nll >&; mc<n<m, k>0. (55)
Consequently,
= [om] = [om] = o, ~om]. kzo0 56
0<e— 9] < [9met] = [om] = |9mes = Om]. k=0
Therefore and owing to Lemma 5,
Jim [, | =e. (57)

Now, let us show that

m,—1
'=lim » y%41>0.

k— o0 i =my
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Suppose the opposite. Then, there exists a subseq@RCEY }i-o of {mx, M, }k=0 such
that

m—1
lim "y =0.
k— o0 L

I=mg

Consequently, for all € (0, 1), there exist&o(t) > 0 (also depending om) such that
iy, —1
Y ona st k>ko. (58)
=y

Thereforem, < n(my,t), vt € (0, 1),k > ko(t). Then, Lemma 5 and (56) imply
£ < kﬁ |97, — Om || = Mt, Vt e (0,1).
However, this is impossible, since the limit procéss 0+ yieldse < 0. Hencegz’ > 0.
Let t = min{1, 27%¢'}. Then, for allt € (0, 7), there existko(t) > 0 (also depending
onw) such thatyy, 1 < t, k > ko(t), and
m.—1
Y ona>t k=ko).
i=myg
Thereforem, < n(my, t) < mj, vt € (0, 1), k > ko(t), which, together with (55), implies
[9smen]| = & ¥t e ©@.1), k= ko(t).
Then, Lemma 5, (54), and (57) yield

e < M [[9ym|” < &% = Zumine®t + M2, V€ (0. 7).

However, this is impossible, since2imine®t + Mt? < 0, Vt € (0, 2Amine®M~1). Hence,
limp_ o |90]] = 0. This completes the proof. O

An interpretation of the almost sure lintit of {6,}n>0 is provided in the next theorem.
Namely, an upper bound for the error of the approximatiof.¢f) by 6] ¢ (-) is determined
in the terms ofx, » and the error of thé.?()-optimal linear approximation of,.(-). The
proof is based on similar ideas as the corresponding result of Tsitsiklis and Van Roy (1997).

Theorem 2. Let A2, A3 and A hold. Then
/ O p () — £.(x)?u(dx)

= (A= *(L—ah)? inf / ©OTP00 — £.0))*(d). (59)
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Proof: Due to (12) and (14),
[(Pa@) ()] < (Pay)(X) < 1+ (Pig®)(x); ¥x e RY, n>0,

> @) / 1 0O (Pa@ 0l (dx) < (1 —ad)™ f P20 (dx) < oo,
n=0

> (@n)" / ) (PnyaHOONI(@dX) < (1 —ar)™ / Y20 (dx) < oo.
n=0

Therefore and owing to Lemma 1,

1£.001 <) _a"(Pay) (%), Vx e R,
n=0

gk

o / |(Pa8) (X P; (X, dX)

T
o

<Y @@+ (Poyj¥2)(X)
n=0

<@A-o) o Y " (P <00 VxeRY, | >0,

n=0
o0

n=0 i

™ AN (P @) (X)]

M2

D ™AL+ (Pryi ) (X))

i=0

N

=

>
o

<l-o)*A-—an)t+@-n71 Za“(w?)(x) <000, VxeRY,
n=0

/II¢(X)(Pn £ 00 (dx)

=

> o / ¥ 00 (Posi ¥)(X) 1 (A%)

|:Oo _ 1/2 1/2
> e ( f w"‘(xm(dx)) ( / (Pn+iw2)(x>u(dx))
i=0

=1- a)*lf Y2(x)u(dx) < oo, n>0.

IA

According to Lemma 1 and (62),

(P f)00 =) o' (Pi®(0); ¥xeRY, nx>0.
i=0

(60)

(61)

(62)

(63)

(64)
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Then, (63) yields

a(1=2) Y (@n)"(Posa f.) ()

n=0

™ (P §) (%)

e

Il
N

—(1—-2)
n—1

a"(Pa@)() Y A
i=0

e i1

=1-n

=}
Il
o

=Y a"(Pa® 00 — Y (@N)"(Pa@)(X)
n=1

n=1

= £,00 = ) _@V)"(Pd)(x), VxeR". (65)
n=0
On the other hand, (60), (61), (64) and (65) imply

