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Abstract. A neural network is said to be nonoverlapping if there is at most one edge outgoing from each
node. We investigate the number of examples that a learning algorithm needs when using nonoverlapping neural
networks as hypotheses. We derive bounds for this sample complexity in terms of the Vapnik-Chervonenkis
dimension. In particular, we consider networks consisting of threshold, sigmoidal and linear gates. We show
that the class of nonoverlapping threshold networks and the class of nonoverlapping sigmoidal networks on
inputs both have Vapnik-Chervonenkis dimensia(logn). This bound is asymptotically tight for the class of
nonoverlapping threshold networks. We also present an upper bound for this class where the constants involved are
considerably smaller than in a previous calculation. Finally, we argue that the Vapnik-Chervonenkis dimension
of nonoverlapping threshold or sigmoidal networks cannot become larger by allowing the nodes to compute
linear functions. This sheds some light on a recent result that exhibited neural networks with quadratic Vapnik-
Chervonenkis dimension.
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1. Introduction

The sample complexity, that is, the number of examples required for a learning algorithm
to create hypotheses that generalize well, is a central issue in machine learning. How the
sample complexity depends on the structure and the parameters that define a hypothesis
classis a question that is often amenable to theoretical investigations. In this paper we study
the sample complexity for hypothesis classes consisting of nonoverlapping neural networks.
These are feedforward networks where each node, except the output node, has exactly one
outgoing connection. Since such networks have less degrees of freedom, learning using
these hypotheses is expected to be more efficient in terms of sample size and computing
time than when using unrestricted neural networks.

The computational complexity of learning using nonoverlapping networks has been ex-
tensively studied in the literature. Angluin, Hellerstein, and Karpinski (1993), for instance,
investigated the existence of efficient algorithms that use queries to learn networks that
are known as Boolean trees or read-once formulas. In particular, they showed that read-
once formulas can be exactly identified in polynomial time using both equivalence and
membership queries. They also proved a negative result stating that neither equivalence
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nor membership queries alone are sufficient to exactly identify all read-once formulas in
polynomial time. Research on the learnability of nonoverlapping networks employing
neural gates has been initiated by Golea, Marchand, and Hancock (1993). They studied
the probably approximately correct (PAC) learnability of so-calleBerceptron networks

with binary weights: Au-Perceptron network is a disjunction of threshold gates where
each input node is connected to exactly one threshold gate. In particular, they designed
algorithms that PAC learn these networks in polynomial time from examples only when
these examples are randomly drawn under the uniform distribution. Golea, Marchand, and
Hancock (1996) generalized these results to tree structures in the farrR@fceptron de-

cision lists. General nonoverlapping architectures that employ threshold gates as network
nodes were considered by Hancock, Golea, and Marchand (1994). They gave a polynomial-
time algorithm that PAC learns any nonoverlapping threshold network from examples and
membership queries under an arbitrary unknown distribution of the examples.

In this article we investigate the sample complexity for nonoverlapping neural networks
in terms of their Vapnik-Chervonenkis (VC) dimension. It is well known that the VC
dimension of a function class gives asymptotically tight bounds on the number of training
examples needed for PAC learning this class. For detailed definitions and results for this
model of learnability we refer the reader to Anthony and Biggs (1992), Blumer et al.
(1989), and Valiant (1984). Moreover, these estimates of the sample complexity in terms
of the VC dimension hold even for agnostic PAC learning, that is, in the case when the
training examples are generated by some arbitrary probability distribution (Haussler, 1992).
Furthermore, the VC dimension is known to yield bounds for the complexity of learning in
various on-line learning models (Littlestone, 1988; Maass &ahud'992).

