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Abstract. Recently ensemble methods like ADABOOST have been applied successfully in many problems,
while seemingly defying the problems of overfitting.

ADABOOST rarely overfits in the low noise regime, however, we show that it clearly does so for higher noise
levels. Central to the understanding of this fact is the margin distribution. ADABOOST can be viewed as a constraint
gradient descent in an error function with respect to the margin. We find that ADABOOST asymptotically achieves
a hard margindistribution, i.e. the algorithm concentrates its resources on a few hard-to-learn patterns that are
interestingly very similar to Support Vectors. A hard margin is clearly a sub-optimal strategy in the noisy case, and
regularization, in our case a “mistrust” in the data, must be introduced in the algorithm to alleviate the distortions
that single difficult patterns (e.g. outliers) can cause to the margin distribution. We propose several regularization
methods and generalizations of the original ADABOOST algorithm to achieve asoft margin. In particular we
suggest (1) regularized ADABOOSTREG where the gradient decent is done directly with respect to the soft margin
and (2) regularized linear and quadratic programming (LP/QP-) ADABOOST, where the soft margin is attained
by introducing slack variables.

Extensive simulations demonstrate that the proposed regularized ADABOOST-type algorithms are useful and
yield competitive results for noisy data.
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1. Introduction

Boosting and other ensemble1 learning methods have been recently used with great success
in applications like OCR (Schwenk & Bengio, 1997; LeCun et al., 1995). But so far the
reduction of the generalization error by Boosting algorithms has not been fully understood.

For low noisecases Boosting algorithms are performing well for good reasons (Schapire
et al., 1997; Breiman, 1998). However, recent studies withhighly noisy patterns (Quinlan,
1996; Grove & Schuurmans, 1998; R¨atsch et al., 1998) showed that it is clearly a myth that
Boosting methods do not overfit.
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In this work, we try to gain insight into these seemingly contradictory results for the low
and high noise regime and we propose improvements of ADABOOST that help to achieve
noise robustness.

Due to their similarity, we will refer in the following to ADABOOST (Freund & Schapire,
1994) and unnormalized Arcing(Breiman, 1997b) (with exponential function) as
ADABOOST-type algorithms(ATA). In Section 2 we give an asymptotical analysis of ATAs.
We find that the error function of ATAs can be expressed in terms of the margin and that in
every iteration ADABOOST tries to minimize this error by a stepwise maximization of the
margin (see also Breiman, 1997a; Frean & Downs, 1998; Friedman, Hastie, & Tibshirani,
1998; Onoda, R¨atsch, & Müller, 1998; Rätsch, 1998). As a result of the asymptotical anal-
ysis of this error function, we introduce thehard marginconcept and show connections to
Support Vector (SV) learning (Boser, Guyon, & Vapnik, 1992) and to linear programming
(LP). Bounds on the size of the margin are also given.

In Section 3 we explain why an ATA that enforces a hard margin in training will overfit
for noisy data or overlapping class distributions. So far, we only know what a margin distri-
bution to achieve optimal classification in the no-noise case should look like: a large hard
margin is clearly a good choice (Vapnik, 1995). However, for noisy data there is always the
tradeoff between “believing” in the data or “mistrusting” it, as the very data point could
be mislabeled or an outlier. So we propose to relax the hard margin and to regularize by
allowing for misclassifications (soft margin). In Section 4 we introduce such a regulariza-
tion strategy to ADABOOST and subsequently extend the LP-ADABOOST algorithm of
Grove and Schuurmans (1998) by slack variables to achieve soft margins. Furthermore, we
propose a quadratic programming ADABOOST algorithm (QP-ADABOOST) and show its
connections to SUPPORTVECTORMACHINES (SVMs).

Finally, in Section 5 numerical experiments on several artificial and real-world data sets
show the validity and competitiveness of our regularized Boosting algorithms. The paper
concludes with a brief discussion.

2. Analysis of ADABOOST’s learning process

2.1. Algorithm

Let {ht (x) : t = 1, . . . , T} be an ensemble ofT hypotheses defined on an input vector
x ∈ X and letc = [c1 · · · cT ] be their weights satisfyingct ≥ 0 and

∑T
t=1 ct = 1. We

will consider only the binary classification case in this work, i.e.ht (x) = ±1; most results,
however, can be transfered easily to classification with more than two classes (e.g. Schapire,
1999; Schapire & Singer, 1998; Breiman, 1997b).

The ensemble generates the labelf̃ (x) ≡ f̃T (x) which is the weighted majority of the
votes, where

fT (x) :=
T∑

t=1

ctht (x) and f̃T (x) := sign( fT (x)).

In order to train the ensemble, i.e. to findT appropriate hypotheses{ht (x)} and the
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weightsc for the convex combination, several algorithms have been proposed: popular
ones are WINDOWING (Quinlan, 1992), BAGGING (Breiman, 1996), ADABOOST (Freund
& Schapire, 1994), ARC-X4 (Breiman, 1998) and ARC-GV (Breiman, 1997b). In the
sequel analysis, we will focus on ADABOOST-type algorithms and give their pseudo-
code in figure 1 (further details can be found in e.g. Freund & Schapire, 1994; Breiman,
1997b).

In the binary classification case, we define themarginfor an input-output pairzi = (xi , yi )

as

ρ(zi , c) = yi f (xi ) = yi

T∑
t=1

cthr (xi ), (1)

Figure 1. The ADABOOST-type algorithm (ATA). Forφ = 1
2 , we retrieve the original ADABOOST algo-

rithm (Freund & Schapire, 1994). The ATA is a specialization of unnormalized Arcing (Breiman, 1997a) (with
exponential function).
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wherei = 1, . . . , l andl denotes the number of training patterns. The margin atz is positive
if the correct class label of the pattern is predicted. As the positivity of the margin value
increases, the decision stability becomes larger. Moreover, if|c| := ∑T

t=1 ct = 1, then
ρ(zi , c) ∈ [−1, 1]. We will sometimes for convenience also use a margin definition with
b (instead ofc) which denotes simply an unnormalized version ofc, i.e. usually|b| 6= 1
(cf. (F1.2) and (F1.4) in figure 1). Note that theedge(cf. Breiman, 1997b) is just an affine
transformation of the margin.

The margin%(c) of a classifier (instance) is defined as the smallest margin of a pattern
over the training set, i.e.

%(c) = min
i=1,...,l

ρ(zi , c).

Figure 2 illustrates the functioning of ADABOOST. Patterns that are misclassified get
higher weights in the next iteration. The patterns near the decision boundary are usually
harder to classify and therefore get high weights after a few iterations.

2.2. Error function of ADABOOST

An important question in the analysis of ATAs is:what kind of error function is optimized?
From the algorithmic formulation (cf. figure 1), it is not straight forward to see what the

Figure 2. Illustration of ADABOOST on a 2D toy data set: The diameter of the points (the brightness gives
the class label) is proportional to the weight that the pattern gets in the first, second, third, 5th, 10th and 100th
iteration. The dash-dotted lines show the decision boundaries of the single classifiers (up to the 5th iteration). The
solid line shows the decision line of the combined classifier. In the last two plots the decision line of BAGGING is
plotted for a comparison (dotted).
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aim of this algorithm is. So to gain a better understanding why one should use the weights
of the hypothesesct and of the patternswt (zi ) in the manner of Eqs. (F1.2) and (F1.3), let
us study the following three statements

1. The weightswt (zi ) in thet-th iteration are chosen such that the previous hypothesis has
exactly a weighted training errorε of 1/2 (Schapire et al., 1997).

2. The weightbt (andct ) of a hypothesis is chosen such that it minimizes a functionalG
first introduced by Breiman (1997b) (see also R¨atsch, 1998; Mason, Bartlett, & Baxter,
2000a; Onoda et al., 1998; Friedman et al., 1998; Frean & Downs, 1998). This functional
depends on the margins of all patterns and is defined by

G(bt , bt−1) =
l∑

i=1

exp

{
−ρ(zi , bt )+ |bt |

(
1

2
− φ

)}
, (2)

whereφ is a constant (cf. figure 1). This functional can be minimized analytically
(Breiman, 1997b) and one gets the explicit form of Eq. (F1.2) as a solution of
∂G(bt ,bt−1)

∂bt
= 0.

