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Abstract. We study the complexity of learning arbitrary Boolean functions ofn variables by membership
queries, if at mostr variables are relevant. Problems of this type have important applications in fault searching,
e.g. logical circuit testing and generalized group testing. Previous literature concentrates on special classes of
such Boolean functions and considers only adaptive strategies. First we give a straightforward adaptive algorithm
using O(r 2r logn) queries, but actually, most queries are asked nonadaptively. This leads to the problem of
purely nonadaptive learning. We give a graph-theoretic characterization of nonadaptive learning families, called
r -wise bipartite connected families. By the probabilistic method we show the existence of such families of size
O(r 2r logn + r 22r ). This implies that nonadaptive attribute-efficient learning is not essentially more expensive
than adaptive learning. We also sketch an explicit pseudopolynomial construction, though with a slightly worse
bound. It uses the common derandomization technique of small-biasedk-independent sample spaces. For the
special caser = 2, we get roughly 2.275 logn adaptive queries, which is fairly close to the obvious lower bound
of 2 logn. For the class of monotone functions, we prove that the optimal query numberO(2r + r logn) can be
already achieved inO(r ) stages. On the other hand,Ä(2r logn) is a lower bound on nonadaptive queries.

Keywords: membership queries, relevant variables, nonadaptive learning, probabilistic method, group testing,
monotone Boolean functions

1. Introduction

This paper addresses the problem of exact learning of Boolean functions by membership
queries, provided that at mostr of the n attributes (variables) are relevant. This is also
known as attribute-efficient learning. We first introduce the learning model and then list our
contributions. Formal definitions follow afterwards.

1.1. The learning model

Let f be a Boolean function, given as an oracle and initially unknown to the learner.
The following procedure is called a membership query (cf. (Angluin, 1987)): The learner
chooses an assignmentx (where each of the variables gets one of the Boolean values 0,1) at
his own discretion, and then the oracle deliversf (x), i.e. the value of the function for this
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assignmentx. Exact learning means that the learner has to identifyf uniquely. The goal is
to learn f exactly, using a possibly small number of membership queries.

Trivially, 2n queries are necessary to identify an arbitrary Boolean function withn vari-
ables. However, if the learner knows in advance thatf belongs to some restricted class of
Boolean functions then this knowledge may be used to devise a clever strategy that needs
fewer queries.

We distinguish between adaptive and nonadaptive learning. In adaptive learning, the
learner is allowed to choose his queries depending on the answers to all his previous queries.
In nonadaptive learning, the learner must fix all queries he wishes to ask in advance, before
obtaining any answer. (This means in particular that queries might be asked in any order,
or simultaneously.) We also consider the intermediate setting of parallel learning. Here the
learning process consists of a number of stages. In every stage, the learner chooses a set of
queries which may depend on the answers obtained in all earlier stages, and then he asks
them simultaneously. In particular, nonadaptive learning is parallel learning in one stage,
whereas the number of stages is unbounded in the case of adaptive learning.

1.2. Our results

It is not surprising that our subject is connected to the well-known(n, r )-universal families.
Informally, a family of assignments is called(n, r )-universal if it includes every assignment
of everyr -element subset of variables.

We start with a straightforward bound for adaptive learning of functions withr rele-
vant variables, namely,U (r, n) + r logn queries are sufficient, whereU (r, n) denotes the
minimum size of an(n, r )-universal family. For trivial reasons,U (r, n) is a lower bound,
and it is known from (Kleitman & Spencer, 1973) thatU (r, n) = Ä(2r logn). Hence this
upper bound is within a factor 1+ O(r/2r ) of optimal. (We mention that the caser = 1
is completely trivial: One can learn even nonadaptively by logn queries.) One can simply
proveU (r, n) = O(r 2r logn)1 by standard application of the probabilistic method (see
e.g. (Motwani & Raghavan, 1995)); deep results onU (r, n) and further references can be
found in Naor, Schulman, and Srinivasan (1995). Most importantly, there exist efficient
deterministic constructions of(n, r )-universal families of only slightly larger size.

It should be noticed that the learner must knowr (or a constant upper bound) before asking
his membership queries: No efficient learning algorithm without previous knowledge ofr
can exist. Even the decision whetherr = 0 orr = n needs 2n queries in the worst case (by a
trivial adversary argument). Several restricted function classes can be efficiently learned by
adaptive queries without prior knowledge ofr , see e.g. (Blum, Hellerstein, & Littlestone,
1995; Bonis & Vaccaro, 1998; Triesch, 1996), some of them by a randomized strategy only
(Damaschke, 1998c). In the case of nonadaptive learning it is anyhow impossible to get a
good query bound inr andn, if r is not given to the learner.

We observe that the overwhelming majority ofU (r, n) queries can be asked nonadap-
tively. This introductory result provokes the question of nonadaptive learning and of query-
stage tradeoffs, which leads us to the most interesting part.

Perhaps the main contribution is the combinatorial characterization of purely (one-stage)
nonadaptive learning byr -wise bipartite connected families, and the subsequent complexity
results. This adds a new meaningful type of combinatorial subset families (or assignment
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families, codes, etc.) to the list of such structures. (For a general introduction to several
combinatorial designs see e.g. (Colbourn & Dinitz, 1996).)

We prove the existence ofr -wise bipartite connected families of sizeO(r 2r logn+r 22r ).
This means that nonadaptive learning of functions withr relevant variables does not signif-
icantly exceed the complexity of adaptive learning. Using ideas from (Naor, Schulman, &
Srinivasan, 1995), we also give a pseudopolynomial construction, though with an additional
r factor in the size. A polynomial construction is missing.

For adaptive learning and particular small values ofr it is interesting to improve the
general upper boundU (r, n)+ r logn and to aim at the best constant factors. We consider
caser = 2 which is already nontrivial, unlike caser = 1. Exploiting a special(n, 2)-
universal family and a previously known result on group testing with two defectives, we
achieve 2.275 logn+ o(logn) queries. (Note that 2 logn is an obvious lower bound.) This
also improves the results of (Uehara, Tsuchida, & Wegener, 1997) in caser = 2. The same
question becomes less important for larger since the ratio ofU (r, n)+ r logn to U (r, n)
goes to 1, as mentioned earlier.