Results on the VC dimension for neural networks abound; see, for instance, the survey
by Maass (1995). We briefly mention the most relevant ones for this article. Concerning
upper bounds, a feedforward network of threshold gates is known to have VC dimension at
mostO(w log w) wherew is the number of weights (Baum & Haussler, 1989). Networks
using piecewise polynomial functions for their gates have VC dimer@iar?) (Goldberg
& Jerrum, 1995) whereas for sigmoidal networks the boOrigh*) is known (Karpinski &
Macintyre, 1997). With respect to lower bounds threshold networks with VC dimension
Q(w log w) have been constructed (Sakurai, 1993; Maass, 1994). Furthermore, Koiran
and Sontag (1997) have shown that there are neural networks with VC dime&ngich.

Among these are networks that consist of both threshold and linear gates, and sigmoidal
networks.

Bounds on the VC dimension for neural networks are usually given in terms of the number
of programmable parameters, that are, most commonly, the weights, of these networks. In
contrast to the majority of the results in the literature, however, we are not looking at the
VC dimension of a single network with a fixed underlying graph, but of the entire class
of nonoverlapping networks employing a specified activation function. This must be taken
into account when comparing our results with other ones.

The first result on the sample complexity for nonoverlapping neural networks is due to
Hancock, Golea, and Marchand (1994). They showed that the VC dimension of the class
of nonoverlapping networks having threshold gates as nodes—they called these networks
nonoverlapping Perceptron networks—@gn log n) wheren is the number of inputs.We
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take this result as a starting line for our work. After introducing the basic definitions in
Section 2 we show in Section 3 that the class of nonoverlapping threshold networks has VC
dimensior2(n log n), which is—according to the result of Hancock, Golea, and Marchand
(1994)—asymptotically tight. Moreover, we show that this bound remains valid even when
all networks are required to have depth two and their output gate computes a disjunction.
This lower bound is then easily transferred to nonoverlapping networks with sigmoidal
gates. In Section 4 we provide a new calculation for an upper bound that considerably
improves the constants of Hancock, Golea and Marchand (1994). Section 5 is a short
note on how to derive the upper boumin?) for the class of nonoverlapping sigmoidal
networks. Finally, in Section 6 we show that adding linear gates to nonoverlapping threshold
or sigmoidal networks cannot increase their VC dimension. Interestingly, it was this use
of linear gates that lead to a quadratic lower bound for sigmoidal neural networks in the
work of Koiran and Sontag (1997). Consequently, if the lower bo@rid log n) is not

tight for nonoverlapping sigmoidal networks one has to look for new techniques in search
for asymptotically better bounds.

2. Basic definitions

A nonoverlapping neural netwoik a feedforward neural network where there is at most
one edge outgoing from each node (see figure 1). In other words, the connectivity or
architecture of the network is a tréeThe notion of “nonoverlapping” can be traced back

to the work of Barkai, Hansel, and Kanter (1990) and has been introduced to model a type
of biological neural network where the receptive fields of the neurons do not overlap, i.e.,
are pairwise disjoint. In a nonoverlapping neural network there is exactly one node, the
output nodethat has no edge outgoing. Monoverlapping neural network on n inputas

n leaves, also callethput nodes The depthof a nonoverlapping neural network is the
length of the longest path from an input node to the output node. The nodes that are not

L .

Figure L Two examples for nonoverlapping neural networks on seven inputs each. The filled circles are the input
nodes, all other ones are computation nodes. Circles with no outgoing connections are output nodes. Network
(a) has depth three, network (b) is a depth-two network with a disjunction as output gate such as considered in
Section 3. Not shown are the parameters that are associated with each computation node: one weight for each
incoming connection and a threshold (except for the output node of network (b) which has no parameters since it
is assumed to compute a fixed Boolean disjunction).
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leaves are also known asmputation nodesEach computation node has associated with
itself a set ok + 1 real-valued parameters whéees the in-degree of the node: the weights
w1, ..., wk and the thresholtl

We use nonoverlapping neural networks for computations over the reals by assigning
functions to its computation nodes and values to their parameters. We consider three types
of functions that the nodes may use. Alltypes are obtained by applying a so-called activation
function to the weighted suma;x; + - - - + wgXk — t wherex, ..., X are the input values
for the node computed by its predecessors. (The values computed by the input nodes are the
input values for the network.) A node becomebeshold gatevhen it uses as activation
function the signum function with sigg) = 1 if y > 0, and sigity) = O otherwise. A
sigmoidal gates a node that uses the sigmoidal functigiill+ eY). Finally, alinear gate
applies the identity function, that is, it simply outputs the weighted sum.