3. To train thet-th hypothesis (step 1 in figure 1) we can either use bootstrap replicates
of the training set (sampled according towt ) or minimize a weighted error function for
the base learning algorithm. We observed that the convergence of the ATA is faster if a
weighted error function is used.

Taking a closer look at the definition ofG, one finds that the computation of the sample
distributionwt (cf. Eq. (F1.3)) can be derived directly fromG. Assuming thatG is the error
function which is minimized by the ATA, thenG essentially defines a loss function over
margin distributions, which depends on the value of|b|. The larger the marginsρ(zi ), the
smaller will be the value ofG.

So, the gradient ∂G
∂ρ(zi )

gives an answer to the question, which pattern should increase its
margin most strongly in order to decreaseG maximally (gradient descent). This information
can then be used to compute a re-weighting of the sample distributionwt for training the next
hypothesisht . If it is important to increase the margin of a patternzi , then its weightwt (zi )

should be high—otherwise low (because the distributionwt sums to one). Interestingly, this
is exactly what ATAs are doing and we arrive at the following lemma (Breiman, 1997b;
Rätsch, 1998):

Lemma 1. The computation of the pattern distributionwt+1 in the t-th iteration is equiv-
alent to normalizing the gradient of G(bt+1, bt ) with respect toρ(zi , bt ), i.e.

wt+1(zi ) = ∂G(bt+1, bt )

∂ρ(zi , bt )

/
l∑

j=1

∂G(bt+1, bt )

∂ρ(z j , bt )
. (3)

The proof can found in Appendix A.
From Lemma 1, the analogy to a gradient descent method is (almost) complete. In a

gradient descent method, the first step is to compute the gradient of the error function with
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respect to the parameters which are to be optimized: this corresponds to computing the
gradient ofG with respect to the margins. The second step is to determine the step size in
gradient direction (usually done by a line-search): this is analogous to the minimization of
G with respect tobt (cf. point 2).

Therefore, ATAs can be related to a gradient descent method in a hypothesis (or function)
spaceH which is determined by the structure of the base learning algorithm, i.e. ATAs aim
to minimize the functionalG by constructing an ensemble of classifiers (Onoda et al.,
1998; Rätsch, 1998; Mason et al., 2000b; Friedman et al., 1998; Friedman, 1999). This also
explains point 1 in the list above, as in a standard gradient descent method, a new search
direction is usually chosen perpendicular to the previous one.

In the ADABOOST-type algorithm, the gradients are found by changing the weights of
the training patterns, and there are essentially two ways of incorporating the re-weighting
into the boosting procedure. The first is to create bootstrap replicates sampled according to
the pattern weightings, which usually induces strong random effects that hide the “true” in-
formation contained in the pattern weightings. The second and more direct way is to weight
the error function and use weighted minimization (Breiman, 1997b). Clearly, weighted
minimization is more efficient in terms of the number of boosting iterations than the boot-
strap approach.2 In fact, it can be shown that employing weighted minimization (Breiman,
1997b) for finding the next hypothesis in each iteration leads to the best (single) hypothesis
for minimizing G (Mason et al., 2000a), i.e. adding the hypothesis with smallest weighted
training errorεt will lead to the smallest value ofG and therefore to a fast convergence.
This reasoning explains the third statement.

2.3. ADABOOST as an annealing process

From the definition ofG andρ(zi , bt ), Eq. (3) can be rewritten as

wt+1(zi ) =
exp

(− 1
2ρ(zi , ct )

)|bt |∑l
j=1 exp

(− 1
2ρ(z j , ct )

)|bt | , (4)

where we emphasize that|bt | can be written in the exponent. Inspecting this equation more
closely, we see that ATA uses a soft-max function (e.g. Bishop, 1995) with parameter|bt |
that we would like to interpret as anannealing parameter(Onoda et al., 1998; Onoda,
Rätsch, & Müller, 2000). In the beginning|bt | is small and all patterns have almost the
same weights (if|bt | = 0 then all weights are the same). As|bt | increases, the patterns
with smallest margin will get higher and higher weights. In the limit of large|bt |, we arrive
at the maximum function: Only the pattern(s) with the smallest margin will be taken into
account for learning and get a non-zero weight.

Note that in the limit for|bt | → ∞, a simple rescaling of the error functionG(bt ) gives
the minimum margin%(zi , ct ), i.e.%(zi , ct ) = −lim|bt |→∞ 1

|bt | logG(bt ).
The following lemma shows that under usual circumstances, the length of the hypothesis

weight vector|bt | increases at least linearly with the number of iterations.
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Lemma 2. If, in the learning process of an ATA with0 < φ < 1, all weighted training
errorsεt are bounded byεt ≤ φ−1 (0< 1 < φ), then|b| increases at least linearly with
the number of iterations t.

Proof: With (F1.2), the smallest value forbt is achieved, ifεt = φ − 1. Then we
havebt = log q

q−1 , whereq := φ(1 − φ + 1). We find q > 1 > 0 and because of
φ(1− φ) > 1(1− φ) we getφ(1− φ +1) > 1 and hence alsoq −1 > 0. Therefore,
the smallest value ofbt is log q

q−1 is always larger than a constantγ , which only depends
onφ and1. Thus, we have|bt | > tγ . 2

If the annealing speed is low, the achieved solution should have larger margins than for
a high speed annealing strategy. This holds for similar reasons as for a standard annealing
process (Kirkpatrick, 1984): in the error surface, a better local minimum (if exist) can be
obtained locally, if the annealing speed is slow enough. From Eq. (F1.2), we observe that
if the training errorεt takes a small value,bt becomes large. So, strong learners can reduce
their training errors strongly and will make|b| large after only a few ATA iterations, i.e.
the asymptotics, where the addition of a new ensemble member does not change the result,
is reached faster. To reduce the annealing speed eitherφ or the complexity of the base
hypotheses has to be decreased (with the constraintεt < φ −1; cf. Onoda et al., 1998).

In figure 3 (left), the ADABOOST Error (φ = 1
2), the Squared Error(y− f (x))2 and the

Kullback-Leibler Error lnρ(z)/ln 2 are plotted. Interestingly, the Squared and Kullback-
Leibler Error are very similar to the error function of ADABOOST for|b| = 3. As |b|
increases,3 the ATA error function approximates a 0/∞ loss (patterns with margin smaller
than 1−2φ get loss∞; all others have loss 0) and bounds the 0/1 loss at 1−2φ from above.

Figure 3. Different loss functions for classification (see text). The abscissa shows the marginy f (x) of a pattern
and the y-coordinate shows the monotone loss for that pattern: 0/1-Loss, Squared Error, Kullback-Leibler Error
and ADABOOST Error (cf. Eq. (2)), where|b| is either 3, 5, 10 or 100 (in reading order). On the left panel is
φ = 1/2 and on the right plotφ is either 1/3 or 2/3. The step position of the 0/∞ loss, which is approximated
for |b| → ∞, is determined byφ.
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Figure 3 (right) shows the different offsets of the step seen in the ATA Error(|b| → ∞).
They result from different values ofφ (hereφ is either 1/3 or 2/3).

2.4. Asymptotic analysis

2.4.1. How large is the margin? ATA’s good generalization performance can be explained
in terms of the size of the (hard) margin that can be achieved (Schapire et al., 1997; Breiman,
1997b): for low noise, the hypothesis with the largest margin will have the best generalization
performance (Vapnik, 1995; Schapire et al., 1997). Thus, it is interesting to understand what
the margin size depends on.

Generalizing Theorem 5 of Freund and Schapire (1994) to the caseφ 6= 1
2 we get

Theorem 3. Assume, ε1, . . . , εT are the weighted classification errors of h1, . . . , hT that
are generated by running an ATA and1 > φ > maxt=1, . . . ,T εt . Then the following
inequality holds for allθ ∈ [−1, 1]:

1

l

l∑
i=1

I (yi f (xi ) ≤ θ) ≤
(
ϕ

1+θ
2 + ϕ− 1−θ

2
)T

T∏
t=1

√
ε1−θ

t (1− εt )1+θ , (5)

where f is the final hypothesis andϕ = φ

1−φ , where I is the indicator function.

