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Abstract. We study the complexity of learning arbitrary Boolean functionsofariables by membership
queries, if at most variables are relevant. Problems of this type have important applications in fault searching,
e.g. logical circuit testing and generalized group testing. Previous literature concentrates on special classes of
such Boolean functions and considers only adaptive strategies. First we give a straightforward adaptive algorithm
using O(r2"logn) queries, but actually, most queries are asked nonadaptively. This leads to the problem of
purely nonadaptive learning. We give a graph-theoretic characterization of nonadaptive learning families, called
r-wise bipartite connected families. By the probabilistic method we show the existence of such families of size
O(r2'logn + r22"). This implies that nonadaptive attribute-efficient learning is not essentially more expensive
than adaptive learning. We also sketch an explicit pseudopolynomial construction, though with a slightly worse
bound. It uses the common derandomization technique of small-blaBetependent sample spaces. For the
special case = 2, we get roughly 275 logn adaptive queries, which is fairly close to the obvious lower bound

of 2logn. For the class of monotone functions, we prove that the optimal query nud2er+ r logn) can be

already achieved i@ (r) stages. On the other hard(2" logn) is a lower bound on nonadaptive queries.

Keywords: membership queries, relevant variables, nonadaptive learning, probabilistic method, group testing,
monotone Boolean functions

1. Introduction

This paper addresses the problem of exact learning of Boolean functions by membership
queries, provided that at mostof the n attributes (variables) are relevant. This is also
known as attribute-efficient learning. We first introduce the learning model and then list our
contributions. Formal definitions follow afterwards.

1.1. The learning model

Let f be a Boolean function, given as an oracle and initially unknown to the learner.
The following procedure is called a membership query (cf. (Angluin, 1987)): The learner
chooses an assignmeafwhere each of the variables gets one of the Boolean values 0,1) at
his own discretion, and then the oracle delivérx), i.e. the value of the function for this

*A preliminary version appeared in tHeroceedings of the 30th ACM Symposium on Theory of Computing
(STOC’98) pp. 590-596.
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assignmenx. Exact learning means that the learner has to ideritifyniquely. The goal is
to learn f exactly, using a possibly small number of membership queries.

Trivially, 2" queries are necessary to identify an arbitrary Boolean functionrwitri-
ables. However, if the learner knows in advance thaklongs to some restricted class of
Boolean functions then this knowledge may be used to devise a clever strategy that needs
fewer queries.

We distinguish between adaptive and nonadaptive learning. In adaptive learning, the
learner is allowed to choose his queries depending on the answers to all his previous queries.
In nonadaptive learning, the learner must fix all queries he wishes to ask in advance, before
obtaining any answer. (This means in particular that queries might be asked in any order,
or simultaneously.) We also consider the intermediate setting of parallel learning. Here the
learning process consists of a number of stages. In every stage, the learner chooses a set of
queries which may depend on the answers obtained in all earlier stages, and then he asks
them simultaneously. In particular, nonadaptive learning is parallel learning in one stage,
whereas the number of stages is unbounded in the case of adaptive learning.

1.2. Our results

Itis not surprising that our subject is connected to the well-kn@wn)-universal families.
Informally, a family of assignments is calléd, r )-universal if it includes every assignment
of everyr -element subset of variables.

We start with a straightforward bound for adaptive learning of functions witale-
vant variables, namely) (r, n) 4+ r logn queries are sufficient, wheké(r, n) denotes the
minimum size of an(n, r)-universal family. For trivial reasons&l (r, n) is a lower bound,
and it is known from (Kleitman & Spencer, 1973) thatr, n) = Q (2" logn). Hence this
upper bound is within a factor + O(r/2") of optimal. (We mention that the case= 1
is completely trivial: One can learn even nonadaptively byrlageries.) One can simply
proveU (r,n) = O(r2'logn)! by standard application of the probabilistic method (see
e.g. (Motwani & Raghavan, 1995)); deep resultdbfm, n) and further references can be
found in Naor, Schulman, and Srinivasan (1995). Most importantly, there exist efficient
deterministic constructions @h, r)-universal families of only slightly larger size.

It should be noticed that the learner must kndjer a constant upper bound) before asking
his membership queries: No efficient learning algorithm without previous knowledge of
can exist. Even the decision whetihee 0 orr = nneeds 2 queries in the worst case (by a
trivial adversary argument). Several restricted function classes can be efficiently learned by
adaptive queries without prior knowledgergfsee e.g. (Blum, Hellerstein, & Littlestone,
1995; Bonis & Vaccaro, 1998; Triesch, 1996), some of them by a randomized strategy only
(Damaschke, 1998c). In the case of nonadaptive learning it is anyhow impossible to get a
good query bound in andn, if r is not given to the learner.

We observe that the overwhelming majoritydfr, n) queries can be asked nonadap-
tively. This introductory result provokes the question of nonadaptive learning and of query-
stage tradeoffs, which leads us to the most interesting part.

Perhaps the main contribution is the combinatorial characterization of purely (one-stage)
nonadaptive learning lrywise bipartite connected families, and the subsequent complexity
results. This adds a new meaningful type of combinatorial subset families (or assignment
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families, codes, etc.) to the list of such structures. (For a general introduction to several
combinatorial designs see e.g. (Colbourn & Dinitz, 1996).)

We prove the existence pfwise bipartite connected families of si@gr 2 logn+r22").

This means that nonadaptive learning of functions witelevant variables does not signif-
icantly exceed the complexity of adaptive learning. Using ideas from (Naor, Schulman, &
Srinivasan, 1995), we also give a pseudopolynomial construction, though with an additional
r factor in the size. A polynomial construction is missing.