A nonoverlapping threshold netwoidka network where all computation nodes are thresh-
old gates. Correspondingly, we spealohoverlapping sigmoidal networksdnonover-
lapping linear networkslf we allow more than one type of activation function for a network
then we shall assume that each of its computation nodes may use all types specified. Since
we restrict our investigations to networks that comg@tel}-valued functions, we assume
the output of a network to be thresholded at 1/2 if the output node is a linear or sigmoidal
gate. Thus we can associate with each network amputs a set of functions froriR"
to {0, 1} which are obtained by choosing activation functions for its nodes and varying its
parameters over the reals. Iolass of nonoverlapping networ&i members have the same
number of inputs, denoted lny and choose gate functions for their nodes from a specified
set, which can be of the three types specified above. The set of functions computed by a
class of networks is then defined straightforward as the union of the sets computed by its
members.

A dichotomyof a setS C R" is a partition ofS into two disjoint subset&), S such
that U S = S. Given a setF of functions fromR" to {0, 1} and a dichotomy&, S
of S, we say thatF inducesthe dichotomyS,, S, on Sif there is a functionf € F
such thatf () <€ {0} and f(S) C {1}. We say further thafF shatters Sf F induces
all dichotomies ors. The Vapnik-Chervonenkig¢vC) dimensiorof 7, VCdim(F), is de-
fined as the largest numben such that there is a set ofi elements that is shattered
by F.

3. Lower bounds on the VC dimension for nonoverlapping threshold
and sigmoidal networks

In this section we consider nonoverlapping neural networks consisting of threshold and

sigmoidal gates. We first establish a lower bound on the VC dimension for a class of

nonoverlapping threshold networks with certain restrictions: We assume that each network
has only two layers of computation nodes and that the output node computes a disjunction
(see figure 1(b) for an example).

Theorem 1. Foreachmk > 1there exists a set § {0, 1}™ 2" of cardinality|S| = m-k
that is shattered by the class of nonoverlapping threshold networks of depth two that have
a disjunction as output gate.
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Proof: Letthe setS C {0, 1}”‘*2k be defined as
S={g:i=1....mx{d:j=1...,k

whereg € {0, 1}™ is thei-th unit vector, i.e., the vector wita 1 in the -th component and
Os elsewhere, ard} < {0, 1}2k is specified as follows: Led, ..., Ax be an enumeration
ofall subsets ofl, . . ., k}. We denote the’2components of vectat; byd;(D),...,d; (24).
Foreachj € {1,...,k}andl € {1, ..., 2} we define the value of componeti(l) by

1 ifjeA,
)= {0 otherwise
Obviously, S consists ofm - k elements. We claim thas is shattered by the class of
nonoverlapping threshold networks of depth two having a disjunction as output gate. In
order to prove this we show that for ea8hc Sthere are weights and thresholds for such a
network such that this network outputs 1 for elementSjrand 0 for elements i8\S. Fix
some arbitraryS € S. Fori = 1,..., mleta(i) be the (unique) element ifi, . .., 2}
such that

Aoz(i) ={] de € S}

For convenience we call the input nodes 1, m the e-inputs, and the input nodes +
1,...,m+ 2X the d-inputs. Thus input noden + | becomegd-input |. We employ for
each element in the range @fa threshold gat&, i, that has a connection froatinput
a(i) and from none of the othet-inputs. Further, we conneetinputi to gateG,, for
i =1,...,m. (Notice that this may result in gates that have connections from more than
onee-input.) The weights of all connections are fixed to 1 and the thresholds of the gates
are set to 2. Obviously, there is at most one connection outgoing from each input node, so
that the disjunction of these threshold gates is a nonoverlapping network.

