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Abstract. A neural network is said to be nonoverlapping if there is at most one edge outgoing from each
node. We investigate the number of examples that a learning algorithm needs when using nonoverlapping neural
networks as hypotheses. We derive bounds for this sample complexity in terms of the Vapnik-Chervonenkis
dimension. In particular, we consider networks consisting of threshold, sigmoidal and linear gates. We show
that the class of nonoverlapping threshold networks and the class of nonoverlapping sigmoidal networks onn
inputs both have Vapnik-Chervonenkis dimensionÄ(n logn). This bound is asymptotically tight for the class of
nonoverlapping threshold networks. We also present an upper bound for this class where the constants involved are
considerably smaller than in a previous calculation. Finally, we argue that the Vapnik-Chervonenkis dimension
of nonoverlapping threshold or sigmoidal networks cannot become larger by allowing the nodes to compute
linear functions. This sheds some light on a recent result that exhibited neural networks with quadratic Vapnik-
Chervonenkis dimension.
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1. Introduction

The sample complexity, that is, the number of examples required for a learning algorithm
to create hypotheses that generalize well, is a central issue in machine learning. How the
sample complexity depends on the structure and the parameters that define a hypothesis
class is a question that is often amenable to theoretical investigations. In this paper we study
the sample complexity for hypothesis classes consisting of nonoverlapping neural networks.
These are feedforward networks where each node, except the output node, has exactly one
outgoing connection. Since such networks have less degrees of freedom, learning using
these hypotheses is expected to be more efficient in terms of sample size and computing
time than when using unrestricted neural networks.

The computational complexity of learning using nonoverlapping networks has been ex-
tensively studied in the literature. Angluin, Hellerstein, and Karpinski (1993), for instance,
investigated the existence of efficient algorithms that use queries to learn networks that
are known as Boolean trees or read-once formulas. In particular, they showed that read-
once formulas can be exactly identified in polynomial time using both equivalence and
membership queries. They also proved a negative result stating that neither equivalence
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nor membership queries alone are sufficient to exactly identify all read-once formulas in
polynomial time. Research on the learnability of nonoverlapping networks employing
neural gates has been initiated by Golea, Marchand, and Hancock (1993). They studied
the probably approximately correct (PAC) learnability of so-calledµ-Perceptron networks
with binary weights: Aµ-Perceptron network is a disjunction of threshold gates where
each input node is connected to exactly one threshold gate. In particular, they designed
algorithms that PAC learn these networks in polynomial time from examples only when
these examples are randomly drawn under the uniform distribution. Golea, Marchand, and
Hancock (1996) generalized these results to tree structures in the form ofµ-Perceptron de-
cision lists. General nonoverlapping architectures that employ threshold gates as network
nodes were considered by Hancock, Golea, and Marchand (1994). They gave a polynomial-
time algorithm that PAC learns any nonoverlapping threshold network from examples and
membership queries under an arbitrary unknown distribution of the examples.

In this article we investigate the sample complexity for nonoverlapping neural networks
in terms of their Vapnik-Chervonenkis (VC) dimension. It is well known that the VC
dimension of a function class gives asymptotically tight bounds on the number of training
examples needed for PAC learning this class. For detailed definitions and results for this
model of learnability we refer the reader to Anthony and Biggs (1992), Blumer et al.
(1989), and Valiant (1984). Moreover, these estimates of the sample complexity in terms
of the VC dimension hold even for agnostic PAC learning, that is, in the case when the
training examples are generated by some arbitrary probability distribution (Haussler, 1992).
Furthermore, the VC dimension is known to yield bounds for the complexity of learning in
various on-line learning models (Littlestone, 1988; Maass & Tur´an, 1992).

Results on the VC dimension for neural networks abound; see, for instance, the survey
by Maass (1995). We briefly mention the most relevant ones for this article. Concerning
upper bounds, a feedforward network of threshold gates is known to have VC dimension at
mostO(w log w) wherew is the number of weights (Baum & Haussler, 1989). Networks
using piecewise polynomial functions for their gates have VC dimensionO(w2) (Goldberg
& Jerrum, 1995) whereas for sigmoidal networks the boundO(w4) is known (Karpinski &
Macintyre, 1997). With respect to lower bounds threshold networks with VC dimension
Ä(w log w) have been constructed (Sakurai, 1993; Maass, 1994). Furthermore, Koiran
and Sontag (1997) have shown that there are neural networks with VC dimensionÄ(w2).
Among these are networks that consist of both threshold and linear gates, and sigmoidal
networks.