The proof can be found in Appendix B.

Corollary 4. An ADABOOST-type algorithm will asymptotically(t →∞) generate mar-
gin distributions with a margin%, which is bounded from below by

% ≥ ln(φε−1)+ ln((1− φ)(1− ε)−1)

ln(φε−1)− ln((1− φ)(1− ε)−1)
, (6)

whereε = maxt εt , if ε ≤ (1− %)/2 is satisfied.

Proof: The maximum ofε1−θ
t (1− εt )

1+θ with respect toεt is obtained for12(1− θ) and
for 0≤ εt ≤ 1

2(1− θ) it is increasing monotonically inεt . Therefore, we can replaceεt by
ε in Eq. (5) forθ ≤ %:

P(x,y)∼Z [y f (x) ≤ θ ] ≤ ((ϕ 1+θ
2 + ϕ− 1−θ

2
)
ε

1−θ
2 (1− ε) 1+θ

2
)T
.

If the basis on the right hand side is smaller than 1, then asymptotically we haveP(x,y)∼Z

[y f (x) ≤ θ ] = 0; this means that asymptotically, there is no example that has a smaller
margin thanθ , for any θ < 1. The supremum over allθ such that the basis is less than
1, θmax is described by(

ϕ
1+θmax

2 + ϕ− 1−θmax
2
)
ε

1−θmax
2 (1− ε) 1+θmax

2 = 1.
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We can solve this equation to obtainθmax

θmax= ln(φε−1)+ ln((1− φ)(1− ε)−1)

ln(φε−1)− ln((1− φ)(1− ε)−1)
.

We get the assertion because% is always larger or equalθmax. 2

From Eq. (6) we can see the interaction betweenφ andε: if the difference betweenε and
φ is small, then the right hand side of (6) is small. The smallerφ is, the more important
this difference is. From Theorem 7.2 of Breiman (1997b) we also have the weaker bound
% ≥ 1− 2φ and so, ifφ is small then% must be large, i.e. choosing a smallφ results in a
larger margin on the training patterns. On the other hand, an increase of the complexity of
the basis algorithm leads to an increased%, because the errorεt will decrease.

2.4.2. Support patterns.A decrease in the functionalG(c, |b|) := G(b) (with c= b/|b|)
is predominantly achieved by improvements of the marginρ(zi , c). If the marginρ(zi , c) is
negative, then the errorG(c, |b|) clearly takes a large value, amplified by|b| in the exponent.
So, ATA tries to decrease the negative margins most efficiently in order to improve the error
G(c, |b|).

Now let us consider the asymptotic case, where the number of iterations and therefore
|b| take large values (cf. Lemma 2). Here, the marginsρ(zi , c) of all patternsz1, . . . , zl ,
are almost the same and small differences are amplified strongly inG(c, |b|). For example,
given two marginsρ(zi , c) = 0.2 andρ(z j , c) = 0.3 and|b| = 100, then this difference is
amplified exponentially exp{− 100×0.2

2 } = e−10 and exp{− 100×0.3
2 } = e−15 in G(c, |b|), i.e.

by a factor ofe5 ≈ 150. From Eq. (4) we see that as soon as the annealing parameter|b| is
large, the ATA learning becomes a hard competition case: only the patterns with smallest
margin will get high weights, other patterns are effectively neglected in the learning process.
We get the following interesting lemma.

Lemma 5. During the ATA learning process, the smallest margin of the(training)patterns
of each class will asymptotically converge to the same value, i.e.

lim
t→∞ min

i :yi=1
ρ(zi , ct ) = lim

t→∞ min
i :yi=−1

ρ(zi , ct ), (7)

if the following assumptions are fulfilled:

1. the weight of each hypothesis is bounded from below and above by

0< γ < bt < 0 <∞, and (8)

2. the learning algorithm must(in principle) be able to classify all patterns to one class
c ∈ {±1}, if the sum over the weights of patterns of class c is larger than a constantδ,

i.e. ∑
i :yi=c

w(zi ) > δ ⇒ h(xi ) = c (i = 1, . . . , l ). (9)

The proof can be found in Appendix C.
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Figure 4. Margin distributions of ADABOOST for different noise levels:σ 2 = 0% (dotted), 9% (dashed), 16%
(solid) with RBF nets (13 centers) as base hypotheses (left); and with 7 (dotted), 13 (dashed), 30 (solid) centers
in the base hypotheses for data withσ 2 = 16% (right) after 104 ADABOOST iterations (φ = 1/2). These graphs
are an experimental confirmation of the trends expected from Eq. (6).

Note 6. Assumption 2 of Lemma 5 ensures, that the classifier is in principle able to
misclassify every single pattern. Effectively, this assumption introduces something like a
bias termb that is automatically adjusted if the smallest margins of one class are significantly
different from the other class. In SVMs for the separable case (Boser et al., 1992),b is directly
computed such that the smallest margins of both classes are the same.

Therefore, the ATA learning process converges, under rather mild assumptions, to a
solution where a subset of the training patterns has asymptotically the same smallest margin.
We call these patternsSupport Patterns(SPs) (cf. figure 4).

To validate our theoretical analysis we performed numerical simulations on toy data with
an asymptotic number (104) of boosting steps. The training data was generated from several
(non-linearly transformed) Gaussian and uniform blobs,4 which were additionally distorted
by uniformly distributed noiseU (0.0, σ 2). In our simulations, we used 300 patterns andσ 2

is either 0%, 9%, or 16%.
In all simulations, radial basis function (RBF) networks with adaptive centers are used

as base learners (cf. Appendix D or M¨uller et al., 1998 for a detailed description). Figure 4
shows the margin distributions after 104 boosting iterations at different noise levelsσ 2 (left)
and for different strengths of the base hypotheses (right). From these figures, it becomes
apparent that the margin distribution asymptotically makes a step at a specific margin size
and that some subset of the training patterns all have similar margins that correspond to
the minimal margin discussed above. If the noise level is high or the complexity of the
base hypothesis is low, one gets higher training errorsεt and therefore a smaller value of
%. These numerical results support our theoretical asymptotic analysis. Interestingly, the
margin distributions of ATAs resembles the ones of SUPPORTVECTORMACHINES for the
separable case (Boser et al., 1992; Cortes & Vapnik, 1995; Vapnik, 1995, cf. figure 5). In
our toy example (cf. figure 6) we show the decision lines of SVMs and ATAs. We note
a very high overlap between the patterns that become support vectors (SVs) (cf. figure 6
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Figure 5. Typical margin distribution graphs (normalized) of a SVM with hard margin (solid) and soft margin
with C = 10−3 (dashed) andC = 10−1 (dash-dotted). Here for the same toy example a RBF kernel (width= 0.3)
is used. The generalization error of the SVM with hard margin is more than two times larger as withC = 10−1.

Figure 6. Training patterns with decision lines for ADABOOST (left) with RBF nets (13 centers) and SVM
(right) for a low noise case with similar generalization errors. The positive and negative training patterns are
shown as ‘+’ and ‘∗’ respectively, the support patterns and support vectors are marked with ‘o’.

right) and the patterns that lie within the step part of the margin distribution for ATA (cf.
figure 4 left).

So, the ADABOOST-type algorithm achieves asymptotically a decision withhard margin,
very similar to the one of SVMs for the separable case. Intuitively this is clear: the most
difficult patterns are emphasized strongly and become support patterns or support vectors
asymptotically. The degree of overlap between the support vectors and support patterns
depends on the kernel (SVM) and on the base hypothesis (ATA) being used. For the SUPPORT

VECTOR MACHINE with RBF kernel the highest overlap was achieved, when the average
widths of the RBF networks was used as kernel width for the SUPPORTVECTORMACHINE
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Figure 7. Typical margin distribution graphs of (original) ADABOOST after 20 (dotted), 70 (dash-dotted), 200
(dashed) and 104 (solid) iterations. Here, the toy example (300 patterns,σ = 16%) and RBF networks with 30
centers are used. After already 200 iterations the asymptotical convergence is almost reached.