For the class of monotone functions with at mostr relevant variables, the situation is quite
different. It is a straightforward exercise to learn monotone functions byO(2r + r logn)
queries, and this is almost optimal. Here we prove thatO(r ) stages are enough to keep this
query number, even without prior knowledge ofr . In contrast, learning monotone functions
with r relevant variables nonadaptively needsU (r, n) queries, and the learner must knowr
in advance. So there is an exponential gap in the factor before logn, if we consider a range
from O(r ) stages down to 1 stage. It remains open how this tradeoff looks in detail.

1.3. Related work

Beginning with Littlestone (1988), adaptive learning of Boolean functions with few rele-
vant variables has been studied in Blum, Hellerstein, and Littlestone (1995), Bshouty and
Hellerstein (1996), and Uehara, Tsuchida, and Wegener (1997) under several learning mod-
els. The focus was on special function classes that can be learned efficiently in the sense
that the number of queries is polynomial inr , in logn, and in the size of a representation.
While the former papers develop a general theory, Uehara, Tsuchida, and Wegener (1997)
provides tight results on the exact query number for specific classes. Approximate learning
in the presence of many irrelevant attributes has been considered in Dhagat and Hellerstein
(1994), and Kivinen, Mannila, and Ukkonen (1992); see also Almuallim and Dietterich
(1994). Learning in an infinite attribute space (Blum, 1992) is a related topic.

Exact learning by membership queries can also be considered as interpolation of func-
tions, based on function values at freely chosen points, which has been investigated for other
restricted function classes, too, both in the adaptive and nonadaptive setting (Clausen et al.,
1991; Roth & Benedek, 1991). Parallel learning has been studied in Bshouty and Cleve
(1992), but not for the present problem. Fundamental issues of adaptive versus nonadaptive
learning in the mistake-bound model are studied in Ben-David, Kushilevitz, and Mansour
(1997), cf. also Goldman and Sloan (1994).

Structural characterizations and constructions of assignment families that learn special
function classes with few relevant variables nonadaptively are given in Balding and Torney
(1996) (disjunction) and Hofmeister (1999) (parity). In general, it is a fundamental topic
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in concept learning to characterize assignment families which have certain learning power,
cf. also Bshouty (1995) and Khardon and Roth (1996).

Another line of motivation is the well-known group testing problem, which is attribute-
efficient learning of the disjunction of an unknown subset of variables. (Suppose that we
want to findr out ofn chemical samples which are contaminated with a certain substance,
and we are able to test arbitrarily chosen subsets of samples for presence of the substance.)
One main result about adaptive group testing is that log(n

r )+O(r ) queries are sufficient,
which misses the trivial lower bound only by theO(r ) term (Triesch, 1996). For some
natural generalizations of group testing, e.g. to threshold testing, see Damaschke (1997,
1998c), Bonis and Vaccaro (1998), and Farach et al. (1997); the classes considered there
lie between the disjunction and arbitrary functions withr relevant variables. (We mention
that some results of Damaschke (1997) concerning threshold testing in a single sample
have been subsequently improved in Damaschke (1998a) and Bonis, Gargano, and Vaccaro
(1998).)

There are interesting applications of group testing in logic circuit checking (Seroussi &
Bshouty, 1988), medical diagnosis (as suggested e.g. in Dhagat and Hellerstein (1994)),
biological and chemical test series, and several other fields. Some of them are not only
speculative, on the contrary, efficient learning strategies are really used in laboratories
(Balding & Torney, 1995, 1996; Du & Hwang, 1993; Farach et al., 1997; Fischer, Klasner, &
Wegener, 1999; Knill, 1995). For example, nonadaptive group testing is a highly interesting
tool in DNA sequencing. Typical input sizes aren > 1,000 andr < 10. In this application
nonadaptiveness is crucial, since the tests are time-consuming but can be performed in
parallel. The restriction thatr must be known before is not a serious obstacle; one often has
a quite sure upper bound, due to experience or probability estimates.

The work of Beimel, Geller, and Kushilevitz (1998) addresses lower and upper bounds
for the adaptive query complexity of learning several function clases, includingt-term
DNF.

1.4. Some terminology

A Boolean function ofn variables (or attributes) is a mappingf : {0, 1}n → {0, 1}. For
brevity we omit the adjective “Boolean”. LetV be the set of variables. An assignment is
a mappingx : V → {0, 1}, an assignment on a subsetU of variables is defined similarly.
An assignmenty on U is called a restriction of another assignmentx, or induced byx, if
y(u) = x(u) for eachu ∈ U .

We will informally use denotations likef (x, y, z, . . .)where the “arguments”x, y, z are
assignments of disjoint subsets of variables or of single variables. We also writex ∪ y to
denote the composition of assignmentsx, y on disjoint subsets. The symbol 0 or 1 sometimes
denotes the assignment on a subset where all variables have value 0 or 1, respectively. These
laxities are convenient, the exact meaning will always be clear from the context.

If y is an assignment onU , the projectionfy is the function onV\U with fy(z) := f (y, z).
If A is a family of assignments,Ay denotes the family of all restrictions of those assignments
from A inducingy onU , to V\U .

A Boolean function is monotone ifx ≤ y (componentwise) impliesf (x) ≤ f (y).
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A variablev is called a relevant variable (RV for short) if it has a proper influence on the
function value, i.e. there exists an assignmentx on V\{v} such thatf (x, 0) 6= f (x, 1). Let
Rel(n, r ) be the class of functions ofn variables having at mostr RVs.

Throughout the paper, log means log2. We always omit nonessential details such as ceiling
brackets.

1.5. Special assignment families

It turns out that attribute-efficient learning is closely related to certain combinatorial families
of assignments defined below.