Bounds on the VC dimension for neural networks are usually given in terms of the number
of programmable parameters, that are, most commonly, the weights, of these networks. In
contrast to the majority of the results in the literature, however, we are not looking at the
VC dimension of a single network with a fixed underlying graph, but of the entire class
of nonoverlapping networks employing a specified activation function. This must be taken
into account when comparing our results with other ones.

The first result on the sample complexity for nonoverlapping neural networks is due to
Hancock, Golea, and Marchand (1994). They showed that the VC dimension of the class
of nonoverlapping networks having threshold gates as nodes—they called these networks
nonoverlapping Perceptron networks—isO(n log n)wheren is the number of inputs.1 We
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take this result as a starting line for our work. After introducing the basic definitions in
Section 2 we show in Section 3 that the class of nonoverlapping threshold networks has VC
dimensionÄ(n log n), which is—according to the result of Hancock, Golea, and Marchand
(1994)—asymptotically tight. Moreover, we show that this bound remains valid even when
all networks are required to have depth two and their output gate computes a disjunction.
This lower bound is then easily transferred to nonoverlapping networks with sigmoidal
gates. In Section 4 we provide a new calculation for an upper bound that considerably
improves the constants of Hancock, Golea and Marchand (1994). Section 5 is a short
note on how to derive the upper boundO(n4) for the class of nonoverlapping sigmoidal
networks. Finally, in Section 6 we show that adding linear gates to nonoverlapping threshold
or sigmoidal networks cannot increase their VC dimension. Interestingly, it was this use
of linear gates that lead to a quadratic lower bound for sigmoidal neural networks in the
work of Koiran and Sontag (1997). Consequently, if the lower boundÄ(n log n) is not
tight for nonoverlapping sigmoidal networks one has to look for new techniques in search
for asymptotically better bounds.

2. Basic definitions

A nonoverlapping neural networkis a feedforward neural network where there is at most
one edge outgoing from each node (see figure 1). In other words, the connectivity or
architecture of the network is a tree.2 The notion of “nonoverlapping” can be traced back
to the work of Barkai, Hansel, and Kanter (1990) and has been introduced to model a type
of biological neural network where the receptive fields of the neurons do not overlap, i.e.,
are pairwise disjoint. In a nonoverlapping neural network there is exactly one node, the
output node, that has no edge outgoing. Anonoverlapping neural network on n inputshas
n leaves, also calledinput nodes. The depthof a nonoverlapping neural network is the
length of the longest path from an input node to the output node. The nodes that are not

Figure 1. Two examples for nonoverlapping neural networks on seven inputs each. The filled circles are the input
nodes, all other ones are computation nodes. Circles with no outgoing connections are output nodes. Network
(a) has depth three, network (b) is a depth-two network with a disjunction as output gate such as considered in
Section 3. Not shown are the parameters that are associated with each computation node: one weight for each
incoming connection and a threshold (except for the output node of network (b) which has no parameters since it
is assumed to compute a fixed Boolean disjunction).
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leaves are also known ascomputation nodes. Each computation node has associated with
itself a set ofk+1 real-valued parameters wherek is the in-degree of the node: the weights
w1, . . . , wk and the thresholdt .

We use nonoverlapping neural networks for computations over the reals by assigning
functions to its computation nodes and values to their parameters. We consider three types
of functions that the nodes may use. All types are obtained by applying a so-called activation
function to the weighted sumw1x1+ · · · +wkxk − t wherex1, . . . , xk are the input values
for the node computed by its predecessors. (The values computed by the input nodes are the
input values for the network.) A node becomes athreshold gatewhen it uses as activation
function the signum function with sign(y) = 1 if y ≥ 0, and sign(y) = 0 otherwise. A
sigmoidal gateis a node that uses the sigmoidal function 1/(1+e−y). Finally, alinear gate
applies the identity function, that is, it simply outputs the weighted sum.