(Rätsch, 1998). We have also observed this striking similarity of SPs in ADABOOST and
SVs of the SVM in several other non-toy applications.

In the sequel, we can often assume the asymptotic case, where a hard margin is achieved
(the more hypotheses we combine, the better is this approximation). Experimentally we
find that the hard margin approximation is valid (cf. Eq. (4)) already for e.g.|b| > 100.
This is illustrated by figure 7, which shows some typical ATA margin distributions after 20,
70, 200 and 104 iterations.
To recapitulate our findings of this section:

1. ADABOOST-type algorithms aim to minimize a functional, which depends on the margin
distribution. The minimization is done by means of a constraint gradient descent with
respect to the margin.

2. Some training patterns, which are in the area of the decision boundary, have asymptot-
ically (for a large number of boosting steps) the same margin. We call these patterns
Support Patterns. They have a large overlap to the SVs found by a SVM.

3. Asymptotically, ATAs reach a hard margin comparable to the one obtained by the original
SVM approach (Boser et al., 1992).

4. Larger hard margins can be achieved, ifεt (more complex base hypotheses) and/orφ

are small (cf. Corollary 4). For the low noise case, a choice ofθ 6= 1
2 can lead to a

better generalization performance, as shown for e.g. OCR benchmark data in Onoda
et al. (1998).

3. Hard margin and overfitting

In this section, we give reasons why the ATA isnot noise robustand exhibits suboptimal
generalization ability in the presence of noise. According to our understanding, noisy data
has at least one of the following properties: (a) overlapping class probability distributions,
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(b) outliers and (c) mislabeled patterns. All three types of noise appear very often in data
analysis. Therefore the development of a noise robust version of ADABOOST is very
important.

The first theoretical analysis of ADABOOST in connection with margin distributions
was done by Schapire et al. (1997). Their main result is a bound on the generalization error
Pz∼D[ρ(z) ≤ 0] depending on the VC-dimensiond of the base hypotheses class and on the
margin distribution on the training set. With probability at least 1− δ

Pz∼D[ρ(z) ≤ 0] ≤ Pz∼Z [ρ(z) ≤ θ ] +O
(

1√
l

(
d log2(l/d)

θ2
+ log(1/δ)

))
(10)

is satisfied, whereθ > 0 andl denotes the number of patterns. It was stated that the reason for
the success of ADABOOST, compared to other ensemble learning methods (e.g. BAGGING),
is the maximization of the margin. The authors observed experimentally that ADABOOST
maximizes the margin of patterns which are most difficult, i.e. have the smallest margin and
that on the other hand by increasing the minimum margin of a few patterns, the margin of
the rest of the other patterns is also reduced.

In Breiman (1997b), the connection between maximizing the smallest margin and a good
generalization error was analyzed experimentally and could not be confirmed for noisy data.

In Grove and Schuurmans (1998) the Linear Programming (LP) approach of Freund and
Schapire (1996) and Breiman (1997b) was extended and used to maximize the smallest
margin of an existing ensemble of classifiers. Several experiments with LP-ADABOOST
on UCI benchmarks (often noisy data) were made and it was unexpectedly observed that LP-
ADABOOST performs in almost all cases worse than the original ADABOOST algorithm,
even though the smallest observed margins were larger.

Our experiments have shown that as the margin increases, the generalization performance
becomes better on data sets with almost no noise (e.g. OCR, cf. Onoda et al., 1998),
however, we also observe that ADABOOST overfits on noisy data (for a moderate number
of combined hypotheses).

As an example for overlapping classes, figure 8 (left) shows a typical overfitting behavior
in the generalization error for ADABOOST on the same data as in Section 2. Here, already
after only 80 boosting iterations the best generalization performance is achieved. From
Eq. (6) we see that ADABOOST will asymptotically achieve a positive margin (forφ < 1

2)
and all training patterns are classified according to their possibly wrong labels (cf. figure 8
(right)). However, this is at the expense that the complexity of the combined hypotheses
increases and the decision surface becomes clearly less smooth. The achieved decision line
is far away from the Bayes optimal line (cf. dashed line in figure 8 (right)).

To discuss the generally bad performance of hard margin classifiers in the presence
of outliers and mislabeled patterns, we analyze the toy example in figure 9. Let us first
consider the case without noise (left). Here, we can estimate the optimal separating hyper-
plane correctly. In figure 9 (middle) we have one outlier, which corrupts the estimation. The
ADABOOST-type algorithm will certainly concentrate its weights on this outlier and spoil
the good estimate that we would get without outlier. Next, let us consider more complex
decision lines. Here the overfitting problem gets even more distinct, if we can generate
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Figure 8. Typical overfitting behavior in the generalization error (smoothed) as a function of the number of
iterations (left; log scale) and a typical decision line (right) generated by ADABOOST (104 iterations) using RBF
networks (30 centers) in the case of noisy data (300 patterns,σ 2 = 16%). The positive and negative training
patterns are shown as ‘+’ and ‘∗’ respectively, the support patterns are marked with ‘o’. An approximation to the
Bayes decision line is plotted dashed.

Figure 9. The problem of finding a maximum margin “hyper-plane” on reliable data (left), data with outlier
(middle) and with a mislabeled pattern (right). The solid line shows the resulting decision line, whereas the dashed
line marks the margin area. In the middle and on the left the original decision line is plotted with dots. The hard
margin implies noise sensitivity, because only one pattern can spoil the whole estimation of the decision line.

more and more complexity by combining a lot of hypotheses. Then all training patterns
(even mislabeled ones or outliers) can be classified correctly. In figure 8 (right) and figure 9
(right) we see that the decision surface is rather rough and gives bad generalization.

From these cartoons, it becomes apparent that ATA is noise sensitive and maximizing
the smallest margin in the case of noisy data can (and will) lead to bad results. Therefore,
we need to relax the hard margin and allow for a possibility of mistrusting the data.
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From the bound (10) it is indeed not obvious that we should maximize the smallest
margin: the first term on the right hand side of Eq. (10) takes the whole margin distribution
into account. If we would allow a non-zero training error in the settings of figure 9, then
the first term of the right hand side of (10) becomes non-zero (θ > 0). But thenθ can be
larger, such that the second term is much smaller. In Mason et al. (2000a) and Mason et al.
(2000b) similar bounds were used to optimize the margin distribution (a piecewise linear
approximation) directly. This approach, similar in spirit than ours, is more successful on
noisy data than the simple maximization of the smallest margin.

In the following we introduce several possibilities to mistrust parts of the data, which
leads to thesoft marginconcept.

4. Improvements using a soft margin

Since the original SVM algorithm (Boser et al., 1992) assumed separable classes and pursued
a hard margin strategy, it had similarly poor generalization performance on noisy data as
the ATAs. Only the introduction of soft margins for SUPPORTVECTORMACHINES (Cortes
& Vapnik, 1995) allowed them to achieve much better generalization results (cf. figure 5).

We will now show how to use the soft margin idea for ATAs. In Section 4.1 we modify
the error function from Eq. (2) by introducing a new term, which controls the importance
of a pattern in the reweighting scheme. In Section 4.2 we demonstrate that the soft margin
idea can be directly build into the LP-ADABOOST algorithm and in Section 4.3 we show
an extension to quadratic programming—QP-ADABOOST—with its connections to the
support vector approach.

In the following subsections and also in the experimental section we will only consider
the caseφ = 1

2. Generalizing to other values ofφ is straightforward.

4.1. Margin vs. influence of a pattern

First, we propose an improvement of the original ADABOOST by using a regularization
term in (2) in analogy to weight decay in neural networks and to the soft margin approach
of SVMs.