Definition 1.1. A family A of assignments onV is called(n, r )-universal if every assign-
ment on every subset of (at most)r variables is induced by some member ofA. LetU (r, n)
denote the minimum size of an(n, r )-universal family of assignments onn variables.

These families are also called(n, r )-exhaustive in the literature. Next we introduce a new
special type of(n, r )-universal assignment families.

Consider three mutually disjoint subsetsX,Y, Z ⊂ V with X,Y 6= ∅, and an assignment
z on Z. (If Z = ∅ then z is the empty assignment.) For a fixed(n, r )-universalA, the
bipartite graphB(X,Y, z) is defined as follows: The vertices are all possible assignments
x on X and y on Y, and the edgexy exists if and only if there is some assignment inA
inducingx ∪ y ∪ z on X ∪ Y ∪ Z.

The following definition is the central “invention” of this paper; its importance will
become apparent in Section 3.

Definition 1.2. An (n, r )-universal familyA is calledr -wise bipartite connected ifB(X,Y,
z) is connected for any three mutually disjoint subsetsX,Y, Z with X,Y 6= ∅, |X ∪ Z| =
|Y ∪ Z| = r , and for any assignmentz on Z.

Note that none of the graphsB(X,Y, z) has isolated vertices: SinceA is (n, r )-universal,
for any vertexx of B(X,Y, z), there existsa ∈ A inducingx ∪ z on X ∪ Z. Furthermore,
sincea induces somey onY, edgexy exists inB(X,Y, z).

We will also need the observation that, in Definition 1.2, connectivity of our bipartite
graphs is hereditary in the following sense:

Lemma 1.3. Let A be r-wise bipartite connected, X,Y, Z ⊂ V mutually disjoint subsets
of variables with X,Y 6= ∅ and |X ∪ Z| = |Y ∪ Z| ≤ r, and z an assignment on Z. Then
B(X,Y, z) is also connected.

Proof: Consider any supersetsX∗ ⊃ X andY∗ ⊃ Y such thatX∗,Y∗, Z∗ are mutually
disjoint, and|X∗ ∪ Z| = |Y∗ ∪ Z| = r . Then B(X∗,Y∗, z) is connected. Moreover,
B(X,Y, z) is obtained fromB(X∗,Y∗, z) in the following way: For every assignmentx on
X, identify those vertices ofX∗ corresponding to assignments that inducex on X. Proceed
similarly with Y∗. Two verticesx, y in B(X,Y, z) are joined by an edge iff there is at least
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one edgex∗y∗ in B(X∗,Y∗, z)wherex∗ inducesx, andy∗ inducesy. From this it is obvious
that connectivity will not be destroyed. 2

The concept of an(A, f )-feasible set of variables will be useful in the proof of our
characterization Theorem 3.1.

Definition 1.4. Consider a fixed functionf and a fixed assignment familyA. A subset
U ⊆ V is called(A, f )-feasible if all assignmentsa ∈ A agreeing onU yield the same
f (a).

If A is (n, r )-universal,U is (A, f )-feasible, and|U | ≤ r , then f induces a function
fA[U ] on U in a self-explanatory way.

2. Adaptive learning by universal assignment families

The central importance of universal families for our subject is based on the following facts.
The obvious proofs are omitted.

Fact 2.1. Let be f ∈ Rel(n, r ) and A some(n, r )-universal family. Then f is constant if
and only if all f(a), a ∈ A are equal.

Fact 2.2. The worst-case complexity of testing whether a given f∈ Rel(n, r ) is constant,
is exactly U(r, n). Consequently, any learning algorithm for this function class needs at
least U(r, n) queries in the worst case.

On the other hand, the main work in learning such functions is to query some(n, r )-
universal family, as we shall see next. The following is an immediate consequence of
Definition 1.1.

Lemma 2.3. Let A be(n, r )-universal and S⊂ V a set of s< r variables. For any
assignment x on S, the family Ax is (r − s)-universal on V\S.

Proof: Consider a setT ⊂ V\Sof sizer − s, and an arbitrary assignmenty on T . Then
the assignmentx ∪ y on S∪ T is induced by some member ofA. Hencey itself is induced
by some member ofAx. 2

Further we need an obvious binary search routine for RVs.

Lemma 2.4. Let f be an arbitrary function. Once we know assignments x and y with
f (x) 6= f (y), we can find some RV bylogn further queries.

Proof: Let Z be the set of variables wherex and y disagree:Z = {v : x(v) 6= y(v)}.
Clearly, there must exist an RV inZ. Split Z in two setsX andY of approximately the half
size. We define an assignmentz as follows:z(v) := x(v) if v ∈ X, z(v) := y(v) if v ∈ Y,
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andz(v) := x(v) = y(v) if v ∈ V\Z. Note thatz andx disagree onY, and similarly,z and
y disagree onX. Query f (z). In either case (f (z) 6= f (x) or f (z) 6= f (y)) we have found
a pair of assignments disagreeing ond|Z|/2e variables only. After logn repetitions of this
construction, one RV is identified. 2

Now we can prove an upper bound:

Theorem 2.5. Functions from Rel(n, r ) can be learned by U(r, n)+ r logn queries.

Proof: Fix some(n, r )-universal familyA, and queryf (a) for all a ∈ A. If we take a
minimum A, these areU (r, n) queries. If all responses are equal thenf is constant by Fact
2.1, and we are done. Otherwise we have found two assignments with different function
values, and we identify some RV by logn further queries, due to Lemma 2.4.

Now assume that a setS of s RVs is already identified. We will show that, due to the
informations gained fromA, we either find some further RV by logn queries, or guarantee
the nonexistence of more RVs without further queries. Together this proves our upper bound:
Note that the 2r assignments on the RVs are already contained inA, hence if we know the
RVs then we have learnedf, too.