A nonoverlapping threshold networkis a network where all computation nodes are thresh-
old gates. Correspondingly, we speak ofnonoverlapping sigmoidal networksandnonover-
lapping linear networks. If we allow more than one type of activation function for a network
then we shall assume that each of its computation nodes may use all types specified. Since
we restrict our investigations to networks that compute{0, 1}-valued functions, we assume
the output of a network to be thresholded at 1/2 if the output node is a linear or sigmoidal
gate. Thus we can associate with each network onn inputs a set of functions fromRn

to {0, 1} which are obtained by choosing activation functions for its nodes and varying its
parameters over the reals. In aclass of nonoverlapping networksall members have the same
number of inputs, denoted byn, and choose gate functions for their nodes from a specified
set, which can be of the three types specified above. The set of functions computed by a
class of networks is then defined straightforward as the union of the sets computed by its
members.

A dichotomyof a setS ⊆ Rn is a partition ofS into two disjoint subsetsS0, S1 such
that S0 ∪ S1 = S. Given a setF of functions fromRn to {0, 1} and a dichotomyS0, S1

of S, we say thatF inducesthe dichotomyS0, S1 on S if there is a function f ∈ F
such that f (S0) ⊆ {0} and f (S1) ⊆ {1}. We say further thatF shatters Sif F induces
all dichotomies onS. TheVapnik-Chervonenkis(VC) dimensionof F , VCdim(F), is de-
fined as the largest numberm such that there is a set ofm elements that is shattered
byF .

3. Lower bounds on the VC dimension for nonoverlapping threshold
and sigmoidal networks

In this section we consider nonoverlapping neural networks consisting of threshold and
sigmoidal gates. We first establish a lower bound on the VC dimension for a class of
nonoverlapping threshold networks with certain restrictions: We assume that each network
has only two layers of computation nodes and that the output node computes a disjunction
(see figure 1(b) for an example).

Theorem 1. For each m, k ≥ 1 there exists a set S⊆ {0, 1}m+2k
of cardinality|S| = m·k

that is shattered by the class of nonoverlapping threshold networks of depth two that have
a disjunction as output gate.
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Proof: Let the setS⊆ {0, 1}m+2k
be defined as

S= {ei : i = 1, . . . ,m} × {dj : j = 1, . . . , k}

whereei ∈ {0, 1}m is thei -th unit vector, i.e., the vector with a 1 in thei -th component and
0s elsewhere, anddj ∈ {0, 1}2k

is specified as follows: LetA1, . . . , A2k be an enumeration
of all subsets of{1, . . . , k}. We denote the 2k components of vectordj bydj (1), . . . ,dj (2k).
For eachj ∈ {1, . . . , k} andl ∈ {1, . . . ,2k} we define the value of componentdj (l ) by

dj (l ) =
{

1 if j ∈ Al ,

0 otherwise.

Obviously, S consists ofm · k elements. We claim thatS is shattered by the class of
nonoverlapping threshold networks of depth two having a disjunction as output gate. In
order to prove this we show that for eachS′ ⊆ S there are weights and thresholds for such a
network such that this network outputs 1 for elements inS′, and 0 for elements inS\S′. Fix
some arbitraryS′ ⊆ S. For i = 1, . . . ,m let α(i ) be the (unique) element in{1, . . . ,2k}
such that

Aα(i ) = { j : ei dj ∈ S′}.

For convenience we call the input nodes 1, . . . ,m thee-inputs, and the input nodesm+
1, . . . ,m + 2k the d-inputs. Thus input nodem + l becomesd-input l . We employ for
each element in the range ofα a threshold gateGα(i ) that has a connection fromd-input
α(i ) and from none of the otherd-inputs. Further, we connecte-input i to gateGα(i ) for
i = 1, . . . ,m. (Notice that this may result in gates that have connections from more than
onee-input.) The weights of all connections are fixed to 1 and the thresholds of the gates
are set to 2. Obviously, there is at most one connection outgoing from each input node, so
that the disjunction of these threshold gates is a nonoverlapping network.