A=— f P()PT )p(AX) +a(l—2) f ¢ (x) ( Z(ak)”(ansT)(x)) p(dx),
n=0
(66)

b= / ¢<x><Z<aA)”(Png)<x>> p(dx)
n=0

— - [ ¢(x><2(ak)”(Pn+1 f*>(x>) k@0 + [ 9001 00u(@x.
n=0

(67)
SinceAd, + b =0, (66) and (67) yield
</¢(X)¢T(X)M(dx)>9* = /¢(X)(f*(X) + h(x)p(dx),

where

hoO = a(@=2) ) (@V)"E] (Priad) () — (Pasa f)(X), x € RY
n=0

Let

-1
0, = </¢(X)¢T(X)M(dx)> /¢(X) O (dx)
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(due to A5 and (64)d, is well-defined and finite). Then, it is straightforward to verify
that

[ 6o~ 10070 = inf [ 67900 - 1007,
feR (68)

( / ¢(x)¢T<xm<dx)><9* -0, = f @ (Oh(X)L(dX).
Consequently,

/ (6. — 8T (%) — h())2(d)
= / (0 — 0T p (X)) (dx) + f h2(x)(dx) — 2 / s — 0T HON(X) 2(dX)

=— / (0 — 0T (X)) (dx) + / h2(x) 4 (dX). (69)
Since

/ (67 (Pa) () — (Pa £)00)2(dX) < / / 6T $(X) — £,(¢))2Pa(x, dX)pa(dx)

=/(95¢>(x)— £,00)2u(dx). n=0

(due to the Jensen inequality), it follows from the Minkowski inequality that

1/2
( / hz(X)u(dX))

00 1/2
<a(l-n) Z(om)”( / (0. (Pny1)(X) — (Pnys f*)(X))zu(dX)>
n=0
1/2
<a(l-21- om)l( f 0 $(x) — f*(X))ZM(dX)> :
Then, (69) implies

/ (0 — 0)Tp ()2 (dx) < / h2(x)(dx) < &?(1— 2)%(1 — ar) 2

X f(9I¢(X) — f.(x))%u(dx).
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Therefore and owing to the Minkowski inequality,

1/2
( f 0] p(x) — f*(X))zu(dX))

~ 1/2 ~
< ( f (6 — 9*>T¢(x>)zu(dx>) + ( f Olp(x) — f*(x»zu(dx))

1/2

1/2
<a(l-21)1- aml( / O p(x) — f*(X))zu(dX)>
~ 1/2
+ ( / Olpx) — f*(X))ZM(dX)) :

Consequently,
/ @760 — 1,00)2(dx) < (1— @) 21— ar)? / @600 — 1.00)2(d),

wherefrom (59) follows by (68). O

4. Example

The purpose of this section is to illustrate the assumptions A1-A5 and to show that they can

be applied to Markov chains of practical interest which are not covered by Tsitsiklis and

Van Roy (1997). The example considered in this section is related to the queueing theory.
Let {Un}n>1 and{Vy}n>1 be i.i.d. R*-valued random processes defined on a probability

space€<?, F, P), whileU andV areR"-valued random variables defined on the same prob-

ability space and having the same probability measurgdas- 1 and{V,}n>1, respectively.

Let {Un}n>1 and{Vn}n=1 be mutually independent, whilké, = 0 and

Xnt1 = (Xn +Uny1 — Var)4, n=0,

wheret, = maxt, 0},t € R. Then, it can easily be deduced thxt }.-0 is @ homogeneous
Markov chain with the following transition probability:

P(x, B) = E(IBnRg(x—i—U -V)); xe R, BeB.

In the context of the queueing theory,, represents the waiting time of theth cus-
tomer served in GI/G/1 queue with the first in — first out service discipline, vihjla is
the service time of the-th customer and/,,; is the interarrival time between-th and
(n + 1)-th customer (for details see e.g., Asmussen, 1987).