Split A into the subfamiliesAx, according to the assignmentsx on S. By Lemma 2.3,
everyAx is (r − s)-universal onV\S. Note that fx ∈ Rel(n− s, r − s), so Fact 2.1 yields
that the projectionfx is constant if and only if all values onAx are equal. If all fx are
constant then no RV can exist outsideS. In the other case we have assignmentsx on Sand
y, z on V\Ssuch thatf (x, y) 6= f (x, z). Applying Lemma 2.4 to fx we find an RV which
is not inS. This completes the proof. 2

SinceU (r, n) = Ä(2r logn) ((Kleitman & Spencer, 1973), see also Naor, Schulman, and
Srinivasan (1995)), Fact 2.2 and Theorem 2.5 together imply:

Corollary 2.6. For any fixed r≥ 2, the complexity of learning functions from Rel(n, r )
is c(r )U (r, n), wherelimr→∞ c(r ) = 1.

Note that our learning algorithm mainly consists of a nonadaptive phase (zero-testing)
where A is scanned, followed byr adaptive search phases where the queries depend on
previous answers. Later we will show forr = 2 that the adaptive part can be reduced
considerably, just by better exploitation of the information gained fromA. (For larger , this
is less interesting; see the discussion in Section 1.2.)

An open problem is whether ther search threads in Theorem 2.5 can be parallelized.
This would imply that roughly logn (rather thanr logn) stages are enough, without deteri-
orating the total number of queries, and would therefore be interesting for time-consuming
applications. The difficulty is that several threads may find the same RV.

3. Nonadaptive learning

In this section we give an upper bound for the complexity of purely nonadaptive learning
of functions f ∈ Rel(n, r ). That is, we construct an a-priori familyA of assignments such
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that the values off on A enable us to infer the RVs andf . Although logarithmically, our
result is somewhat worse than in the adaptive case.

First of all, A must be(n, r )-universal, otherwise we could not even decide whetherf is
constant, see Fact 2.2.

3.1. The characterization theorem

Theorem 3.1. Let A be some fixed(n, r )-universal family on V(with n = |V | ≥ 2r ).
Then A learns functions from Rel(n, r ) nonadaptively(i.e. the values f(a), a ∈ A are
sufficient for identifying f, provided that f∈ Rel(n, r )) if and only if A is r-wise bipartite
connected.

Proof: “only if”. Assume thatr is notr -wise bipartite connected. We have to construct
functions f, f ′ ∈ Rel(n, r ) such thatf 6= f ′ but f (a) = f ′(a) for all a ∈ A. That means,
A cannot distinguish between these functions and is not suitable for nonadaptive learning.

There exist mutually disjoint setsX, X′, Z ⊂ V , such that|X ∪ Z| = |X′ ∪ Z| = r , and
B(X, X′, d) is disconnected for some assignmentd on Z. We fix a functiong on X ∪ Z
having the following properties:

– For all assignmentsx on X belonging to the same connected component ofB(X, X′, z),
all g(x, z) are equal.

– Both function values 0 and 1 appear among theg(x, d).

Let f be the extension ofg, i.e. that function onV without RVs outsideX ∪ Z, such that
fA[X ∪ Z] = g. Trivially, X ∪ Z is (A, f )-feasible.

Let g′ be the unique function onX′ ∪ Z such that, in every connected component of every
B(X, X′, z), all function values ofg and g′ are equal. By the remark after Definition 1.2,
none of the graphsB(X, X′, z) contains isolated vertices, henceg′ is well-defined. Finally
let f ′ be the extension ofg′. i.e. that function onV without RVs outsideX′ ∪ Z, such that
f ′A[X′ ∪ Z] = g′.

Consider anya ∈ A. It induces assignments onX, X′, Z, sayx, x′, z, respectively. By
definition, there is an edgexx′ in B(X, X′, z). Sincex and x′ lie in the same connected
component, our construction ofg′ yields g(x, z) = g′(x′, z). Since f and f ′ are just
extensions ofg andg′, respectively, we havef (a) = f ′(a).

On the other hand, by our choice ofg there exist assignmentsx1, x2 on X with g(x1, d) 6=
g(x2, d). Moreover, sinceA is (n, r )-universal, we have assignmentsa1,a2 ∈ A inducing
x1, x2 on X andd on Z, respectively. Together this meansf (a1) 6= f (a2). Sincea1,a2

agree onZ, function f has some RV outsideZ. Clearly, this RV must be inX. But f ′ has
no RV in X, so we concludef 6= f ′.

“ if ”. B(X,Y, z) is connected for any three disjoint setsX,Y, Z with |X ∪ Z| = |Y∪ Z| =
r and any assignmentzonZ. By Lemma 1.3 this remains true if|X∪Z| ≤ r and|Y∪Z| ≤ r .

Consider any functionf ∈ Rel(n, r ). We have to show thatf can be uniquely identified
from the responsesf (a), a ∈ A. It suffices to determine the setR of RVs of f . SinceA is
(n, r )-universal, it induces in particular all possible assignments onR, thus we can learnf .
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Let X,Y, Z be variable sets as above, having the additional property that bothX ∪ Z
andY∪ Z are(A, f )-feasible. We claim thatfA[X ∪ Z](x, z) is independent ofx, in other
words,Z is (A, f )-feasible, too.

To see this, consider two assignmentsx1, x2 on X. There exista1,a2 ∈ A inducing
x1, x2 on X andz on Z, respectively. Lety1, y2 be the assignments onY induced bya1,a2,
respectively. ThenB(X,Y, z)contains the edgesx1y1 andx2y2. Since the graph is connected,
there exists a path starting and ending in these two edges. By the definition ofB(X,Y, z),
every edge is created by some assignment fromA. If we switch from an edgexy of our path
to an incident edge, sayx′y, we also switch from somea ∈ A inducingx∪ y∪ zonX∪Y∪Z
to somea′ ∈ A inducingx′ ∪ y∪ z. SinceY∪ Z is (A, f )-feasible, we havef (a) = f (a′).
The other case (both edges have a common vertex inY) is symmetric; remember thatX∪ Z
is also(A, f )-feasible. So we getf (a1) = f (a2) by straightforward induction on the path.
But this meansfA[X ∪ Z](x1, z) = fA[X ∪ Z](x2, z). So (A, f )-feasibility of sets of
at mostr variables is closed under intersection. Consequently, the intersectionF of all
(A, f )-feasible sets of size at mostr is the unique smallest(A, f )-feasible set.