From Corollary 4 and Theorem 2 of Breiman (1997b), all training patterns will get a
marginρ(zi ) larger than or equal to 1−2φ after asymptotically many iterations (cf. figure 3
and discussion in Section 2). From Eq. (2) we can see thatG(b) is minimized as% is
maximized, where

ρ(zi , c) ≥ % for all i = 1, . . . , l . (11)

After many iterations, these inequalities are satisfied for a% that is larger or equal than
the margin given in Corollary 4. If% > 0 (cf. Corollary 4), then all patterns are classified
according to their possibly wrong labels, which leads to overfitting in the presence of noise.
Therefore, any modification that improves ADABOOST on noisy data, must not force all
margins beyond 0. Especially those patterns that are mislabeled and usually more difficult
to classify, should be able to attain margins smaller than 0.



302 G. RÄTSCH, T. ONODA AND K.-R. MÜLLER

If we knew beforehand which patterns were unreliable we could just remove them from
the training set or, alternatively, we could not require that they have a large margin (cf.
also the interesting approach for regression in Breiman (1999)). Suppose we have defined
a non-negative quantityζ(zi ), which expresses our “mistrust” in a patternzi . For instance,
this could be a probability that the label of a pattern is incorrect. Then we can relax (11)
and get

ρ(zi , c) ≥ % − Cζ(zi ), (12)

whereC is an a priori chosen constant. Furthermore, we can define thesoft marginρ̃(zi )

of a patternzi as a tradeoff between the margin andζ(zi )

ρ̃(zi , c) := ρ(zi , c)+ Cζ(zi ) (13)

and from Eq. (12) we obtain

ρ̃(zi , c) ≥ %. (14)

Now we can again simply maximize the smallestsoft margin (i.e. maximize%) and we
expect to observe less overfitting. The problem now is, how to defineζ(zi ). We restrict
ourselves here by presenting only one definition ofζ based on theinfluenceof a pattern on
the combined hypotheseshr

µt (zi ) =
t∑

r=1

crwr (zi ),

which is the average weight of a pattern computed during the ATA learning process (cf.
pseudo-code in figure 1). The rationale is: a pattern which is very often misclassified (i.e.
difficult to classify) will have a high average weight, i.e. a high influence.5 Interestingly, in
the noisy case there is (usually) a high overlap between patterns with high influence and
mislabeled patterns (or other patterns very near to or just beyond the decision line).

In the SVM approach it turns out that introducing slack variables to the quadratic opti-
mization problem (Cortes & Vapnik, 1995) is the same as introducing a upper bound on
the Lagrange multipliers of the patterns (Cortes & Vapnik, 1995; Vapnik, 1995; Sch¨olkopf,
1997). Empirical evidence shows that the influence of a patternµt (zi ) is very similar to a
Lagrange multiplier in LP-ADABOOST (Grove & Schuurmans, 1998), since it indicates
how much the pattern contributes to the decision. Lagrange multipliers of patterns that are
not support patterns in the linear program will be 0 and the influence of a non support pattern
will also converge asymptotically to 0 (fort →∞). Furthermore, we found experimentally
that both numerical values coincide within a small range (details on this connection can be
found in Rätsch et al., 2000).

From this discussion it becomes apparent that it makes sense to mistrust patterns with
high influences in the noisy case. From this we defineζ by

ζ(zi ) ≡ µt (zi )
p, (15)

such that the influence of a pattern is penalized, wherep is an exponent chosen a priori (for
example choosep = 1 or 2).6 If a training pattern has high weightsζ(zi ), then also the soft
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margin is increasing. If we now maximize the smallest soft margin, we do not force outliers
to be classified according to their possibly wrong labels, but we allow for some errors. Our
prior for the choice (15) is to weight all patterns equally. This counterbalances the tendency
of ATAs to overweight certain patterns. So we tradeoff between margin and influence.

Note 7. If we chooseC = 0 in Eq. (12), the original ADABOOST algorithm is retrieved.
If C is chosen high, then each single data point is “not taken very seriously” and we observe
empirically that the number of support patterns increases. ForC→∞we (almost) retrieve
the BAGGING algorithm (Breiman, 1996) (in this case, the pattern weighting will be always
uniform).

Of course, other functional forms ofζ are also possible (see also R¨atsch et al., 2000),
for instanceζ t (zi ) = P f t (xi ), whereP is an arbitrary regularization operator. WithP it is
possible to incorporate (other) prior knowledge about the problem into ATAs like smooth-
ness of the decision surface much in the spirit of Tikhonov regularizers (e.g. Tikhonov &
Arsenin, 1977; Smola, Sch¨olkopf, & Müller, 1998; Rokui & Shimodaira, 1998).

Now we can reformulate the ATA optimization process in terms of soft margins. From
Eq. (14) and the definition in (15) we can easily derive the new error function (cf. Eq. (2)),
which aims to maximize the soft margin (we assumeφ = 1

2):

GReg(bt ) =
l∑

i=1

exp

{
−1

2
ρ̃(zi , bt )

}

=
l∑

i=1

exp

{
−1

2
|bt |[ρ(zi , ct )+ Cµt (zi )

p]

}
. (16)

The weightwt+1(zi ) of a pattern is computed as the derivative of Eq. (16) with respect to
ρ̃(zi , bt ) (cf. Lemma 1)

wt+1(zi ) = 1

Zt

∂GReg(bt )

∂ρ̃(zi , bt )
= exp{−ρ̃(zi , bt )/2}∑l

j=1 exp{−ρ̃(z j , bt )/2} , (17)

whereZt is a normalization constant such that
∑l

i=1wt+1(zi ) = 1. For p = 1 we get the
update rule for the weight of a training pattern in thet-th iteration (for details cf. R¨atsch,
1998) as

wt+1(zi ) = wt (zi )

Zt
exp{bt I(yi 6= ht (xi ))− Cζ t (zi )|bt |}, (18)

and for p = 2 we obtain

wt+1(zi ) = wt (zi )

Zt
exp{bt I(yi 6= ht (x))− Cζ t (zi )|bt | + Cζ t−1(zi )|bt−1|}, (19)

whereZt is again a normalization constant. It is more difficult to compute the weightbt

of the t-th hypothesis analytically. However, we can getbt efficiently by a line search
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Figure 10. The ADABOOSTREG (ABR) algorithm (Rätsch, 1998; R¨atsch, Onoda, & M¨uller, 1999), whereC is
a regularization constant andp is a parameter that changes the regularization characteristics. In all simulations in
Section 5 we usedp = 2. An implementation can be downloaded fromhttp://ida.first.gmd.de/ ˜raetsch.

procedure (e.g. Press et al., 1992) minimizing (16), which has a unique solution because
∂
∂bt

GReg(bt ) > 0 is satisfied forbt > 0. An algorithmic formulation can be found in
figure 10.

We can interpret this approach as regularization analogous to weight decay. Our prior is
that some patterns are likely not to be reliable, so in the noisy case we prefer hypotheses
which do not rely on only a few patterns with high weights.7 Instead, we are looking for
hypotheses with smaller values ofζ(zi ). So by this regularization, ADABOOST is not
changed for easily classifiable patterns, but only for the most difficult ones.

The variablesζ(zi ) in Eq. (12) can also be interpreted as slack-variables (cf. SVM
approach and next section), which are non-linearly involved in the error function. Large
values ofζ(zi ) for some patterns allow for a larger (soft-) margin%. For a comparison of
the soft margin distributions of a single RBF classifier and ADABOOSTREG see figure 11.

Summarizing, our modification of ADABOOST constructs a soft margin to avoid over-
fitting.
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Figure 11. Margin distribution graphs of the RBF base hypothesis (scaled) trained with Squared Error (left) and
ADABOOSTREG (right) with different values ofC for the toy data set after 1000 iterations. Note that for some
values forC the graphs of ADABOOSTREG are quite similar to the graphs of the single RBF net.