Finally, we verify that the network computes the desired functiorSorSuppose that
x € S wherex = gd;. The definition ofx implies thatj € A,. Hence component(i)
of d; has valuedj («(i)) = 1. Since gatés, receives two 1s—one fromrinputi and
one fromd-input« (i )—the output of the network fogd; is 1.

Assume on the other hand thatl; € S\S. Thenj ¢ A, and gateG, ), which is
the only gate that receigea 1 from are-input, receives only 0s fromd-input« (i) (which
according to the construction is the omlyinput G, is connected to). All other gate€,
wherel # «(i), receive at most one 1, which is then frakinput! only. Hence, the output
of the network fore d; is 0. m)

Choosingn = n/2 andk = |log(n/2) | in Theorem 1, we have+ 2K <n/2+n/2 =n.
Hence there is a s& C {0, 1}" of cardinalitym - k = Q(nlogn) that is shattered by the
class of networks considered in the above theorem.

Corollary 1. The VC dimension of the class of nonoverlapping threshold networks on n
inputsis (n log n). This even holds if all input values are binary and the class is restricted
to nonoverlapping threshold networks of depth two with a disjunction as output gate.
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It is well known that in a network that computes a Boolean function a threshold gate
can be replaced by a sigmoidal gate without changing the function of the network. (If
necessary, the weights have to be scaled appropriately. See, for instance, Maass, Schnitger,
and Sontag (1994) for a treatment in the context of circuit complexity). Thus, the lower
bound (n log n) also holds for nonoverlapping depth-two networks that may consist of
threshold or sigmoidal gates.

Corollary 2. The class of nonoverlapping depth-two networks on n inputs with threshold
or sigmoidal gates has VC dimensi@rn log n). This even holdsif the inputs are restricted
to binary values.

We note that depth two is minimal for this lower bound since a threshold gate and a
sigmoidal gate both have VC dimensiont+ 1: This follows for the threshold gate from a
bound on the number of different regions arising from sets of hyperplari@%hich is
due to Schfli (1901) (see also Cover (1965)). For the sigmoidal gate this follows from the
fact that its pseudo dimensionnst+ 1 (Haussler, 1992).

Together with the upper bour@d(nlogn) which has been obtained by Hancock, Golea,
and Marchand (1994) we get asymptotically tight bounds for the class of nonoverlapping
threshold networks.

Corollary 3. The VC dimension of the class of nonoverlapping threshold networks on n
inputs is®(nlogn). This holds also for the class of nonoverlapping threshold networks of
depth two. Moreover, this bound remains valid for both classes if the inputs are restricted
to binary values.

4. Improved upper bounds for nonoverlapping threshold networks

In this section we establish upper bounds for the VC dimension of the class of nonover-
lapping threshold networks. Regarding the constants these bounds are better than a pre-
vious result derived by Hancock, Golea, and Marchand (1994) whichriddtig2en) +

4n log log(4n).

Theorem 2. The class of nonoverlapping threshold networks on n inputs, wheré ée,
has VC dimension at moéh log(+/3n).

Proof: We estimate the number of dichotomies that are induced by the class of nonover-
lapping threshold networks on an arbitrary set of cardinatity Using the upper bound
(4n)"~* on the number of different nonoverlapping networks (or architectures)mputs,
which was obtained in Lemma 3 of Hancock, Golea, and Marchand (1994) we first derive
an upper bound on the number of dichotomies that a single such network induces when all
its weights and thresholds are varied.

Let one such network be given and assume without loss of generality that the computation
nodes at the lowest level (i.e., those nodes that have input nodes as predecessors) have
in-degree 1 and that all other computation nodes have in-degree at least 2. Each of the
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computation nodes at the lowest level induces at mogtizhotomies on a set of cardinality
m. The whole levelinduces therefore at m@n)" different dichotomies. The computation
nodes with in-degree at least 2 form a nonoverlapping network that consists of at mbst
nodes and has at mogt 2 2 edges leading to one of these nodes.