Lemma 6. Let E(U) < E(V) and EU?P*1) < oo, where pe [1, o) is a constant.
Then {Xn}nso0 iS positive Harris with an invariant probability measuye(-) satisfying
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J x?Pp(dx) < co. Moreover there exists a constant Kk R* such that
E(X2P | Xo=x) < KL+x*"n*; ¥xeR, n>0. (70)

Proof: Due to Asmussen (1987, Theorem XI.2.2Xn}n>0 iS positive Harris, while
Asmussen (1987, Theorem VII1.2.1) impligsc*P1.(dx) < co. Since

n 2p n 2p
|xn|zf’s(|xo|+zui> s4px§p+4p(2ui> . on>1

i=1 i=1
n 2p n
E(X;Ui> < n2p*121: E(U?) =n?PE(U?) <00, n>1
I= 1=

(due to the Jensen inequality), it can easily be deduced that there exists a cknstatit
such that (70) O

Theorem 3. Let E(U) < E(V) and E(U?P*!) < oo, where pe [1, co) is a constant.
Suppose thaf ¢ (X)¢ T (x)u(dx) is positive definitéu (-) is the invariant probability mea-
sure of{Xp}n=0) and that there exists a constantd.R* such that

lg(x, X)) < L@+ [x|P+[X|P), Vx,X eR,
o) <L@+|x|?), V¥VxeR.

Then limp_o On = 6. W.pl ({6n}ns0 iS generated by the algorithifi)—(3), while 6, =
—A~'b, where A and b are defined {20) and (21)).

Proof: Lety(x) = 2PTIL (14 |x|P + E(U?P)), x € R. Since

/ g2(x, X)P(x, dX) <3L2(1+ x?P + E((x + U — V)3P))

<4PH1 214 x2P + E(U?P)), Vx e R,

it can easily be deduced using Lemmas 6 and 9 that the conditions of Theorem 1 hold. This
completes the proof. O

To the best of the present author’'s knowledge, there are no results on the geometric
ergodicity of the waiting times of GI/G/1 queue under the conditions of Lemma 6 and
Theorem 3. Therefore, it seems that the assumptions of Tsitsiklis and Van Roy (1997) are
not likely to cover the example presented in this section. Moreover, it is straightforward to
extend the results of Theorem 3 to the case of GGh > 1, queues. Furthermore, Dai
(1995) gives directions how A1-A5 can be verified in the context of queueing networks.
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5. Conclusion

The asymptotic properties of temporal-difference learning algorithms with linear func-
tion approximation have been analyzed in this paper. The analysis has been carried out in
the context of the approximation of a discounted cost-to-go function associated with an
uncontrolled Markov chain with an uncountable finite-dimensional state-space. Under mild
conditions and using entirely different arguments than those which the previous results
are based on, the almost sure convergence of temporal-difference learning algorithms with
linear function approximation has been established and an upper bound for their asymp-
totic approximation error has been determined. Moreover, the obtained results have been
illustrated by an example related to the queueing theory and not covered by the previous
results on temporal-difference learning.

The results of this paper are a generalization and extension of those presented in Tsitsiklis
and Van Roy (1997). In comparison with the assumptions adopted in Tsitsiklis and VVan Roy
(1997), the assumptions of this paper are more general and cover a significantly broader
class of Markov chains of practical interest. The assumptions used in this paper allow
the chain to be positive Harris, while the analysis carried out in Tsitsiklis and Van Roy
(1997) practically covers only the case where the underlying chain is geometrically ergodic.
Furthermore, the assumptions adopted here seem to be the weakest possible under which
the almost sure convergence of temporal-difference learning algorithms with linear function
approximation is still possible to be demonstrated.

Appendix

Lemma 7. Let Al hold. Let{xn}n>0 be a sequence of reals satisfying

n-1

lim n‘lzxi =X,

where xe R. Then

lim sup =0, VteR", (71)

= n<j<n(n

i
Dy —X)

i=n

n(n,t)
im > yeaxiqa<tixl, Vte R (72)
n—o0 o

Proof: Due to Al, there exists a constant R* such that
Nyni <CN[yvaa— 1) <¢ n>1 i>0 (73)

Let

n-1
Up = Z(xi —-x), n>1
=0
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Then,
i
Z Yitrr(Xiy1 —X)
i=n

j
=(j + DyjsaUja1 — atn + D i (Y3 — Dyigati. 1<n<j.

i=n

Therefore and owing to (15) and (73),

j
> yia(ie—x)

i=n

<c@+t+cnhsuplul; YteRY, 1<n<j<n(t),

n<i

Zy+1x.+1 < @t +cenhHx|+c2+t+censupul;

i=n n<|
vte R, 1<n<j<n(nt),

wherefrom (71) and (72) follow. O

Lemma8. Leta € (0, 1) be aconstanwhile {X,}n>0, {Yn}n=0 @and{z,}n>o are sequences
of reals satisfying