For adaptive learning and particular small values df is interesting to improve the
general upper bound (r, n) + r logn and to aim at the best constant factors. We consider
caser = 2 which is already nontrivial, unlike case= 1. Exploiting a specia(n, 2)-
universal family and a previously known result on group testing with two defectives, we
achieve 275 logn + o(logn) queries. (Note that 2 logis an obvious lower bound.) This
also improves the results of (Uehara, Tsuchida, & Wegener, 1997) im case The same
question becomes less important for larggince the ratio ofJ (r, n) +r logn to U (r, n)
goes to 1, as mentioned earlier.

For the class of monotone functions with at nosglevant variables, the situation is quite
different. It is a straightforward exercise to learn monotone function®® + r logn)
queries, and this is almost optimal. Here we prove at) stages are enough to keep this
query number, even without prior knowledger ofn contrast, learning monotone functions
with r relevant variables nonadaptively ne&#lg, n) queries, and the learner must know
in advance. So there is an exponential gap in the factor before lbge consider a range
from O(r) stages down to 1 stage. It remains open how this tradeoff looks in detail.

1.3. Related work

Beginning with Littlestone (1988), adaptive learning of Boolean functions with few rele-
vant variables has been studied in Blum, Hellerstein, and Littlestone (1995), Bshouty and
Hellerstein (1996), and Uehara, Tsuchida, and Wegener (1997) under several learning mod-
els. The focus was on special function classes that can be learned efficiently in the sense
that the number of queries is polynomialrinin logn, and in the size of a representation.
While the former papers develop a general theory, Uehara, Tsuchida, and Wegener (1997)
provides tight results on the exact query number for specific classes. Approximate learning
in the presence of many irrelevant attributes has been considered in Dhagat and Hellerstein
(1994), and Kivinen, Mannila, and Ukkonen (1992); see also Almuallim and Dietterich
(1994). Learning in an infinite attribute space (Blum, 1992) is a related topic.

Exact learning by membership queries can also be considered as interpolation of func-
tions, based on function values at freely chosen points, which has been investigated for other
restricted function classes, too, both in the adaptive and nonadaptive setting (Clausen et al.,
1991; Roth & Benedek, 1991). Parallel learning has been studied in Bshouty and Cleve
(1992), but not for the present problem. Fundamental issues of adaptive versus nonadaptive
learning in the mistake-bound model are studied in Ben-David, Kushilevitz, and Mansour
(1997), cf. also Goldman and Sloan (1994).

Structural characterizations and constructions of assignment families that learn special
function classes with few relevant variables nonadaptively are given in Balding and Torney
(1996) (disjunction) and Hofmeister (1999) (parity). In general, it is a fundamental topic
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in concept learning to characterize assignment families which have certain learning power,
cf. also Bshouty (1995) and Khardon and Roth (1996).

Another line of motivation is the well-known group testing problem, which is attribute-
efficient learning of the disjunction of an unknown subset of variables. (Suppose that we
want to findr out of n chemical samples which are contaminated with a certain substance,
and we are able to test arbitrarily chosen subsets of samples for presence of the substance.)
One main result about adaptive group testing is thatﬁ))g{O(r) queries are sufficient,
which misses the trivial lower bound only by tl&(r) term (Triesch, 1996). For some
natural generalizations of group testing, e.g. to threshold testing, see Damaschke (1997,
1998c), Bonis and Vaccaro (1998), and Farach et al. (1997); the classes considered there
lie between the disjunction and arbitrary functions wittelevant variables. (We mention
that some results of Damaschke (1997) concerning threshold testing in a single sample
have been subsequently improved in Damaschke (1998a) and Bonis, Gargano, and Vaccaro
(1998).)

There are interesting applications of group testing in logic circuit checking (Seroussi &
Bshouty, 1988), medical diagnosis (as suggested e.g. in Dhagat and Hellerstein (1994)),
biological and chemical test series, and several other fields. Some of them are not only
speculative, on the contrary, efficient learning strategies are really used in laboratories
(Balding & Torney, 1995, 1996; Du & Hwang, 1993; Farach et al., 1997; Fischer, Klasner, &
Wegener, 1999; Knill, 1995). For example, nonadaptive group testing is a highly interesting
tool in DNA sequencing. Typical input sizes are- 1,000 and < 10. In this application
nonadaptiveness is crucial, since the tests are time-consuming but can be performed in
parallel. The restriction thatmust be known before is not a serious obstacle; one often has
a quite sure upper bound, due to experience or probability estimates.

The work of Beimel, Geller, and Kushilevitz (1998) addresses lower and upper bounds
for the adaptive query complexity of learning several function clases, includiagn
DNF.

1.4. Some terminology

A Boolean function ofn variables (or attributes) is a mappirg. {0, 1}" — {0, 1}. For
brevity we omit the adjective “Boolean”. L&t be the set of variables. An assignment is
a mappingx : V. — {0, 1}, an assignment on a sub4étof variables is defined similarly.
An assignmenty on U is called a restriction of another assignmgnor induced byx, if
y(u) = x(u) for eachu € U.

We will informally use denotations liké (x, vy, z, .. .) where the “argumentsX, y, zare
assignments of disjoint subsets of variables or of single variables. We alsaxwriteto
denote the composition of assignments on disjoint subsets. The symbol 0 or 1 sometimes
denotes the assignment on a subset where all variables have value 0 or 1, respectively. These
laxities are convenient, the exact meaning will always be clear from the context.

If yisanassignmentadd, the projectionfy is the function otV \U with f,(z) := f(y, 2).