According to aresult by Shawe-Taylor (199%)e number of dichotomies that a threshold
network with N computation nodes, partitioned intoequivalence classes, akid edges
induces on a set of cardinality is at most

N W—v
2”( em > .
W—v
UsingN =n—1,v = n—1, andW = 2n — 2 we get that the number of dichotomies
induced by a nonoverlapping threshold network consisting-efl computation nodes and
2n — 2 edges is at most"2t(em)" 1.

Putting the bounds together, the total number of dichotomies induced on a set of cardi-
nality m by the class of honoverlapping threshold networksi@mputs is at most

@m"t.em" - 2" em"
Assume now that a set of cardinalityis shattered. Then

2" < @m"t 2em - 2" Hem)
= 2(16en)"t. m™1
< 2(mn?L.

For the last inequality we have used the assumptien 16e. Taking logarithms on both
sides we obtain

m < (2n — 1) log(mn) + 1.
We weaken this to

m < 2n log(mn). 1)
Assume without loss of generality thait> logn. Then it is easy to see that for each such
m there is a real number> 1 such thatn can be written asn = r log(rn). Substituting
this in (1) yields

r log(rn) < 2n(log(rn log(rn)))
= 2n(log(rn) + log log(rn)) (2)
< 3nlog(rn). 3)
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The last inequality follows from logn) < ./rn which holds sincen > 16e. We divide
both sides by logn) and get

r <3n. 4)
This implies
r log(rn) < 3nlog(3n?).

Resubstitutingn = r log(rn) for the left hand side and rearranging the right hand side
yields

m < 6nlog(+/3n)
as claimed. O

In the statement of Theorem 2 the number of inputs is required to satisfy16e.
We shall show now that we can get the upper bound as closeltmé/2n) as we want
provided than is large enough.

Theorem 3. For eache > 0, the class of nonoverlapping threshold networks on n inputs
has VC dimension at mo4t1 + ¢)nlog(./2(1 + ¢)n) for all sufficiently large n.

Proof: (Sketch) Fixe > 0 andr > 1. Forn sufficiently large we have Ilaqgn) <
(rn)¢. Using this in the inequality from (2) to (3) we can infer< 2(1 + ¢)n in place
of (4). Proceeding similarly as in the last steps of the proof this leads then to the claimed
result. O

5. A note on the upper bound for nonoverlapping sigmoidal networks

Using known results on the VC dimension it is straightforward to derive the upper bound
O(n*) for nonoverlapping sigmoidal networks. We give a brief account.

Proposition 1. The class of nonoverlapping sigmoidal networks on n inputs has VC
dimension @n%).

Proof: The VC dimension of a sigmoidal neural network withweights is O(w?).

This has been shown by Karpinski and Macintyre (1997). By Sauer's Lemma (see, e.g.,
Anthony and Biggs (1992)) the number of dichotomies induced by a class of functions with
VC dimensiond > 2 on a set of cardinalityn > 2 can be bounded from above hy'.

Thus a nonoverlapping sigmoidal networkmmputs induces at mosa®™ dichotomies

on such a set. Combining this with the boudd)"~* employed in the proof of Theorem 2

and using similar arguments we obtain the bound as claimed. O
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6. Nonoverlapping neural networks containing linear gates

From the work of Goldberg and Jerrum (1995) it has been known that neural networks
employing piecewise polynomial activation functions have VC dimen&¢n?), where
w is the number of weights. The question whether this bound is tight for such networks
has been settled by Koiran and Sontag (1997). They have shown that networks consisting
of threshold and linear gates can have VC dimensign?). This result was somewhat
unexpected since networks consisting of linear gates only compute linear functions and
therefore have VC dimensiod (w). On the other hand, networks consisting of threshold
gates only have VC dimensidd(w logw). This follows from work of Cover (1968) and
has also been shown by Baum and Haussler (1989). Results that this bound is tight for
threshold networks are due to Sakurai (1993) and Maass (1994).

Therefore, the question arises whether a similar increase of the VC dimension is possible
for nonoverlapping threshold or sigmoidal networks by allowing some of the nodes to
compute linear functions. We show now that this cannot happen.