Finally, we verify that the network computes the desired function onS. Suppose that
x ∈ S′ wherex = ei dj . The definition ofα implies that j ∈ Aα(i ). Hence componentα(i )
of dj has valuedj (α(i )) = 1. Since gateGα(i ) receives two 1s—one frome-input i and
one fromd-inputα(i )—the output of the network forei dj is 1.

Assume on the other hand thatei dj ∈ S\S′. Then j 6∈ Aα(i ) and gateGα(i ), which is
the only gate that receives a 1 from ane-input, receives only 0s fromd-inputα(i ) (which
according to the construction is the onlyd-input Gα(i ) is connected to). All other gatesGl ,
wherel 6= α(i ), receive at most one 1, which is then fromd-input l only. Hence, the output
of the network forei dj is 0. 2

Choosingm= n/2 andk = blog(n/2)c in Theorem 1, we havem+ 2k≤ n/2+ n/2= n.
Hence there is a setS⊆ {0, 1}n of cardinalitym · k = Ä(n logn) that is shattered by the
class of networks considered in the above theorem.

Corollary 1. The VC dimension of the class of nonoverlapping threshold networks on n
inputs isÄ(n log n). This even holds if all input values are binary and the class is restricted
to nonoverlapping threshold networks of depth two with a disjunction as output gate.
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It is well known that in a network that computes a Boolean function a threshold gate
can be replaced by a sigmoidal gate without changing the function of the network. (If
necessary, the weights have to be scaled appropriately. See, for instance, Maass, Schnitger,
and Sontag (1994) for a treatment in the context of circuit complexity). Thus, the lower
boundÄ(n log n) also holds for nonoverlapping depth-two networks that may consist of
threshold or sigmoidal gates.

Corollary 2. The class of nonoverlapping depth-two networks on n inputs with threshold
or sigmoidal gates has VC dimensionÄ(n log n). This even holds if the inputs are restricted
to binary values.

We note that depth two is minimal for this lower bound since a threshold gate and a
sigmoidal gate both have VC dimensionn+ 1: This follows for the threshold gate from a
bound on the number of different regions arising from sets of hyperplanes inRn which is
due to Schl¨afli (1901) (see also Cover (1965)). For the sigmoidal gate this follows from the
fact that its pseudo dimension isn+ 1 (Haussler, 1992).

Together with the upper boundO(n logn) which has been obtained by Hancock, Golea,
and Marchand (1994) we get asymptotically tight bounds for the class of nonoverlapping
threshold networks.

Corollary 3. The VC dimension of the class of nonoverlapping threshold networks on n
inputs is2(n logn). This holds also for the class of nonoverlapping threshold networks of
depth two. Moreover, this bound remains valid for both classes if the inputs are restricted
to binary values.

4. Improved upper bounds for nonoverlapping threshold networks

In this section we establish upper bounds for the VC dimension of the class of nonover-
lapping threshold networks. Regarding the constants these bounds are better than a pre-
vious result derived by Hancock, Golea, and Marchand (1994) which is 13n log(2en) +
4n log log(4n).

Theorem 2. The class of nonoverlapping threshold networks on n inputs, where n≥ 16e,
has VC dimension at most6n log(

√
3n).

Proof: We estimate the number of dichotomies that are induced by the class of nonover-
lapping threshold networks on an arbitrary set of cardinalitym. Using the upper bound
(4n)n−1 on the number of different nonoverlapping networks (or architectures) onn inputs,
which was obtained in Lemma 3 of Hancock, Golea, and Marchand (1994) we first derive
an upper bound on the number of dichotomies that a single such network induces when all
its weights and thresholds are varied.

Let one such network be given and assume without loss of generality that the computation
nodes at the lowest level (i.e., those nodes that have input nodes as predecessors) have
in-degree 1 and that all other computation nodes have in-degree at least 2. Each of the
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computation nodes at the lowest level induces at most 2mdichotomies on a set of cardinality
m. The whole level induces therefore at most(2m)n different dichotomies. The computation
nodes with in-degree at least 2 form a nonoverlapping network that consists of at mostn−1
nodes and has at most 2n− 2 edges leading to one of these nodes.

According to a result by Shawe-Taylor (1995)3 the number of dichotomies that a threshold
network with N computation nodes, partitioned intoν equivalence classes, andW edges
induces on a set of cardinalitym is at most

2ν
(

emN

W − ν
)W−ν

.