If Ais afamily of assignmentgy, denotes the family of all restrictions of those assignments
from A inducingy onU, to V\U.
A Boolean function is monotone ¥ < y (componentwise) implie$ (x) < f(y).
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A variablev is called a relevant variable (RV for short) if it has a proper influence on the
function value, i.e. there exists an assignmeah V\{v} such thatf (x, 0) £ f(x, 1). Let
Rekn, r) be the class of functions ofvariables having at mostRVs.

Throughout the paper, log meansjo@/e always omit nonessential details such as ceiling
brackets.

1.5. Special assignment families

Itturns out that attribute-efficient learning is closely related to certain combinatorial families
of assignments defined below.

Definition 1.1 A family A of assignments oW is called(n, r)-universal if every assign-
ment on every subset of (at mostyariables is induced by some membertofLetU (r, n)
denote the minimum size of gn, r)-universal family of assignments arnvariables.

These families are also callg¢d, r )-exhaustive in the literature. Next we introduce a new
special type ofn, r)-universal assignment families.

Consider three mutually disjoint subsetsY, Z c V with X, Y # @, and an assignment
zonZ. (If Z = ¢ thenz is the empty assignment.) For a fixéd, r)-universal A, the
bipartite graphB(X, Y, 2) is defined as follows: The vertices are all possible assignments
x on X andy onY, and the edgay exists if and only if there is some assignmentAn
inducingxUyuzonXUYU Z.

The following definition is the central “invention” of this paper; its importance will
become apparent in Section 3.

Definition 1.2  An(n, r)-universal familyAis calledr -wise bipartite connectedB(X, Y,
z) is connected for any three mutually disjoint subs€ty, Z with X, Y # @, | XU Z| =
Y U Z| =r, and for any assignmeaton Z.

Note that none of the graptB(X, Y, z) has isolated vertices: Sinéeis (n, r)-universal,
for any vertexx of B(X, Y, z), there exista € A inducingx U zon X U Z. Furthermore,
sincea induces somg onY, edgexy exists inB(X, Y, z).

We will also need the observation that, in Definition 1.2, connectivity of our bipartite
graphs is hereditary in the following sense:

Lemma 1.3. Let A be r-wise bipartite connecteH, Y, Z C V mutually disjoint subsets
of variables with XY # @and|XU Z| = |Y U Z| <r, and z an assignment on Z. Then
B(X,Y, z) is also connected.

Proof: Consider any superse¥’ > X andY* > Y such thatX*, Y*, Z* are mutually
disjoint, and|X* U Z| = |Y* U Z| = r. Then B(X*, Y*, 2) is connected. Moreover,
B(X,Y, 2) is obtained fromB(X*, Y*, 2) in the following way: For every assignmexbn

X, identify those vertices aX* corresponding to assignments that indwan X. Proceed
similarly with Y*. Two verticesx, y in B(X, Y, z) are joined by an edge iff there is at least
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one edge*y* in B(X*, Y*, z) wherex* inducesx, andy* inducesy. From this itis obvious
that connectivity will not be destroyed. O

The concept of afA, f)-feasible set of variables will be useful in the proof of our
characterization Theorem 3.1.

Definition 1.4 Consider a fixed functiof and a fixed assignment familix. A subset
U C Vs called(A, f)-feasible if all assignmenis € A agreeing orJ yield the same
f(a).

If Alis (n,r)-universal,U is (A, f)-feasible, andU| < r, then f induces a function
fa[U] onU in a self-explanatory way.

2. Adaptive learning by universal assignment families

The central importance of universal families for our subject is based on the following facts.
The obvious proofs are omitted.

Fact2.1. Letbe fe Relkn,r)and A somén, r)-universal family. Then f is constant if
and only if all f(a),a € A are equal.

Fact2.2. The worst-case complexity of testing whether a givenReln, r) is constant
is exactly Ur, n). Consequentlyany learning algorithm for this function class needs at
least U(r, n) queries in the worst case.

On the other hand, the main work in learning such functions is to query somg-
universal family, as we shall see next. The following is an immediate consequence of
Definition 1.1.

Lemma 2.3. Let A be(n,r)-universal and SC V a set of s<r variables. For any
assignment x on,3he family A is (r — s)-universal on K S.

Proof: Consider aset c V\Sof sizer — s, and an arbitrary assignmeybn T. Then
the assignment Uy on SU T is induced by some member 8f Hencey itself is induced
by some member of. O

Further we need an obvious binary search routine for RVs.

Lemma 2.4. Let f be an arbitrary function. Once we know assignments x and y with
f(x) # f(y), we can find some RV lbyg n further queries.

Proof: Let Z be the set of variables whereandy disagreeZ = {v : x(v) # y(v)}.
Clearly, there must exist an RV in. Split Z in two setsX andY of approximately the half
size. We define an assignmeras follows:z(v) := x(v) if v € X, z(v) ;== y()ifv e,
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andz(v) := x(v) = y(v) if v € V\Z. Note thatz andx disagree otY, and similarly,zand
y disagree orX. Query f (2). In either case{(z) £ f(x) or f(2) # f(y)) we have found
a pair of assignments disagreeing [0@ |/2] variables only. After logn repetitions of this
constructionone RV is identified. O

Now we can prove an upper bound:
Theorem 2.5. Functions from Réh, r) can be learned by I, n) +r logn queries.

Proof: Fix some(n, r)-universal familyA, and queryf (a) for all a € A. If we take a
minimum A, these aréJ (r, n) queries. If all responses are equal theis constant by Fact
2.1, and we are done. Otherwise we have found two assignments with different function
values, and we identify some RV by lodurther queries, due to Lemmad2

Now assume that a s&of s RVs is already identified. We will show that, due to the
informations gained fronA, we either find some further RV by lagqueries, or guarantee
the nonexistence of more RVs without further queries. Together this proves our upper bound:
Note that the 2assignments on the RVs are already containedl,ihence if we know the
RVs then we have learnef] too.