Finally we claim thatF = R. Since we can recognize the(A, f )-feasible sets from the
f (a), a ∈ A alone, this completes the proof.

Trivially, R is (A, f )-feasible, henceF ⊆ R. Assume thatF ⊂ R is a proper inclu-
sion. Choose somev ∈ R\F . Sincev is an RV, there exists an assignmentz on R\{v}
with fA[R](z, 0) 6= fA[R](z, 1). SinceA is (n, r )-universal, there exist assignments inA
inducing(z, 0) and(z, 1) on R. In particular, they agree onF ⊆ R\{v}. This contradicts
the(A, f )-feasibility of F . 2

Corollary 3.2. We can learn functions from Rel(n, r ) by U(n, 2r ) = O(r 22r logn) non-
adaptive queries.

Proof: Every 2r -universal family isr -wise bipartite connected, namely, they yield com-
plete bipartite graphsB(X,Y, z). 2

However, completeness is a much stronger property than connectivity, and indeed, the
factorr 22r is poor. Next we aim at better estimates.

3.2. Constructions of r-wise bipartite connected families

We invoke the probabilistic method to prove the existence ofr -wise bipartite families being
not much larger than(n, r )-universal families. We start with some technical lemmas.

Lemma 3.3. Consider a bipartite graph with m vertices in each part, and with k> 1
connected components. If we add a random edge then the number of connected components
decreases with probability at least k/m− k2/4m2.

Proof: We claim that the worst case appears if all components but one are isolated vertices
and both parts of the bipartite graph contain aboutk/2 of them. Then the good event is that
our random edge meets at least one isolated vertex. This gives the asserted probability.
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To prove the claim, we use the following notion. A connected component is said to be
of size(x, y) if it has x vertices in one part andy vertices in the other part. Consider any
two connected components of size(a, b) and(c, d). There aread+ bc possibilities to join
these components by a further edge. If the sizes are(a − 1, b) and(c+ 1, d) instead, we
havead+bc+b−d such possibilities. Ifb < d then the probability that a further random
edge joins the components is smaller in the latter case. By an obvious inductive argument
we conclude that the worst case consists of one big component along withk − 1 isolated
vertices.

If there arej andk− j isolated vertices, respectively, in both parts then we havejm+
(k − j )m − j (k − j ) = km− j (k − j ) possibilities to join two components. This is
minimized for j = bk/2c. 2

Lemma 3.4. Consider the following random experiment: Start with a bipartite graph
with m vertices in each part, and empty edge set. Add t random edges independently with
repetition, i.e. in each step, take one of the m2 possible edges equiprobably. Then after
2(m log2 m) initial steps, the probability that the bipartite graph is still disconnected after
t further steps behaves as O((1− 3/4m)t ).

Proof: We observe the numberk of connected components, descending from 2m to 1
during the process. Instead of the given experiment we consider a slower process, namely
the Markov chainM with statesk = 2m, . . . ,1, such thatk ≥ 2 becomesk − 1 with
probability k/2m and remainsk otherwise. (In particular, all statesk ≥ 2 are transient.)
Note thatk/m−k2/4m2 ≥ k/2m. We shall prove that, in this Markov chain, the probability
of k > 1 behaves as asserted. Clearly, this result and Lemma 3.3 together imply the assertion
for the original experiment, too.

For the sake of simplicity we will further slow down our process: Initially we make
all statesc exceptc = 2m “inactive” Later we activatec = 2m− 1, 2m− 2, . . . ,3, 2 as
described below. The meaning is the following: An inactive statec remainscwith probability
1. Only afterc has been activated, the probability of transition fromc to c− 1 becomes
c/2m. Hence, as soon asc = 2 has become active, the transition probabilities are the same
as inM . We shall prove that even in this slower process, the probability ofk > 1 behaves
as asserted, if we choose the activation times appropriately.

In the first step we getk = 2m−1 with probability 1. For any statec and any moment, we
define the rate of loss atc to be the conditional probability thatk < cafter the next step, under
the condition thatk ≥ c before the step. By downwards induction onc = 2m− 1, . . . ,2
we will show:

Claim. If state c is activated2(m(ln c+ ln 2)/c) steps later than c+1 then, after activa-
tion of c, the rate of loss at c remains at least(c− 1/2)/2m forever.

This is trivial forc = 2m− 1: After 1 step, the rate of loss is constantly(2m− 1)/2m>

(c− 1/2)/2m.
For the inductive step fromc+ 1 to c consider the time whenc+ 1 is activated. By the

inductive hypothesis, the rate of loss atc+ 1 is at least(c+ 1/2)/2m further on. Thus we
may consider the states abovec as one superstate with transition probability(c+1/2)/2m.
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Hence, after2(m(ln c+ ln 2)/c) steps, we havek > c only with probability at most 1/2c:
Note that(

1− c+ 1/2

2m

)2m/(c+1/2)

< 1/e,

hence ln(2c) repetitions reduce the probability to 1/2c, and 2m
c+1/2 ln(2c) may also be

expressed as2(m(ln c+ ln 2)/c). If we activate statec now, the rate of loss atc is at least
(1− 1/2c)c/2m= (c− 1/2)/2m at this moment. Namely, we havek = c with probability
at least(1− 1/2c), andc/2m was the transition probability to the next statec− 1.

Since the rate of loss atc+1 is larger, the ratio of probabilities ofk > c andk = c further
decreases in time. (This can be verified by a short calculation.) It follows that the rate of
loss atc will not fall below (c− 1/2)/2m in the future. This completes the induction step.

The lemma follows if we apply the claim toc = 2 and sum up the activation times over
all c. 2

Theorem 3.5. There exists an r-wise bipartite connected family on n variables, consisting
of O(r 2r logn+ r 22r ) assignments.