Using N = n − 1, ν = n − 1, andW = 2n − 2 we get that the number of dichotomies
induced by a nonoverlapping threshold network consisting ofn−1 computation nodes and
2n− 2 edges is at most 2n−1(em)n−1.

Putting the bounds together, the total number of dichotomies induced on a set of cardi-
nality m by the class of nonoverlapping threshold networks onn inputs is at most

(4n)n−1 · (2m)n · 2n−1(em)n−1.

Assume now that a set of cardinalitym is shattered. Then

2m ≤ (4n)n−1 · (2m)n · 2n−1(em)n−1

= 2(16en)n−1 ·m2n−1

≤ 2(mn)2n−1.

For the last inequality we have used the assumptionn ≥ 16e. Taking logarithms on both
sides we obtain

m≤ (2n− 1) log(mn)+ 1.

We weaken this to

m≤ 2n log(mn). (1)

Assume without loss of generality thatm≥ logn. Then it is easy to see that for each such
m there is a real numberr ≥ 1 such thatm can be written asm = r log(rn). Substituting
this in (1) yields

r log(rn) ≤ 2n(log(rn log(rn)))

= 2n(log(rn)+ log log(rn)) (2)

≤ 3n log(rn). (3)
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The last inequality follows from log(rn) ≤ √rn which holds sincern ≥ 16e. We divide
both sides by log(rn) and get

r ≤ 3n. (4)

This implies

r log(rn) ≤ 3n log(3n2).

Resubstitutingm = r log(rn) for the left hand side and rearranging the right hand side
yields

m≤ 6n log(
√

3n)

as claimed. 2

In the statement of Theorem 2 the number of inputs is required to satisfyn ≥ 16e.
We shall show now that we can get the upper bound as close to 4n log(

√
2n) as we want

provided thatn is large enough.

Theorem 3. For eachε > 0, the class of nonoverlapping threshold networks on n inputs
has VC dimension at most4(1+ ε)n log(

√
2(1+ ε)n) for all sufficiently large n.

Proof: (Sketch) Fixε > 0 andr ≥ 1. For n sufficiently large we have log(rn) ≤
(rn)ε. Using this in the inequality from (2) to (3) we can inferr ≤ 2(1+ ε)n in place
of (4). Proceeding similarly as in the last steps of the proof this leads then to the claimed
result. 2

5. A note on the upper bound for nonoverlapping sigmoidal networks

Using known results on the VC dimension it is straightforward to derive the upper bound
O(n4) for nonoverlapping sigmoidal networks. We give a brief account.

Proposition 1. The class of nonoverlapping sigmoidal networks on n inputs has VC
dimension O(n4).

Proof: The VC dimension of a sigmoidal neural network withw weights isO(w4).
This has been shown by Karpinski and Macintyre (1997). By Sauer’s Lemma (see, e.g.,
Anthony and Biggs (1992)) the number of dichotomies induced by a class of functions with
VC dimensiond ≥ 2 on a set of cardinalitym ≥ 2 can be bounded from above bymd.
Thus a nonoverlapping sigmoidal network onn inputs induces at mostmO(n4) dichotomies
on such a set. Combining this with the bound(4n)n−1 employed in the proof of Theorem 2
and using similar arguments we obtain the bound as claimed. 2
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6. Nonoverlapping neural networks containing linear gates

From the work of Goldberg and Jerrum (1995) it has been known that neural networks
employing piecewise polynomial activation functions have VC dimensionO(w2), where
w is the number of weights. The question whether this bound is tight for such networks
has been settled by Koiran and Sontag (1997). They have shown that networks consisting
of threshold and linear gates can have VC dimensionÄ(w2). This result was somewhat
unexpected since networks consisting of linear gates only compute linear functions and
therefore have VC dimensionO(w). On the other hand, networks consisting of threshold
gates only have VC dimensionO(w logw). This follows from work of Cover (1968) and
has also been shown by Baum and Haussler (1989). Results that this bound is tight for
threshold networks are due to Sakurai (1993) and Maass (1994).