4.2. Linear programming with slack variables

Grove and Schuurmans (1998) showed how to use linear programming to maximize the
smallest margin for a given ensemble and proposed LP-ADABOOST (cf. Eq. (21)). In
their approach, they first compute a margin (or gain) matrixM ∈ {±1}l×T for the given
hypotheses set, which is defined by

Mi,t = yi ht (xi ). (20)

M defines which hypothesis contributes a positive (or negative) part to the margin of a
pattern and is used to formulate the following max-min problem: find a weight vectorc ∈ RT

for hypotheses{ht }Tt=1, which maximizes the smallest margin% := mini=1,...,lρ(zi ). This
problem can be solved by linear programming (e.g. Mangasarian, 1965):

Maximize % subject to
T∑

t=1

Mi,t ct ≥ % i = 1, . . . , l (21)

ct ≥ 0 t = 1, . . . , T
T∑

t=1

ct = 1.

This LP-ADABOOST algorithm achieves a larger hard margin than the original
ADABOOST algorithm, however in this form it cannot hope to generalize well on noisy
data (see our discussion in Section 3). Therefore we also define a soft-margin for a pattern
ρ̃ ′(zi ) = ρ(zi ) + ξi , which is technically equivalent to the introduction of slack variables
ξi and we arrive at the algorithm LPREG-ADABOOST (Rätsch, 1998; R¨atsch et al., 1999;
Rätsch, Onoda, & M¨uller, 1998). To avoid large values of the slack variables, while solving
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Figure 12. The LPREG-ADABOOST algorithm, whereC is a regularization constant.

the linear program with slack variables, the sum of allξi is penalized in the objective func-
tion (cf. pseudo-code in figure 12). This modification allows that some patterns have smaller
margins than%. There is a tradeoff controlled by the constantC: (a)make all margins larger
than% and (b) maximize% − C

l

∑
i ξi .

Our algorithm is related to the LP-SVM approach (Sch¨olkopf, Smola, & Williamson,
2000). As in the original SVM approach, the Lagrange multipliers will be sparse and again
we get support vector/patterns. Interestingly, it turns out in both approaches (asymptotically,
i.e. with the number of patterns) thatν := 1

C ∈ [0 . . .1] is an upper bound on the fraction
of misclassified samples and a lower bound on the fraction of support vectors (R¨atsch et al.,
2000).

4.3. Quadratic programming and the connection to support vector machines

In the following section, we extend the LPREG-ADABOOST (LPR) algorithm to quadratic
programming by using similar techniques as in SUPPORTVECTORMACHINES (Boser et al.,
1992; Cortes & Vapnik, 1995; Mangasarian, 1965). This gives interesting insights to the
connection between SUPPORTVECTORMACHINES and ADABOOST.

We start by transforming the LPREG-ADABOOST algorithm, which maximizes%, while
|c| is kept fixed, to a linear program in which% is fixed (to e.g. 1) and|b| is minimized.
Unfortunately, there is no equivalent linear program because of the slack variables. But
we can use a Taylor expansion8 to get the following linear program (compare with linear
programming approaches related to SV learning e.g. Bennett & Mangasarian, 1992; Weston
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et al., 1997; Frieß & Harrison, 1998; Bennett, 1998):

Minimize ‖b‖1+ C
∑

i

ξi subject to

T∑
t=1

bt Mi,t ≥ 1− ξi , t = 1, . . . , T, (22)

bt ≥ 0, t = 1, . . . , T,

ξi ≥ 0, i = 1, . . . , l .

Essentially, this is the same algorithm as in figure 12: for a different value ofC problem,
(22) is equivalent to the one in figure 12 (cf. Smola, 1998 and Lemma 3 in R¨atsch et al.,
2000). Instead of using thè1-norm in the optimization objective of (22), we can also use
the`p-norm. Clearly, eachp will imply its own soft margin characteristics. Usingp = 2
leads to an algorithm similar to the SVM (cf. figure 14).

The optimization objective of a SVM is to find a functionhw which minimizes a functional
of the form (Vapnik, 1995)

E = ‖w‖2+ C
l∑

i=1

ξi , (23)

subject to the constraints

yi h(xi ) ≥ 1− ξi and ξi ≥ 0, for i = 1, . . . , l .

Here, the variablesξi are the slack-variables responsible for obtaining a soft margin. The
norm of the parameter vectorw defines a system of nested subsets in the combined hypoth-
esis space and can be regarded as a measure of the complexity (as also the size of the margin

Figure 13. Margin distribution graphs of LPREG-ADABOOST (left) and QPREG-ADABOOST (right) for different
values ofC for the toy data set after 1000 iterations. LPREG-ADABOOST sometimes generates margins on the
training set, which are either 1 or−1 (step in the distribution).
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of hypothesishw) (Vapnik, 1995). With functional (23), we get a tradeoff (controlled byC)
between the complexity of the hypothesis (‖w‖2) and the degree how much the classification
may differ from the labels of the training patterns (

∑
i ξi ).

For ensemble learning, so far we do not have such a measure of complexity. Empirically,
we observed that the more different the weights are for the hypotheses, the higher the
complexity of the ensemble. With this in mind, we can use the`p norm (p > 1) of the
hypotheses weight vector‖b‖p as a complexity measure. Let us assume, for example that we
have|b| = 1, then‖b‖p this is a small value, as the elements ofb are approximately equal
(analogous to BAGGING). If ‖b‖p has high values, then there are some strongly emphasized
hypotheses (far away from BAGGING).9 Hence, we can apply the optimization principles of
SVMs to ADABOOST and get a quadratic optimization problem inb:

Minimize ‖b‖2+ C
∑

i

ξi ,

with the constraints given in Eq. (22). We call this algorithm QPREG-ADABOOST (QPR)
since it was motivated by the connection to LPREG-ADABOOST (cf. algorithm (22)) and by
the analogy to the support vector algorithm (for pseudocode see figure 14). We expect a sim-
ilar performance of QPREG and LPREG-ADABOOST with subtle differences on specific data
sets due to the different “types” of soft margins. Furthermore, they should exhibit superior
performance compared to the original ADABOOST algorithm on noisy data. For an overall
comparison of the margin distributions of original ADABOOST, SVM, ADABOOSTREG

and LP/QP-ADABOOST see figures 5, 7, 11 and 13.
Summarizing, we introduced in this section the soft margin concept to ADABOOST

by (a) regularizing the objective function (2), (b) LPREG-ADABOOST, which uses slack
variables and (c) QPREG-ADABOOST, which exhibits an interesting connection to SVMs.

Figure 14. The QPREG-ADABOOST algorithm, whereC is a regularization constant.
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5. Experiments

In order to evaluate the performance of our new algorithms, we perform large scale simula-
tions and compare the single RBF classifier, the original ADABOOST algorithm,
ADABOOSTREG, L/QPREG-ADABOOST and a SUPPORTVECTOR MACHINE (with RBF
kernel).

5.1. Experimental setup

For this, we use 13 artificial and real world data sets from the UCI, DELVE and STAT-
LOG benchmark repositories10: banana (toy data set used in the previous sections),breast
cancer,11 diabetes, german, heart, image segment, ringnorm, flare solar, splice, new-
thyroid, titanic, twonorm, waveform. Some of the problems are originally not binary classi-
fication problems, hence a random partition into two classes is used.12 At first we generate
100 partitions into training and test set (mostly≈ 60% : 40%). On each partition we train
a classifier and then compute its test set error.

In all experiments, we combine 200 hypotheses. Clearly, this number of hypotheses is
somewhat arbitrary and may not be optimal. However we checked that original ADABOOST
with early stopping is most of the time worse than any of the proposed soft margin algorithms
(cf. an earlier study R¨atsch, 1998). However, we use a fixed number of iterations for all
algorithms, therefore this comparison should be fair.

As base hypotheses we use RBF nets with adaptive centers as described in Appendix D.
On each of the 13 data sets we employ cross validation to find the best base hypothesis
model, which is then used in the ensemble learning algorithms. For selecting the best RBF
model we optimize the number of centers (parameterK , cf. figure 15) and the number of
iteration steps for adapting the RBF centers and widths (parameterO). The parameterλ
was fixed to 10−6.