Proof: Consider a familyA of size t , where we simply assign 0 or 1 with probability
1/2 to each of thent bits of A, independent of each other. We prove that all bipartite
graphs addressed by Theorem 3.1 are connected with some positive probability, fort =
2(r 22r + r 2r logn).

Consider mutually disjoint subsetsX,Y, Z ⊂ V with |Z| = s and|X| = |Y| = r − s
(0 ≤ s ≤ r ), and an assignmentz on Z. Due to the construction ofA, B(X,Y, z) is a
random bipartite graph in the sense of Lemma 3.4, with some modification: In cases> 0,
a new edge is added only if the assignment induced onZ is z, that is, we have a “time
dilatation” by a factor 2s. Note thatA becomesr -wise bipartite connected (this includes
(n, r )-universality) as soon as

– all assignments on sets of sizer have appeared and thus all vertices of allB(X,Y, z) are
created, and

– all B(X,Y, z) for s< r are connected.

For anys < r , the number of bipartite graphs to be considered is generously bounded
by nsnr−snr−s = n2r−s. We apply Lemma 3.4 withm = 2r−s. So the probability of
disconnectivity behaves asO((1− (3/4)2s−r )t/2

s
), after2((r − s)22r−s) initial steps andt

further steps. (Note that the last term depends onr but not onn.) If we chooset = Ä(r 22r )

such that, for alls < r , the productn2r−s(1− (3/4)2s−r )t/2
s

is below some appropriate
small constant thenA fulfills the criteria with positive probability.

Routine calculation shows thatt = ar2r logn is sufficient, wherea is independent ofr
andn. We get

n2r−s(1− (3/4)2s−r )ar2r−s logn = n2r−s+ar2r−s log(1−(3/4)2s−r ).
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It suffices to keep the exponent negative. Since ln(1− x) < −x, we can upperbound the
exponent by(2− 3a/4 ln 2)r − s, and we are done. 2

So we obtain anr -wise bipartite connected family simply by adding random assignments
until all conditions are satisfied. However, for problems of this type one is always interested
in explicit deterministic constructions, too.

As already mentioned, any(n, 2r )-universal family isr -wise bipartite connected by
itself. However, any explicit construction ofr -wise bipartite connected families via(n, 2r )-
universal families would yield a factor at least 22r . Considerable progress is made by the
next theorem.

Theorem 3.6. For any r, an r-wise bipartite connected family of size O(r 22r logn) can
be constructed in O(g(r )n2r+1) time(with g being some exponential function of r).

Proof: We follow the lines of Theorem 1 in Naor, Schulman, and Srinivasan (1995).
This approach works although our problem does not fit into the framework of so-called
r -restriction problems in the sense of Naor, Schulman, and Srinivasan (1995). (We omit
the definition of this concept here; it is not necessary for understanding the proof.) We can
apply the method after decomposing our problem strictly into a sequence ofr -restriction
problems. This straightens the situation, but incurs an additionalr -factor.

The main tool is anε-biased 2r -wise independent sample spaceS of assignments onn
variables; such structures of sizepoly(r logn/ε) can be constructed efficiently and deter-
ministically (Alon et al., 1992a; 1992b; Naor & Naor, 1993) . For anys ≤ 2r , the probability
that a random assignment induces a prescribed assignment on a fixed subset of sizes is
2−s ± ε.

We want to choose a subfamilyA ⊆ S that

(1) makes all bipartite graphsB(X,Y, z) (as in Theorem 3.1) with|Z| < r connected, and
(2) induces all possiblez on Z for |Z| = r .

Clearly, there are less thann2r such bipartite graphs with initially at most 2r+1 connected
components each. Since we aim at an upper bound anyhow, we pretend for simplicity that
our n2r bipartite graphs have exactly 2r vertices in both parts, which is the worst case. By
this, we also need not verify condition (2) separately.

Suppose that we have already chosen a subfamily of assignments and take a new random
assignment from a 2r -wise independent sample space. This means the addition of a random
edge in eachB(X,Y, z). Applying Lemma 3.3 withm = 2r we would reduce the number
of components fromk to k − 1 with probability at leastk/2r − k2/22r+2. In case of an
ε-biased sample space however, the guaranteed probability of decreasing the number of
connected components is somewhat smaller, but at leastk/2r − k2/22r+2 − 22r ε. (In the
worst case, each of the edges decreasing the number of connected components might be
chosen with probability decreased byε.) Let us fixε = 2−4r /12. Then the probability of
success remains larger thank/2r − (k/2r )2/3, andShas sizepoly(22r logn). (We remark
that this is larger than our asserted upper bound for|A|, therefore we must not simply take
A = Snow.)
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We constructA by successively taking assignments fromS, due to some rule specified
below, until all graphsB(X,Y, z) become connected. For simplifying the analysis we make
a further (and more drastic) aggravating assumption: As long as there remain graphs with
k connected components, all graphs having alreadyk − 1 connected components “wait”
for them, i.e. edges added in these graphs which further reduce the number of components
are ignored. This separates the process into phasesk = 2r+1, . . . ,4, 3, 2 where all graphs
reduce their component number fromk to k − 1. (Note the similarity to the “slow-down”
in the proof of Lemma 3.4.)

Consider any fixedk. By the pigeonhole principle, there exists an assignment inSwhich
reduces the number of connected components in ak/2r − (k/2r )2/3 fraction of all bipartite
graphs having stillk components. This assignment can be naively found and checked by
exhaustive search inS; note that the total time is dominated byO(n2r+1) (subject to some
factor independent ofn) if we estimate polylog(n) by n.

Now we estimate the number of steps after which all graphs are ready for the next phase.
Fork ≥ 2r−1, we always meet at least a constant fraction of our set of bipartite graphs, thus
we needO(r logn) assignments in phasek. This is a total ofO(r 2r logn) assignments in
O(2r ) phases. Fork < 2r−1, the success probability is larger thank/2r+1. Thus the duration
of phasek is bounded by

O

(
logn2r

log(1+ k/2r+1)

)
= O(k−1r 2r logn).