Therefore, the question arises whether a similar increase of the VC dimension is possible
for nonoverlapping threshold or sigmoidal networks by allowing some of the nodes to
compute linear functions. We show now that this cannot happen.

Theorem 4. LetN be a class of nonoverlapping neural networks consisting of threshold
or sigmoidal gates and letN lin be a class of neural networks obtained fromN by replacing
some of the gates by linear gates. ThenVCdim(N ) ≥ VCdim(N lin).

Proof: We show that in a nonoverlapping network of threshold or sigmoidal gates nodes
computing linear functions can be replaced or eliminated without changing the function
of the network. AssumeN is a nonoverlapping network andy is a node inN computing
a linear function. Ify is the output node theny can be replaced by a threshold gate or
a sigmoidal gate, where weights and threshold are modified if necessary. (Note that the
output of the nonoverlapping neural network is thresholded at 1/2 for linear and sigmoidal
output gates.)

If y is a hidden node (i.e., a computation node that is not the output node) then there is
a unique edgee outgoing fromy to its successorz. Denote the weight ofe byw. Assume
that y computes the functionu1x1+ · · · + ukxk − t wherex1, . . . , xk are the predecessors
of y, andu1, . . . ,uk, t are its weights and threshold. We delete nodey and edgee, and
introducek edges fromx1, . . . , xk respectively toz. We assign weightwui to the edge from
xi for i = 1, . . . ,n and decrease the threshold ofz by wt . It can readily be seen that the
resulting network is still nonoverlapping and computes the same function asN. 2

Combining Theorems 2 and 3 with Theorem 4 we obtain an upper bound for the class of
nonoverlapping neural networks with threshold or linear gates.

Corollary 4. The class of nonoverlapping neural networks on n inputs with threshold
or linear gates has VC dimension at most6n log(

√
3n) for n ≥ 16e. Furthermore, for

eachε > 0, the VC dimension of this class is at most4(1+ ε)n log(
√

2(1+ ε)n) for all
sufficiently large n.

The technique used in the proof can also be applied to nonoverlapping neural networks
that employ a much wider class of gates. If the function computed by a gate can be
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decomposed into a linear and a non-linear part then the method of deleting a hidden linear
node works the same way. Only if the node to be treated is the output node there have
to be made some further demands on its function: A sufficient condition is, for instance,
monotonicity. If the non-linear part of the gate function is monotonous then a linear output
node can be replaced by such a gate without decreasing the VC dimension of the network.

7. Conclusions

Finding methods that incorporate prior knowledge into learning algorithms is an active
research area in theoretical and applied machine learning. In the case of neural learning
algorithms such knowledge might be reflected in a restricted connectivity of the network
generated by the algorithm. We have studied neural networks where each node has at most
one outgoing connection and have analyzed the impact that this restriction has on the
sample complexity for classes of these networks. The results we derived are given in terms
of bounds for their VC dimension.

In this article we have established the asymptotically tight boundÄ(n log n) for the class
of nonoverlapping threshold networks. We have also derived an improved upper bound
for this class. Further, we have considered the implications of having linear gates in
nonoverlapping networks: Due to our result demonstrating that the use of linear gates in
nonoverlapping threshold networks cannot increase their VC dimension, a known technique
to construct networks with quadratic VC dimension does not work for nonoverlapping
networks. As a consequence of this, the gap between the currently best known lower and
upper bounds for the class of nonoverlapping sigmoidal networks, which areÄ(n log n)
and O(n4), is larger than it is for general, i.e. possibly overlapping, sigmoidal networks.
To reduce the gap and to extend these investigations to other frequently used types of gates
are challenging open problems for future research.
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Notes

1. Since a nonoverlapping neural network onn inputs hasO(n) weights, it is convenient to formulate the bounds
in terms of the number of inputs. We follow this convention throughout the paper.

2. Adopting this notion from graph theory, such a network might most appropriately be called a neural tree.
However, this term is avoided here since it is already in use for a completely different classification method
based on neural computations along the branches of a decision tree (see, e.g., Golea and Marchand (1990) and
Sirat and Nadal (1990)). I thank the anonymous referee who pointed this out.

3. We do not make use of the equivalence relations involved in this result but of the improvement that it achieves
compared to Baum and Haussler (1989).
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