Theorem 4. Let\ be a class of nonoverlapping neural networks consisting of threshold
or sigmoidal gates and le¥"" be a class of neural networks obtained frévrby replacing
some of the gates by linear gates. Tha&@dim(\) > VCdim(\'M).

Proof: We show that in a nonoverlapping network of threshold or sigmoidal gates nodes
computing linear functions can be replaced or eliminated without changing the function
of the network. Assuma@l is a nonoverlapping network andis a node inN computing
a linear function. Ify is the output node theg can be replaced by a threshold gate or
a sigmoidal gate, where weights and threshold are modified if necessary. (Note that the
output of the nonoverlapping neural network is thresholded at 1/2 for linear and sigmoidal
output gates.)

If yis a hidden node (i.e., a computation node that is not the output node) then there is
a unique edge outgoing fromy to its successaz. Denote the weight of by w. Assume
thaty computes the function;x; + - - - + ukXx — t wherexy, . .., X are the predecessors
of y, anduy, ..., ug, t are its weights and threshold. We delete ngdend edges, and
introducek edges fronxg, . . ., Xk respectively ta. We assign weighiu; to the edge from
x fori = 1,...,nand decrease the thresholdziby wt. It can readily be seen that the
resulting network is still nonoverlapping and computes the same functiin as O

Combining Theorems 2 and 3 with Theorem 4 we obtain an upper bound for the class of
nonoverlapping neural networks with threshold or linear gates.

Corollary 4.  The class of nonoverlapping neural networks on n inputs with threshold
or linear gates has VC dimension at md@stlog(+/3n) for n > 16e. Furthermore for
eache > 0, the VC dimension of this class is at mds¢t + ¢)nlog(+/2(1 + ¢)n) for all
sufficiently large n.

The technique used in the proof can also be applied to nonoverlapping neural networks
that employ a much wider class of gates. If the function computed by a gate can be
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decomposed into a linear and a non-linear part then the method of deleting a hidden linear
node works the same way. Only if the node to be treated is the output node there have
to be made some further demands on its function: A sufficient condition is, for instance,
monotonicity. If the non-linear part of the gate function is monotonous then a linear output
node can be replaced by such a gate without decreasing the VC dimension of the network.

7. Conclusions

Finding methods that incorporate prior knowledge into learning algorithms is an active
research area in theoretical and applied machine learning. In the case of neural learning
algorithms such knowledge might be reflected in a restricted connectivity of the network
generated by the algorithm. We have studied neural networks where each node has at most
one outgoing connection and have analyzed the impact that this restriction has on the
sample complexity for classes of these networks. The results we derived are given in terms
of bounds for their VC dimension.

In this article we have established the asymptotically tight bdutdlog n) for the class
of nonoverlapping threshold networks. We have also derived an improved upper bound
for this class. Further, we have considered the implications of having linear gates in
nonoverlapping networks: Due to our result demonstrating that the use of linear gates in
nonoverlapping threshold networks cannot increase their VC dimension, a known technique
to construct networks with quadratic VC dimension does not work for nonoverlapping
networks. As a consequence of this, the gap between the currently best known lower and
upper bounds for the class of nonoverlapping sigmoidal networks, whicf2 @aréog n)
and O(n%), is larger than it is for general, i.e. possibly overlapping, sigmoidal networks.
To reduce the gap and to extend these investigations to other frequently used types of gates
are challenging open problems for future research.
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Notes

1. Since a nonoverlapping neural networkroimputs hagO (n) weights, it is convenient to formulate the bounds
in terms of the number of inputs. We follow this convention throughout the paper.

2. Adopting this notion from graph theory, such a network might most appropriately be called a neural tree.
However, this term is avoided here since it is already in use for a completely different classification method
based on neural computations along the branches of a decision tree (see, e.g., Golea and Marchand (1990) and
Sirat and Nadal (1990)). | thank the anonymous referee who pointed this out.

3. We do not make use of the equivalence relations involved in this result but of the improvement that it achieves
compared to Baum and Haussler (1989).
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