Since the sum of the harmonic series up tok = 2r is O(logk) = O(r ), this finally yields
|A| = O(r 22r logn). 2

We conjecture that we can get rid of the secondr factor by relaxing our strict decomposi-
tion into phases and monitoring the component numbers of the several bipartite graphs in a
pipelined fashion. The difficulty is to formulate a suitable rule of choice of the next assign-
ment fromS. Possibly, an approach similar to those used in searching with lies (pebbles,
weight function etc.) might be successful.

Note that the above construction is only pseudopolynomial. An explicit construction with
a polynomial time bound in bothn andr , as it is known for(n, r )-universal families and
otherr -restriction problems, is missing. We conjecture that the splitter method developed
in Naor, Schulman, and Srinivasan (1995) can attack this problem.

Moreover, concrete factors for the firstr would be interesting. Caser = 1 is completely
trivial, but already caser = 2 is a challenge.

3.3. Remark: Auxiliary computations

In this paper we considered the pure query complexity only. However, for applying a
nonadaptive learning strategy we must explicitly compute the setR of RVs from the values
f (a) (a ∈ A), that is, the smallest(A, f )-feasible set. Naive exhaustive search would require
more thannr computations. Nevertheless there exists a practicable solution to this problem
which drastically reduces the amount of auxiliary computation. We refer to Damaschke
(1998b).
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4. Monotone functions

It is straightforward to learn monotone functions byO(2r )+ r logn adaptive queries with-
out any previous knowledge aboutr , using r binary search procedures, and for simple
information-theoretic reasons this cannot be improved. Interestingly,O(2r+r logn)queries
are sufficient even if we learn “almost” nonadaptively. More precisely, the stage number is
independent ofn.

Before proving this, let us introduce some further notion. For convenience we will loosely
identify an assignment with its 1-set, i.e. the set of variables having value 1 in this assignment.

In the course of a learning process, a subsetA ⊆ V of the variables is called “interesting”
if we know an assignmentz on Ā = V\A such thatf (z, 0) = 0 and f (z, 1) = 1 (where
arguments 0 and 1 denote the all-0 and all-1 assignment onA). Suchz will be called a
residual assignment. Clearly, an interesting subset contains an RV.

Theorem 4.1. Monotone functions from Rel(n, r ) can be learned in O(r ) stages, using a
total of O(2r + r logn) queries. It is not necessary to know r in advance.

Proof: Ask f (∅) and f (V). Since f is monotone, we know thatf is constant if these
values are equal. So assume thatf (∅) = 0 and f (V) = 1. That means, setV is interesting.

Let us represent the variables by binary wordsb1 · · ·bk of lengthk = logn. If n is not
a power of 2, we may add dummy (non-RV) variables. In the following,Bc

i (c ∈ {0, 1})
denotes the set of variables withbi = c, or the assignment with 1-setBc

i . Ask simultaneously
the 2 logn assignmentsBc

i .
Assume that we find somei with f (B0

i ) = f (B1
i ). Since f (∅) = 0 and f (V) = 1, we

see immediately that bothB0
i and B1

i contain an RV. Consequently, bothB0
i and B1

i are
interesting.

It remains the case thatf (B0
i ) 6= f (B1

i ) for all i . By renaming, we may w.l.o.g. assume
that f (Bc

i ) = c for all i, c. (Wheneverf (Bc
i ) 6= c, we switch thei -th bit in every word.)

Now defineyi =
⋂i

j=1 B1
j for i > 0, andy0 = V . Note thatyk contains a single variable.

Query simultaneously allyi . Since f is monotone, we havef (yi ) ≥ f (yi+1). Remember
that f (y0) = 1. If still f (yk) = 1 then the only variable inyk is an RV, because off (∅) = 0.

Otherwise there existsi with f (yi ) = 1 and f (yi+1) = 0. We see immediately that
yi \yi+1 contains an RV. Moreover we know a residual assignment, hence this subset is inter-
esting. Sincef (B0

i+1) = 0, yi \yi+1 ⊆ B0
i+1, and f is monotone, we havef (yi \yi+1) = 0.

From f (yi ) = 1 we see now thatyi+1 also contains an RV. Moreover we know a residual
assignment, soyi+1 is interesting, too.

Let us resume: Either we have isolated some RV in one stage, or we have found two
disjoint interesting subsets of a formerly known interesting set in two stages. Every stage
performs at most 2 logn queries.

Using the residual assignments we can continue the above process recursively on disjoint
interesting sets, in an obvious way. Thus we produce a binary tree of interesting sets, where
each inner node has two sons and each leaf contains a detected RV.

After this we check whetherf (z, 0) < f (z, 1) holds for some assignmentz on the set
Sof RVs detected so far. If there is no suchz then f has no further RVs; this is clear from
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monotonicity of f . Otherwise we have an interesting subsetV\S, along with a residual
assignmentz. So we can continue the above process. Note that we must check only such
assignmentsz not queried before, hence the total number of such initialization queries in
the whole algorithm is bounded by 2r+1.

Altogether we produce a sequence of binary trees as explained above. Trivially, the total
number of nodes (stages) isO(r ), hence we usedO(2r + r logn) queries. 2

We conjecture that the stage number can be further reduced without aggravating the query
number, since the worst case (every tree has only one node) seems very sporadic. However
1 stage is not enough, due to

Fact 4.2 Let r be arbitrary but fixed. Any assignment family that learns monotone functions
from Rel(n, r ) nonadaptively must be(n, r )-universal and so it has sizeÄ(2r logn).

Proof: Let A be a family that lacks of(n, r )-universality. Then some assignmentzon a set
R of sizer is not induced by any member ofA. We construct distinct monotone functions
f, f ′ with all RVs in R, that cannot be distinguished byA. We may consider monotone
functionsg, g′ on R instead. Letg(z) = 0 andg(y) = 1 for all y > z. We defineg′ by
g′(z) = 1 andg′ = g else. 2

So there is a considerable difference between the adaptive and nonadaptive query number,
in contrast to the case of arbitrary functions inRel(n, r ).