Split A into the subfamiliesAy, according to the assignmenton S. By Lemma 23,
every Ay is (r — s)-universal onv\ S. Note thatf, € Rekn — s,r — s), so Fact 21 yields
that the projectionfy is constant if and only if all values oA are equal. If allf, are
constant then no RV can exist outsifiein the other case we have assignments S and
y, zonV\Ssuch thatf (x, y) # f(X, 2). Applying Lemma 24 to fx we find an RV which
is not in S. This completes the proof. O

SinceU (r, n) = Q(2"logn) ((Kleitman & Spencer, 1973), see also Naor, Schulman, and
Srinivasan (1995)), Fact 2.2 and Theorem 2.5 together imply:

Corollary 2.6. For any fixed r> 2, the complexity of learning functions from Relr)
is c(r)u(r, n), wherelim,_, o, c(r) = 1.

Note that our learning algorithm mainly consists of a nonadaptive phase (zero-testing)
where A is scanned, followed by adaptive search phases where the queries depend on
previous answers. Later we will show for= 2 that the adaptive part can be reduced
considerably, just by better exploitation of the information gained ffargior larger, this
is less interesting; see the discussion in Section 1.2.)

An open problem is whether thresearch threads in Theorem 2.5 can be parallelized.
This would imply that roughly log (rather tham logn) stages are enough, without deteri-
orating the total number of queries, and would therefore be interesting for time-consuming
applications. The difficulty is that several threads may find the same RV.

3. Nonadaptive learning

In this section we give an upper bound for the complexity of purely nonadaptive learning
of functionsf € Rekn, r). That is, we construct an a-priori famikx of assignments such
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that the values of on A enable us to infer the RVs anid Although logarithmically, our
result is somewhat worse than in the adaptive case.

First of all, A must be(n, r)-universal, otherwise we could not even decide whethisr
constant, see Fact 2.2.

3.1. The characterization theorem

Theorem 3.1. Let A be some fixeth, r)-universal family on V(with n = |[V| > 2r).

Then A learns functions from Rel r) nonadaptively(i.e. the values fa), a € A are

sufficient for identifying fprovided that fe Reln, r)) if and only if A is r-wise bipartite
connected.

Proof: “only if”. Assume that is notr-wise bipartite connected. We have to construct

functionsf, f’ € Reln,r) such thatf £ f’ but f(a) = f’(a) for alla € A. That means,

A cannot distinguish between these functions and is not suitable for nonadaptive learning.
There exist mutually disjoint sets, X', Z ¢ V, suchthatXuU Z| = | XU Z| =r, and

B(X, X', d) is disconnected for some assignmdrn Z. We fix a functiong on X U Z

having the following properties:

— For all assignments on X belonging to the same connected componeB©f, X', z),
all g(x, 2) are equal.
— Both function values 0 and 1 appear amonggbe d).

Let f be the extension df, i.e. that function orV without RVs outsideX U Z, such that
falX U Z] = g. Trivially, X U Z is (A, f)-feasible.

Letg’ be the unique function oKX’ U Z such that, in every connected component of every
B(X, X, 2), all function values ofy and d are equal. By the remark after Definition 1.2,
none of the graphB(X, X', z) contains isolated vertices, hengds well-defined. Finally
let f' be the extension af'. i.e. that function orV without RVs outsideX’ U Z, such that
fAlX'uz]l=d.

Consider anya € A. It induces assignments of X', Z, sayx, X/, z, respectively. By
definition, there is an edgeX in B(X, X', z). Sincex andx’ lie in the same connected
component, our construction @f yields g(x,z) = g'(x, z). Since f and f’ are just
extensions ofj andg’, respectively, we havé (a) = f’(a).

On the other hand, by our choice@there exist assignmentg, x, on X with g(xy, d) #
g(x2, d). Moreover, sincéA is (n, r)-universal, we have assignmemats a, € A inducing
X1, X2 on X andd on Z, respectively. Together this meafiga;) # f(az). Sinceay, a,
agree orZ, function f has some RV outsidg. Clearly, this RV must be iX. But f’ has
no RV in X, so we concludeg =# f’.

“if . B(X, Y, 2) is connected for any three disjoint satsY, Zwith | XU Z| = |[YU Z| =
r and any assignmernbnZ. By Lemma 1.3 thisremainstrug XUZ| <r andlYuZ| <r.

Consider any functiorf € Rekn, r). We have to show that can be uniquely identified
from the response§(a), a € A. It suffices to determine the sBtof RVs of f. SinceA is
(n, r)-universal, itinduces in particular all possible assignment®ahus we can lear.
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Let X, Y, Z be variable sets as above, having the additional property thatXattz
andY U Z are(A, f)-feasible. We claim thaf[ X U Z](X, 2) is independent of, in other
words,Z is (A, f)-feasible, too.

To see this, consider two assignmerisx, on X. There exista;, a, € A inducing
X1, X2 On X andz on Z, respectively. Ley, y» be the assignments dhinduced bya, a,
respectively. TheB(X, Y, z) contains the edgegy; andx,y-. Since the graph is connected,
there exists a path starting and ending in these two edges. By the definiB{iXo¥, z),
every edge is created by some assignment ffofiwe switch from an edgey of our path
toanincident edge, sayy, we also switch from some e Ainducingx UyUzonXuUYUZ
tosomea’ € Ainducingx’ Uy U z. SinceY U Z is (A, f)-feasible, we havd (a) = f (a').
The other case (both edges have a common vertéxismisymmetric; remember thatu Z
is also(A, f)-feasible. Sowe get(a;) = f(ay) by straightforward induction on the path.
But this meansfa[X U Z](x1,2) = fa[X U Z](X2, 2). So (A, f)-feasibility of sets of
at mostr variables is closed under intersection. Consequently, the intersdetminall
(A, f)-feasible sets of size at masts the unique smallestA, f)-feasible set.