_ n-1
im n™2) " (x*+y?) <
n—o0
i=0
n-1
lim nt Xi+j¥i =125, j=0.
n—o0 "

Il
o

Then Y - e"|za| < oo and

n-1 i

o0
lim n~t dIxyi =) oz, (74)
fm 2 iy =)
Proof: Let

n-1
Uh=n"1) %2 n=>1,

i=0

n—-1
vpm=n"1) 'y nx>1,

i=0

n-1
Zin=n"1) X4V, n>1 j=>0.

Il
o
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Obviously, there exists a constant R* such that magu,, vy} < ¢, n > 1. Therefore,

n-1 Y2 rng \ Y2
|Zjn|§n1<zxi2+j> (ZYF)
i=0

i=0

<@+ jnHY2u 2o <ca+jnHY% n=1 j=o0

Consequently,
(A—in"Hz il <c@—in"HY2 0<i <n, (75)
|zl <c, n>0, (76)

wherefrom) 7, a"|zn| < oo follows. On the other hand,

H

n— i

-1 Za' %y — f;a‘zi
= i=

I
o

S
=

o a- in_l)zi’n,i — Zai Zi
i=0

i=0
k=1 k=1
= ZOI' A—in"H@ni —2z)+ Zot'il’llei
i—0 i—0
n-1 ) 00 )
+Y d@d-in"YHz i — Z“IZ" 1<k<n. (77)

i=k i=k

Due to (75)—(77),

3
._\

-1 Zal ]X|y1 iaizi
i=0

j=

o

=~
=

1Zinoi —zi| +2c(1—a) taX +ck®nl, 1<k<n.

o

Consequently,
_ n-1 i o
Tim n‘l_ _ o Ixy - Za z| <2c(l—a) Yok, k>1,
i=0 j=0
wherefrom (74) results by the limit process—> oo. O

Lemma 9. Let {X,}n=0 be an R-valued homogeneous Markov chain defined on the
probability spaceg€2, F, P) and having a unique invariant probability measuyré ). Let
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P(x,-), x € RY, be the transition probability ofX,}n=0, while f : RIUD — Ris a
Borel-measurable function satisfying

//--~/|f(xo, Xty ooy X)IP(Xj—1, X)) - - - P(Xo, dXq)(dX0) < 00 (78)

(j = 0). If {Xn}n=0 is positive Harris then

n—-1
lim =3 " f (X0, Xigg)
i=0

n—oo

=f/f f (X0, X1, ..., X)) P(Xj—1, dXj) - - - P(Xo, dXp)pe(dXo) w.p.1.
(79)

Proof: Let A € F be the event where (79) holds. Due to Meyn and Tweedie (1993,
Theorem 17.1.2) and (78), there exisie R such thatP(A | Xg = x) = 1. Therefore
and owing to Meyn and Tweedie (1993, Theorem 17.177)\ | Xo = X) = 1,V¥x € RY,
wherefromP(A) = 1 follows. This completes the proof. O

Note

In Clark (1984), Kulkarni and Horn (1996), and Wang, Chong, and Kulkarni (1996) the following general result
has been established. Let

Ont1 = On + ¥nr1h(On) + ¥nr1énra, N =0,

where {yn}n=1 is @ sequence of positive reals satisfying AL,RY — RY is a continuous function fullfiling
h(,) = 0 and® — 6,)Th(®) < 0,v8 € RI\{6,}, while 6, ¢ RY is a deterministic vector an,}n=1 is an
R4-valued random process. Then, imy 6, = 6, w.p.1 only if

n
i -1 —
Jlim n ;g. =0 wpl
Using this result and (22) (given in Section 3), it can easily be deduced that the algorithm (1)—(3) converges w.p.1
only if
1 n
Jlim n i;(Ai O +0i) = A0, +b wp.l, (80)
where{An}n=1, {bn}n=1, A andb are defined in (18)—(21) (given in Section 3), while= A~1h. Although A4
is only a sufficient condition for (80) (see Lemma 2), in this context it is hard (if possible at all) to imagine any
weaker condition leading to (80).
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