The parameterC of the regularized versions of ADABOOST and the parameters (C, σ )
of the SVM (C is the regularization constant andσ is the width of the RBF-kernel be-
ing used) are optimized on the first five realizations of each data set. On each of these
realizations, a 5-fold-cross validation procedure gives a good model.13 Finally, the model
parameters are computed as the median of the five estimations and used throughout the
training on all 100 realization of that data set. This way of estimating the parameters is
computationally highly expensive, but it will make our comparison more robust and the
results more reliable.

Note, to perform the simulations in this setup we had to train more than 3×106 adaptive
RBF nets and to solve more than 105 linear or quadratic programming problems—a task that
would have taken altogether 2 years of computing time on a single Ultra-SPARC machine,
if we had not distributed it over 30 computers.

5.2. Experimental results

In Table 1 the average generalization performance (with standard deviation) over the 100
partitions of the data sets is given. The second last line in Table 1 showing ‘Mean%’, is
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Figure 15. Pseudo-code description of the RBF net algorithm, which is used as base learning algorithm in the
simulations with ADABOOST.

computed as follows: For each data set the average error rates of all classifier types are
divided by the minimum error rate for this data set and 1 is subtracted. These resulting
numbers are averaged over the 13 data sets and the variance is computed. The last line gives
the Laplacian probability (and variance) over 13 data sets whether a particular method
wins on a particular realization of a data set, i.e. has the lowest generalization error. Our
experiments on noisy data (cf. Table 1) show that:

– The results of ADABOOST are in almost all cases worse than the single classifier. This
is clearly due to the overfitting of ADABOOST. If early stopping is used then the effect
is less drastic but still clearly observable (R¨atsch, 1998).

– The averaged results for ADABOOSTREG are a bit better (Mean% and Winner%) than
the results of the SVM, which is known to be an excellent classifier. In five (out of
seven) cases ADABOOSTREG is significant better than the SVM. Moreover, the single
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Table 1. Comparison among the six methods: Single RBF classifier, ADABOOST (AB), ADABOOSTREG (ABR;
p = 2), L/QPREG-ADABOOST (L/QPR-AB) and a SUPPORTVECTOR MACHINE: Estimation of generalization
error in % on 13 data sets (best method in bold face, second emphasized). The columns S1 and S2 show the results
of a significance test (95%-t-test) between AB/ABR and ABR/SVM, respectively. ADABOOSTREG gives the best
overall performance.

RBF AB S1 ABR LPR-AB QPR-AB S2 SVM

Banana 10.8± 0.6 12.3± 0.7 + 10.9± 0.4 10.7± 0.4 10.9± 0.5 + 11.5± 0.7

B. Cancer 27.6± 4.7 30.4± 4.7 + 26.5± 4.5 26.8± 6.1 25.9± 4.6 26.0± 4.7

Diabetes 24.3± 1.9 26.5± 2.3 + 23.8± 1.8 24.1± 1.9 25.4± 2.2 + 23.5± 1.7

German 24.7± 2.4 27.5± 2.5 + 24.3± 2.1 24.8± 2.2 25.3± 2.1 − 23.6± 2.1

Heart 17.6± 3.3 20.3± 3.4 + 16.5± 3.5 17.5± 3.5 17.2± 3.4 16.0± 3.3

Image 3.3± 0.6 2.7± 0.7 2.7± 0.6 2.8± 0.6 2.7± 0.6 3.0± 0.6

Ringnorm 1.7± 0.2 1.9± 0.3 + 1.6± 0.1 2.2± 0.5 1.9± 0.2 + 1.7± 0.1

F. Solar 34.4± 2.0 35.7± 1.8 + 34.2± 2.2 34.7± 2.0 36.2± 1.8 − 32.4± 1.8

Splice 10.0± 1.0 10.1± 0.5 + 9.5± 0.7 10.2± 1.6 10.1± 0.5 + 10.9± 0.7

Thyroid 4.5± 2.1 4.4± 2.2 − 4.6± 2.2 4.6± 2.2 4.4± 2.2 4.8± 2.2

Titanic 23.3± 1.3 22.6± 1.2 22.6± 1.2 24.0± 4.4 22.7± 1.1 22.4± 1.0

Twonorm 2.9± 0.3 3.0± 0.3 + 2.7± 0.2 3.2± 0.4 3.0± 0.3 + 3.0± 0.2

Waveform 10.7± 1.1 10.8± 0.6 + 9.8± 0.8 10.5± 1.0 10.1± 0.5 9.9± 0.4

Mean% 6.6± 5.8 11.9± 7.9 1.7± 1.9 8.9± 10.8 5.8± 5.5 4.6± 5.4

Winner% 14.8± 8.5 7.2± 7.8 26.0± 12.4 14.4± 8.6 13.2± 7.6 23.5± 18.0

RBF classifier wins less often than the SVM (for a comparison in the regression case cf.
Müller et al., 1998).

– L/QPREG-ADABOOST improves the results of ADABOOST. This is due to the use of
a soft margin. But the results are not as good as the results of ADABOOSTREG and the
SVM. One reason is that the hypotheses generated by ADABOOST (aimed to construct
a hard margin) may not provide the appropriate basis to subsequently generate a good
soft margin with linear and quadratic programming approaches.

– We can observe that quadratic programming gives slightly better results than linear
programming. This may be due to the fact that the hypotheses coefficients generated by
LPREG-ADABOOST are more sparse (smaller ensemble) and larger ensembles may have
a better generalization ability (Breiman, 1998). Furthermore, with QP-ADABOOST we
prefer ensembles which have approximately equally weighted hypotheses. As stated in
Section 4.3, this implies a lower complexity of the combined hypothesis, which can lead
to a better generalization performance.

– The results of ADABOOSTREG are in ten (out of 13) cases significantly better than the
results of ADABOOST. Also, in ten cases ADABOOSTREG performs better than the
single RBF classifier.

Summarizing, ADABOOSTREG wins most often and shows the best average performance.
In most of the cases it performs significantly better than ADABOOST and it performs
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slightly better than SUPPORTVECTORMACHINES. This demonstrates the noise robustness
of the proposed algorithm.

The slightly inferior performance of SVM compared to ADABOOSTREG may be ex-
plained with the fixedσ of the RBF-kernel for SVM. By fixingσ we look at the data only
atone scale, i.e. we are losing possible multiscale information that could be inherent of the
data. Further causes could be the coarse model selection, and the error function of the SV
algorithm, which is not adapted to the noise model in the data (see Smola et al., 1998).

So, the original ADABOOST algorithm is useful forlow noise cases, where the classes
are easily separable (as shown for OCR cf. Schwenk & Bengio, 1997; LeCun et al., 1995).
L/QPREG-ADABOOST can improve the ensemble structure through introducing a soft mar-
gin and the same hypotheses (just with another weighting) can result in a much better gen-
eralization performance. The hypotheses, which are used by L/QPREG-ADABOOST may
be sub-optimal, because they are not part of the L/QP optimization process that aims for
a soft margin. ADABOOSTREG does not have this problem: the hypotheses are generated
such that they are appropriate to form the desired soft-margin. ADABOOSTREG extends the
applicability of Boosting/Arcing methods to non-separable cases and should be preferably
applied if the data is noisy.

6. Conclusion

We have shown that ADABOOST performs a constrained gradient descent in an error func-
tion that optimizes the margin (cf. Eq. (2)). Asymptotically, all emphasis is concentrated on
the difficult patterns with small margins, easy patterns effectively do not contribute to the
error measure and are neglected in the training process (very much similar to support vec-
tors). It was shown theoretically and experimentally that the cumulative margin distribution
of the training patterns converges asymptotically to a step. Therefore, original ADABOOST
achieves ahard marginclassification asymptotically. The asymptotic margin distribution
of ADABOOST and SVM (for the separable case) are very similar. Hence, the patterns
lying in the step part (support patterns) of the margin distribution show a large overlap to
the support vectors found by a SVM.