Finally we claim thatF = R. Since we can recognize thid, f)-feasible sets from the
f(a), a € Aalone, this completes the proof.

Trivially, R is (A, f)-feasible, hencé& C R. Assume that- C R is a proper inclu-
sion. Choose some € R\F. Sincev is an RV, there exists an assignmenbn R\{v}
with fA[R](z,0) # fa[R](z, 1). SinceA s (n, r)-universal, there exist assignmentsAn
inducing(z, 0) and(z, 1) on R. In particular, they agree oR C R\{v}. This contradicts
the (A, f)-feasibility of F. O

Corollary 3.2. We can learn functions from Rel r) by U(n, 2r) = O(r2% logn) non-
adaptive queries.

Proof: Every 2 -universal family isr -wise bipartite connected, nhamely, they yield com-
plete bipartite graphB(X, Y, 2). O

However, completeness is a much stronger property than connectivity, and indeed, the
factorr 2% is poor. Next we aim at better estimates.

3.2. Constructions of r-wise bipartite connected families

We invoke the probabilistic method to prove the existenaewfse bipartite families being
not much larger tham, r)-universal families. We start with some technical lemmas.

Lemma 3.3. Consider a bipartite graph with m vertices in each pahd with k > 1
connected components. If we add a random edge then the number of connected components
decreases with probability at leasf kn — k?/4m?.

Proof: We claim that the worst case appears if all components but one are isolated vertices
and both parts of the bipartite graph contain allg@t of them. Then the good event is that
our random edge meets at least one isolated vertex. This gives the asserted probability.
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To prove the claim, we use the following notion. A connected component is said to be
of size(x, y) if it has x vertices in one part ang vertices in the other part. Consider any
two connected components of sige b) and(c, d). There aread + bc possibilities to join
these components by a further edge. If the sizegare 1, b) and(c + 1, d) instead, we
havead + bc+ b — d such possibilities. Ib < d then the probability that a further random
edge joins the components is smaller in the latter case. By an obvious inductive argument
we conclude that the worst case consists of one big component along withisolated
vertices.

If there arej andk — j isolated vertices, respectively, in both parts then we Have-
(k—jym—jk—j) = km— jkk — j) possibilities to join two components. This is
minimized forj = |k/2]. ]

Lemma 3.4. Consider the following random experime&tart with a bipartite graph
with m vertices in each parand empty edge set. Add t random edges independently with
repetition i.e. in each steptake one of the fmpossible edges equiprobably. Then after
©®(mlog? m) initial steps the probability that the bipartite graph is still disconnected after

t further steps behaves as(Q — 3/4m)!).

Proof: We observe the numbdrof connected components, descending framt2 1
during the process. Instead of the given experiment we consider a slower process, namely
the Markov chainM with statesk = 2m, ..., 1, such thak > 2 becomesk — 1 with
probability k/2m and remaink otherwise. (In particular, all statds> 2 are transient.)
Note thatk/m—k2/4m? > k/2m. We shall prove that, in this Markov chain, the probability
ofk > 1 behaves as asserted. Clearly, this resultand Lemma 3.3 together imply the assertion
for the original experiment, too.

For the sake of simplicity we will further slow down our process: Initially we make
all statesc exceptc = 2m “inactive” Later we activate = 2m—1,2m—2,...,3,2 as
described below. The meaning is the following: Aninactive staggnainsc with probability
1. Only afterc has been activated, the probability of transition froro ¢ — 1 becomes
c/2m. Hence, as soon @&s= 2 has become active, the transition probabilities are the same
as inM. We shall prove that even in this slower process, the probabilikyefl behaves
as asserted, if we choose the activation times appropriately.

In the first step we gét = 2m— 1 with probability 1. For any stateand any moment, we
define the rate of loss ato be the conditional probability thit< cafter the next step, under
the condition thak > c before the step. By downwards inductionoa= 2m —1,...,2
we will show:

Claim. If state c is activate® (m(In c+1n 2) /c) steps later than & 1 then after activa-
tion of ¢ the rate of loss at ¢ remains at least— 1/2)/2m forever

This is trivial forc = 2m — 1: After 1 step, the rate of loss is constant®n — 1) /2m >
(c—1/2)/2m.

For the inductive step frora+ 1 to ¢ consider the time whea+ 1 is activated. By the
inductive hypothesis, the rate of losscat 1 is at leastc + 1/2)/2m further on. Thus we
may consider the states abavas one superstate with transition probability+ 1/2) /2m.
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Hence, afte® (Mm(Inc + In 2) /c) steps, we havk > ¢ only with probability at most A2c:
Note that

<1— +Y ) < 1/e,

2m

hence If2c) repetitions reduce the probability to/Zc, and%’f/2 In(2c) may also be
expressed a® (m(Inc + In 2)/c). If we activate state now, the rate of loss atis at least
(1-1/2c)c/2m = (c — 1/2)/2m at this moment. Namely, we hake= c with probability
at least(1 — 1/2c), andc/2m was the transition probability to the next state 1.

Since the rate of loss at+- 1 is larger, the ratio of probabilities &f> candk = cfurther
decreases in time. (This can be verified by a short calculation.) It follows that the rate of
loss atc will not fall below (c — 1/2)/2m in the future. This completes the induction step.