5. Adaptive learning with two relevant variables

In group testing, the caser = 2 has received special interest, cf. Alth¨ofer and Triesch (1993),
Damaschke (1994), Triesch (1996), and Macula and Reuter (to appear). The present section
is devoted to the more general problem of learning Boolean functions inRel(n, 2). In the
introduction we argued that this is a particularly interesting case.

Lemma 5.1. We havelogn ≤ U (2, n) ≤ logn+ o(logn).

Proof: The lower bound is obvious. The problem of constructing a good(n, 2)-universal
family is essentially equivalent to finding a good Sperner family; for completeness we
sketch a proof of the upper bound. Choose an even positive integerk such that (k

k/2) ≥ n
and represent then elementsv ∈ V by mutually distinct binary code wordsv1, . . . , vk

wherevi = 1 for exactlyk/2 placesi . Let A be the family of assignments containing the
constant assignments 0, 1 and, for eachi (1 ≤ i ≤ k), the assignmentxi with xi (v) = vi .
Clearly,A is (n, 2)-universal. Routine calculations with help of Stirling’s formula show that
k as asserted above is sufficient. 2

Theorem 2.5 and Lemma 5.1 imply that functions fromRel(n, 2) can be learned by
3 logn + o(logn) queries, but we can do considerably better. Note that there exist (up to



212 P. DAMASCHKE

symmetries, negations, and duality) only a few types of Boolean functionsf with at most
two RVsu, v, namely: 0,u, u ∧ v, u⊕ v, u ∧ ¬v.

Theorem 5.2. Functions f ∈ Rel(n, 2) can be learned by2 logn + o(logn) queries, if
f is not of type u∧ ¬v. Otherwise, 2.275 logn+ o(logn) queries are sufficient.

Proof: First query f (0) and f (1). If f (0) = 1 then we may consider¬ f instead of f .
Thus let us assumef (0) = 0, without loss of generality. Since we haver = 2, if f (1) = 1
then f is monotone. Hence we can learnf by 2 logn + O(1) queries in this case (see
Section 4). So assumef (1) = 0 in the following. Then we know thatf is eitheru⊕ v or
u ∧ ¬v. (Since we may renameu andv, the latter case includesv ∧ ¬u.)

Query the assignments of the special familyA of sizek, as defined in Lemma 5.1. From
Fact 2.1 we know thatf is constantly 0 if and only if all responses are 0. Otherwise there
exists somej where f (xj ) = 1. Query the complement ofxj . If the response is 1 thenf
is of typeu⊕ v, otherwisef is of typeu ∧ ¬v.

Let f be of typeu⊕ v. Then a pair(u, v) is a candidate for the pair of RVs ifui = vi

wheneverf (xi ) = 0, andui 6= vi wheneverf (xi ) = 1. Hence each variableu occuring in
the candidate pairs has a unique partnerv. In other words, the candidate pairs are disjoint.
Now we find the proper pair in a straightforward way by logn further adaptive queries.

Theu∧¬v case is more cumbersome. Letm denote the cardinality of set{i : f (xi ) = 1}.
The ordered candidate pairs(u, v)are now characterized by the following condition:ui > vi

if and only if f (xi ) = 1. This also impliesm ≤ k/2. We see that no variable can be a
candidate for bothu andv, hence the candidate pairs form the edge set of some bipartite
digraph whose vertices are the variables. Let us upperbound the numberE of such pairs.

Consider ak×n matrix whose columns are the binary code words from Lemma 5.1; note
that every column containsk/2 symbols 0 and 1, respectively. The rows (which correspond
to the assignments inA) may be permuted such that the firstm rows yield f = 1. A candidate
pair (u, v) corresponds to a pair of columns. Theu column must contain exactlyk/2−m
symbols 1 in the lastk−mpositions. There are (k−m

k/2−m) possibilities. Similarly, thev column
contains exactlyk/2−msymbols 0 in the lastk−mpositions, but combination with symbol
1 from u is forbidden in these rows. Thus eachu has at most ((k−m)−(k/2−m)

k/2−m ) partnersv.
Therefore we have:

E ≤ (k−m)!

m!(k/2−m)!2
.

Consider an arbitrary assignmenty. A responsef (y) = 1 keeps exactly those candidate
pairs(u, v) wherey(u) = 1 andy(v) = 0. It is important to observe that this is the edge
set of someinducedbipartite subgraph of the previous candidate graph; the other edges are
discarded. A responsef (y) = 0 keeps the other candidate pairs. Hence we have nothing
else than the group testing problem on bipartite graphs which can be solved by logE + 1
queries. (Here we do not need the result of Triesch (1996) in full generality; for bipartite
graphs there exists a quite simple and elegant group testing strategy (Alth¨ofer & Triesch,
1993).) It remains to upperboundk+maxm≤k/2 log E.
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It may be instructive to see first a simple argument thatE is subquadratic: As already
mentioned,(u, v) is a candidate iff the induced assignment is(1, 0) whenever the func-
tion value is 1, and one of the three other pairs else. HenceE is trivially bounded by
3logn+o(logn) = nlog 3+o(1).

For a closer estimation we make use of Stirling’s formula again. By the subadditivity of
log we can drop the minor terms and get:

log E < (k−m) log(k−m)−m logm− 2(k/2−m) log(k/2−m).

For fixedk, this term is maximized ifm2 − km+ k2/8 = 0. Sincem ≤ k/2, only the
smaller solutionm= (1/2−1/

√
8)k is possible. Invoking thism into the above estimation

we obtain after some simplifications: logE < 1.275k; the tedious calculations are omitted.
With k from Lemma 5.1 we get the assertion. 2
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1. Here and in the following, such denotations mean that some universal constant factor, being independent of
bothn andr , is hidden in theO( ). This should not be confused with the assumption thatr is “constant” in any
concrete problem instance.
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