The lemma follows if we apply the claim = 2 and sum up the activation times over

all c. O

Theorem 3.5. There exists anr-wise bipartite connected family on n varigldessisting
of O(r2"logn +r22") assignments.

Proof: Consider a familyA of sizet, where we simply assign 0 or 1 with probability
1/2 to each of thent bits of A, independent of each other. We prove that all bipartite
graphs addressed by Theorem 3.1 are connected with some positive probabitity: for
Or22" +r2'logn).

Consider mutually disjoint subse¥ Y, Z c V with |Z] = sand|X| = |Y|=r —s
(0 < s < r), and an assignmernzton Z. Due to the construction of, B(X, Y, 2) is a
random bipartite graph in the sense of Lemma 3.4, with some modification: Irs cae
a new edge is added only if the assignment induced as z, that is, we have a “time
dilatation” by a factor 2 Note thatA becomes -wise bipartite connected (this includes
(n, r)-universality) as soon as

— all assignments on sets of sizhave appeared and thus all vertices oK, Y, z) are
created, and
— allB(X,Y, z) for s < r are connected.

For anys < r, the number of bipartite graphs to be considered is generously bounded
by nSn'=Sn'—S = nZ~S, We apply Lemma 3.4 witim = 2'~S, So the probability of
disconnectivity behaves &((1 — (3/4)25")!/%), after® ((r — s)22"~) initial steps and
further steps. (Note that the last term depends buat not onn.) If we choosd = (r22")
such that, for als < r, the producn? —S(1 — (3/4)25")/Z is below some appropriate
small constant thei fulfills the criteria with positive probability.

Routine calculation shows that= ar2' logn is sufficient, wherea is independent of
andn. We get

an—s(l _ (3/4)257r)ar2"5 logn _ anferarZ"S Iog(lf(3/4)25").
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It suffices to keep the exponent negative. Singé #ax) < —x, we can upperbound the
exponent by2 — 3a/4In2r — s, and we are done. O

So we obtain an-wise bipartite connected family simply by adding random assignments
until all conditions are satisfied. However, for problems of this type one is always interested
in explicit deterministic constructions, too.

As already mentioned, angn, 2r)-universal family isr-wise bipartite connected by
itself. However, any explicit construction pfwise bipartite connected families via, 2r)-
universal families would yield a factor at least 2Considerable progress is made by the
next theorem.

Theorem 3.6. For any r, an r-wise bipartite connected family of sizgr@2" logn) can
be constructed in @(r)n?*+1) time (with g being some exponential function of r

Proof: We follow the lines of Theorem 1 in Naor, Schulman, and Srinivasan (1995).
This approach works although our problem does not fit into the framework of so-called
r-restriction problems in the sense of Naor, Schulman, and Srinivasan (1995). (We omit
the definition of this concept here; it is not necessary for understanding the proof.) We can
apply the method after decomposing our problem strictly into a sequerrceesfriction
problems. This straightens the situation, but incurs an additiefedtor.

The main tool is ar-biased 2-wise independent sample spagef assignments on
variables; such structures of sipely(r logn/e) can be constructed efficiently and deter-
ministically (Alon etal., 1992a; 1992b; Naor & Naor, 1993) . For any 2r, the probability
that a random assignment induces a prescribed assignment on a fixed subset af size
25 te.

We want to choose a subfamily C Sthat

(1) makes all bipartite graptB(X, Y, z) (as in Theorem 3.1) withZ| < r connected, and
(2) induces all possibleon Z for |Z| =r.

Clearly, there are less thad such bipartite graphs with initially at most’2 connected
components each. Since we aim at an upper bound anyhow, we pretend for simplicity that
ourn? bipartite graphs have exactly 2ertices in both parts, which is the worst case. By
this, we also need not verify condition (2) separately.

Suppose that we have already chosen a subfamily of assignments and take a new random
assignment from ar2wise independent sample space. This means the addition of a random
edge in eaclB(X, Y, 2). Applying Lemma 3.3 withm = 2" we would reduce the number
of components fronk to k — 1 with probability at leask/2" — k?/2%+2, In case of an
e-biased sample space however, the guaranteed probability of decreasing the number of
connected components is somewhat smaller, but at kf&st— k?/2%+2 — 2% ¢_(In the
worst case, each of the edges decreasing the number of connected components might be
chosen with probability decreased by Let us fixe = 274 /12. Then the probability of
success remains larger thiaf2" — (k/2")?/3, andS has sizepoly(2% logn). (We remark
that this is larger than our asserted upper boundAgrtherefore we must not simply take
A = Snow.)
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We constructA by successively taking assignments fr@ndue to some rule specified
below, until all graph®8(X, Y, z) become connected. For simplifying the analysis we make
a further (and more drastic) aggravating assumption: As long as there remain graphs with
k connected components, all graphs having alrdadyl connected components “wait”
for them, i.e. edges added in these graphs which further reduce the number of components
are ignored. This separates the process into phase& 1, ..., 4, 3, 2 where all graphs
reduce their component number frdato k — 1. (Note the similarity to the “slow-down”
in the proof of Lemma 3.4.)

Consider any fixe#t. By the pigeonhole principle, there exists an assignme8tiich
reduces the number of connected componentkjf2a— (k/2")?/3 fraction of all bipartite
graphs having stilk components. This assignment can be naively found and checked by
exhaustive search i8; note that the total time is dominated By(n% +1) (subject to some
factor independent af) if we estimate polylogg) by n.

Now we estimate the number of steps after which all graphs are ready for the next phase.
Fork > 21, we always meet at least a constant fraction of our set of bipartite graphs, thus
we needO(r logn) assignments in phase This is a total ofO(r 2" logn) assignments in
O(2") phases. Fdk < 21, the success probability is larger thgf2" +. Thus the duration
of phasek is bounded by

logn®
2 Y=0kYk2I )
O(Iog(lqL k/2r+1)> Okr2"logn)

Since the sum of the harmonic series ugte 2" is O(logk) = O(r), this finally yields
|A] = O(r?2"logn). O

We conjecture that we can get rid of the secoffiactor by relaxing our strict decomposi-
tion into phases and monitoring the component numbers of the several bipartite graphsin a
pipelined fashion. The difficulty is to formulate a suitable rule of choice of the next assign-
ment fromS. Possibly, an approach similar to those used in searching with lies (pebbles,
weight function etc.) might be successful.

Note that the above construction is only pseudopolynomial. An explicit construction with
a polynomial time bound in both andr, as it is known for(n, r )-universal families and
otherr -restriction problems, is missing. We conjecture that the splitter method developed
in Naor, Schulman, and Srinivasan (1995) can attack this problem.

Moreover, concrete factors for the firstvould be interesting. Case= 1 is completely
trivial, but already case = 2 is a challenge.

3.3. Remark: Auxiliary computations

In this paper we considered the pure query complexity only. However, for applying a
nonadaptive learning strategy we must explicitly compute th&sétRVs from the values

f (@) (a € A),thatis, the smallesth, f)-feasible set. Naive exhaustive search would require
more tham' computations. Nevertheless there exists a practicable solution to this problem
which drastically reduces the amount of auxiliary computation. We refer to Damaschke
(1998b).
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4. Monotone functions

It is straightforward to learn monotone functions®y2") + r logn adaptive queries with-
out any previous knowledge about usingr binary search procedures, and for simple
information-theoretic reasons this cannot be improved. Interestidg®/,+r logn) queries
are sufficient even if we learn “almost” nonadaptively. More precisely, the stage number is
independent of.
Before proving this, let us introduce some further notion. For convenience we will loosely
identify an assignmentwith its 1-set, i.e. the set of variables having value 1 in this assignment.
Inthe course of a learning process, a sul#set V of the variables is called “interesting”
if we know an assignmerton A = V\ A such thatf (z,0) = 0 and f (z, 1) = 1 (where
arguments 0 and 1 denote the all-0 and all-1 assignmert)oSuchz will be called a
residual assignment. Clearly, an interesting subset contains an RV.

Theorem 4.1. Monotone functions from R@l, r) can be learned in @) stagesusing a
total of O(2" 4 r logn) queries. It is not necessary to know r in advance.

Proof: Ask f (@) and f (V). Since f is monotone, we know that is constant if these
values are equal. So assume that) = 0 andf (V) = 1. That means, sé&f is interesting.

Let us represent the variables by binary wolgs- - by of lengthk = logn. If n is not
a power of 2, we may add dummy (non-RV) variables. In the followBg(c € {0, 1})
denotes the set of variables with= c, or the assignment with 1-sBf. Ask simultaneously
the 2 logn assignment8¢.

Assume that we find somewith f(B% = f(B!). Sincef (?) = 0 andf (V) = 1, we
see immediately that botB? and B! contain an RV. Consequently, boBf and B! are
interesting.

It remains the case thdt(B%) # f (B?) for all i. By renaming, we may w.l.0.g. assume
that f (BY) = cfor all i, c. (Wheneverf (B) # ¢, we switch the-th bit in every word.)

Now definey; = ﬂ'jzl le fori > 0, andyp = V. Note thaty, contains a single variable.
Query simultaneously al};. Since f is monotone, we havé(y;) > f(yi.1). Remember
that f (yo) = 1. Ifstill f(yx) = 1thenthe only variable ig is an RV, because df (@) = 0.

Otherwise there exists with f(y;) =1 and f (yi;1) = 0. We see immediately that
yi \ Vi1 contains an RV. Moreover we know a residual assignment, hence this subset is inter-
esting. Sincef (B%.;) =0, yi\Yyi+1 € B2, and f is monotone, we havé(y;\Yi+1) = 0.

From f (y;) = 1 we see now thay; . ; also contains an RV. Moreover we know a residual
assignment, sy ; is interesting, too.

Let us resume: Either we have isolated some RV in one stage, or we have found two
disjoint interesting subsets of a formerly known interesting set in two stages. Every stage
performs at most 2 log queries.

Using the residual assignments we can continue the above process recursively on disjoint
interesting sets, in an obvious way. Thus we produce a binary tree of interesting sets, where
each inner node has two sons and each leaf contains a detected RV.

After this we check whethef (z, 0) < f(z, 1) holds for some assignmenton the set
Sof RVs detected so far. If there is no surthen f has no further RVs; this is clear from
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monotonicity of f. Otherwise we have an interesting sub¥atS, along with a residual
assignmeng. So we can continue the above process. Note that we must check only such
assignmentgz not queried before, hence the total number of such initialization queries in
the whole algorithm is bounded by 2.

Altogether we produce a sequence of binary trees as explained above. Trivially, the total
number of nodes (stages)@(r ), hence we use®(2" + r logn) queries. O

We conjecture that the stage number can be further reduced without aggravating the query
number, since the worst case (every tree has only one node) seems very sporadic. However
1 stage is not enough, due to

Fact4.2 Letr bearbitrary butfixed. Any assignment family thatlearns monotone functions
from Reln, r) nonadaptively must b@, r)-universal and so it has siZe (2" logn).

Proof: Let Abe afamily thatlacks afn, r)-universality. Then some assignmeran a set

R of sizer is not induced by any member &f We construct distinct monotone functions
f, f/ with all RVs in R, that cannot be distinguished &y, We may consider monotone
functionsg, g’ on R instead. Leig(z) = 0 andg(y) = 1 for all y > z. We defineg’ by
g'(z) = 1andg = gelse. O

Sothereis a considerable difference between the adaptive and nonadaptive query number,
in contrast to the case of arbitrary functiond_ekn, r).

5. Adaptive learning with two relevant variables

In group testing, the case= 2 has received special interest, cf. Adfai'and Triesch (1993),
Damaschke (1994), Triesch (1996), and Macula and Reuter (to appear). The present section
is devoted to the more general problem of learning Boolean functioReln, 2). In the
introduction we argued that this is a particularly interesting case.

Lemma5.1. We havdogn < U (2, n) < logn + o(logn).

Proof: The lower bound is obvious. The problem of constructing a goo@)-universal
family is essentially equivalent to finding a good Sperner family; for completeness we
sketch a proof of the upper bound. Choose an even positive inkegigrh that (';2) >n

and represent the elementsv € V by mutually distinct binary code words, . . ., vk
wherev; = 1 for exactlyk/2 places. Let A be the family of assignments containing the
constant assignments Dand, for each (1 < i < k), the assignment; with x; (v) = v;.
Clearly, Ais (n, 2)-universal. Routine calculations with help of Stirling’s formula show that

k as asserted above is sufficient. O

Theorem 2.5 and Lemma 5.1 imply that functions fré&akn, 2) can be learned by
3logn + o(logn) queries, but we can do considerably better. Note that there exist (up to
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symmetries, negations, and duality) only a few types of Boolean funcfiomgh at most
two RVsu, v, namely: Ou, U A v, U@ v, U A —.

Theorem 5.2. Functions f e Reln, 2) can be learned b logn + o(logn) queries if
f is not of type un —v. Otherwise 2.275 logn + o(logn) queries are sufficient.

Proof. First queryf(0) and f (1). If f(0) = 1 then we may consider f instead off .
Thus let us assum&(0) = 0, without loss of generality. Since we have- 2,if f(1) =1
then f is monotone. Hence we can leafnby 2logn + O(1) queries in this case (see
Section 4). So assumi(1) = 0 in the following. Then we know that is eitheru & v or

u A —w. (Since we may renameandv, the latter case includasa —u.)

Query the assignments of the special fanflpf sizek, as defined in Lemma 5.1. From
Fact 2.1 we know thaf is constantly O if and only if all responses are 0. Otherwise there
exists somg where f (x;) = 1. Query the complement of . If the response is 1 theh
is of typeu @ v, otherwisef is of typeu A —v.

Let f be of typeu & v. Then a pairu, v) is a candidate for the pair of RVsif = v;
wheneverf (xj) = 0, andu; # v; wheneverf (x;) = 1. Hence each variableoccuring in
the candidate pairs has a unique partndn other words, the candidate pairs are disjoint.
Now we find the proper pair in a straightforward way by tofurther adaptive queries.

Theu A —v case is more cumbersome. lnetienote the cardinality of sét: f (x) = 1}.

The ordered candidate pairs v) are now characterized by the following condition:> v;

if and only if f(x;) = 1. This also impliean < k/2. We see that no variable can be a
candidate for botlu andv, hence the candidate pairs form the edge set of some bipartite
digraph whose vertices are the variables. Let us upperbound the nidfesuch pairs.

Consider & x n matrix whose columns are the binary code words from Lemma5.1; note
that every column contairks’2 symbols 0 and 1, respectively. The rows (which correspond
tothe assignments i) may be permuted such that the firstows yieldf = 1. Acandidate
pair (u, v) corresponds to a pair of columns. Theolumn must contain exactk/2 — m
symbols 1 in the la®kt— m positions. There arqu‘f"m) possibilities. Similarly, the column
contains exactli/2—msymbols 0 in the las¢— m positions, but combination with symbol
1 from u is forbidden in these rows. Thus easthas at most { " ,X/"™) partnersv.
Therefore we have:

(k —m)!
< —
~ mi(k/2 — m)!2

Consider an arbitrary assignmentA responsef (y) = 1 keeps exactly those candidate
pairs(u, v) wherey(u) = 1 andy(v) = 0. It is important to observe that this is the edge
set of soménducedbipartite subgraph of the previous candidate graph; the other edges are
discarded. A responsk(y) = 0 keeps the other candidate pairs. Hence we have nothing
else than the group testing problem on bipartite graphs which can be solved ByHdg
queries. (Here we do not need the result of Triesch (1996) in full generality; for bipartite
graphs there exists a quite simple and elegant group testing strateggféhlga Triesch,
1993).) It remains to upperboutkdt maxmk,2 log E.
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It may be instructive to see first a simple argument thas subquadratic: As already
mentioned,(u, v) is a candidate iff the induced assignmentis0) whenever the func-
tion value is 1, and one of the three other pairs else. Héndg trivially bounded by
3Iogn+o(|ogn) — nIog 3+o(1)_

For a closer estimation we make use of Stirling’s formula again. By the subadditivity of
log we can drop the minor terms and get:

logE < (k — m)log(k — m) — mlogm — 2(k/2 — m) log(k/2 — m).

For fixedk, this term is maximized im? — km + k?/8 = 0. Sincem < k/2, only the
smaller solutiom = (1/2 — 1/+/8)k is possible. Invoking thim into the above estimation
we obtain after some simplifications: l&g< 1.275k; the tedious calculations are omitted.
With k from Lemma 5.1 we get the assertion. O
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1. Here and in the following, such denotations mean that some universal constant factor, being independent of
bothn andr, is hidden in theD( ). This should not be confused with the assumptionthat constant” in any
concrete problem instance.
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