We discussed in detail that ATAs and hard margin classifiers are in general noise sensitive
and prone to overfit. We introduced three regularization-based ADABOOST algorithms to
alleviate this overfitting problem: (1) direct incorporation of the regularization term into
the error function (ADABOOSTREG), use of (2) linear and (3) quadratic programming with
slack variables to improve existing ensembles. The essence of our proposed algorithms is
to achieve a soft margin (through regularization term and slack variables) in contrast to the
hard margin classification used before. The soft-margin approach allows to control how
much we trust the data, so we are permitted to ignore noisy patterns (e.g. outliers) which
would otherwise spoile our classification. This generalization is very much in the spirit of
SUPPORTVECTOR MACHINES that also tradeoff the maximization of the margin and the
minimization of the classification errors by introducing slack variables. Note that we just
gave one definition for the soft margin in ADABOOSTREG other extensions that e.g. use
regularization operators (e.g. Smola et al., 1998; Rokui & Shimodaira, 1998; Bishop, 1995)
or that have other functional forms (cf. R¨atsch et al., 2000) are also possible.
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In our experiments on noisy data the proposed regularized versions of ADABOOST:
ADABOOSTREG and L/QPREG-ADABOOST show a more robust behavior than the original
ADABOOST algorithm. Furthermore, ADABOOSTREG exhibits a better overall general-
ization performance than all other analyzed algorithms including the SUPPORTVECTOR

MACHINES. We conjecture that this result is mostly due to the fact that SUPPORTVECTOR

MACHINEScan only use oneσ , i.e. only one–fixed–kernel, and therefore loses multi-scaling
information. ADABOOST does not have this limitation, since we use RBF nets with adap-
tive kernel widths as base hypotheses.

Our future work will concentrate on a continuing improvement of ADABOOST-type
algorithms for noisy real world applications. Also, a further analysis of the relation between
ADABOOST (in particular QPREG-ADABOOST) and SUPPORTVECTORMACHINES from
the margin point of view seems promising, with particular focus on the question of what good
margin distributions should look like. Moreover, it is interesting to see how the techniques
established in this work can be applied to ADABOOST in a regression scenario (cf. Bertoni,
Campadelli, & Parodi, 1997; Friedman, 1999; R¨atsch et al., 2000).

Appendix

A. Proof of Lemma 1

Proof: We defineπt (zi ) := ∏t
r=1 exp(−br I(hr (zi ) = yi )) and from definition ofG and

d we get

∂G
∂ρ(zi ,bt )∑l

j=1
∂G

∂ρ(z j ,bt )

= exp
(− 1

2ρ(zi , bt )
)∑l

j=1 exp
(− 1

2ρ(zi , bt )
)

= πt (zi )∑l
j=1πt (x j )

= πt (zi )

Z̃t

,

where Z̃t := ∑l
i=1πt (zi ). By definition,πt (zi ) = πt−1(zi ) exp(−bt I(ht (zi ) = yi )) and

π1(zi ) = 1/ l . Thus, we get

wt+1(zi ) = πt (zi )

Z̃t

= πt−1(zi ) exp(−bt I(ht (zi ) = yi ))

Z̃t

= wt−1(zi )Z̃t−1 exp(−bt I(ht (zi ) = yi ))

Z̃t

= wt−1(zi ) exp(−bt I(ht (zi ) = yi ))

Zt
,

whereZt = Z̃t Z̃t−1 (cf. step 4 in figure 1). 2
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B. Proof of Theorem 3

The proof follows the one of Theorem 5 in (Schapire et al., 1997). Theorem 3 is a general-
ization forφ 6= 1

2.

Proof: If y f (x) ≤ θ , then we have

y
T∑

t=1

btht (x) ≤ θ
T∑

t=1

bt ,

and also

exp

{
− y

2

T∑
t=1

bt ht (x)+ θ
2

T∑
t=1

bt

}
≥ 1.

Thus,

P(x,y)∼Z [y f (x) ≤ θ ] ≤ 1

l

l∑
i=1

exp

{
− yi

2

T∑
t=1

btht (xi )+ θ
2

T∑
t=1

bt

}

= exp
(
θ
2

∑T
t=1 bt

)
l

l∑
i=1

exp

{
− yi

2

T∑
t=1

bt ht (xi )

}
,

where

l∑
i=1

exp

{
− yi

2

T∑
t=1

btht (xi )

}

=
l∑

i=1

exp

{
− yi

2

T−1∑
t=1

btht (xi )

}
exp

{
− yi

2
bT hT (xi )

}

=
∑

i :hT (xi )=yi

exp

{
− yi

2

T−1∑
t=1

btht (xi )

}
e−bT/2

+
∑

i :hT (xi )6=yi

exp

{
− yi

2

T−1∑
t=1

btht (xi )

}
ebT/2

=
(

l∑
i=1

exp

{
− yi

2

T−1∑
t=1

bt ht (xi )

})
((1− εT )e

−bT/2+ εTebT/2),

because

εT = 1∑l
j=1w

T
j

∑
i :hT (xi )6=yi

wT
i .
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With
∑l

i=1 exp(0) = l (for t = 1), we get recursively

P(x,y)∼Z [y f (x) ≤ θ ] ≤ exp

(
θ

2

T∑
t=1

bt

)
T∏

t=1

((1− εt )e
−bt/2+ εt e

bt/2).

Plugging in the definition forbt we get

P(x,y)∼Z [y f (x) ≤ θ ] ≤
(

T∏
t=1

1− εt

εt

T∏
t=1

φ

1− φ

)θ/2

×
(√

φ

1− φ +
√

1− φ
φ

)T T∏
t=1

√
(1− εt ) εt

=
((

φ

1− φ
) 1+φ

2

+
(

1− φ
φ

) 1−φ
2

)T T∏
t=1

√
(1− εt )1+θ ε1−θ

t

= (ϕ 1+θ
2 + ϕ− 1−θ

2
)T

T∏
t=1

√
ε1−θ

t (1− εt )1+θ .

2

C. Proof of Lemma 5

Proof: We have to show that limt→∞ εt = 0, where

εt :=
∣∣∣min
i :yi=1

ρ(zi , ct )− min
j :yj=−1

ρ(z j , ct )

∣∣∣.
The setSt

c is the set of support patterns at iterationt :

St
c =

{
j ∈ {1, . . . , l } : ρ(z j , ct ) = min

i :yi=c
ρ(zi , ct )

}
,

which clearly contains at least one element. Note thatS∞1 ∪S∞−1 is the set of support patterns,
which we will get asymptotically.

Suppose we haveεt > 1/2 > 0 ands ∈ {±1} is the class with the smallest margin.
With (4), q ∈ St

s andQ := exp(− 1
2ρ(zq, ct )) we get

∑
i :yi=s

wt (zi ) ≥ Q|b
t |

Q|bt | +∑i :yi 6=s exp
(− 1

2ρ(zi , ct )
)|bt |

>
Q|b

t |

Q|bt | + (l − 1)Q|bt |e−|bt |1/4
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With |bt |> tγ from assumption (8) we get
∑

i :yi = swt (zi )≥ δ, for t > t1 := log(l−1)−log(1/δ−1)
γ1/4 .

Hence, with assumption (9) we get: Ift ≥ t1, then all patternszi of classs will be clas-
sified correctly and patterns of classr = −s will be misclassified. Therefore, we obtain
ρ(zi , ct+1) = |bt |ρ(zi ,ct )+bt+1

|bt+1| , for i ∈ {k : yk = s} (especially fori ∈ St
s). The patterns of

classr will be misclassified and we haveρ(z j , ct+1) = |bt |ρ(z j ,ct )−bt+1

|bt+1| , for j ∈ {k : yk = r }.
It follows

εt+1 =
∣∣∣∣min
i :yi=s

|bt |ρ(zi , ct )− bt+1

|bt+1| − min
j :yj=r

|bt |ρ(z j , ct )+ bt+1

|bt+1|
∣∣∣∣

=
∣∣∣∣εt |bt | − 2bt+1

|bt+1|
∣∣∣∣

As long asεt > 1/2, all patterns of classr will be misclassified and patterns of classs
will be classified correctly. If it becomes(εt |bt | − 2bt+1)/|bt+1| < −1/2, then the same
reasoning can be done interchanging the role ofs andr . If furthermoret > t2 := 40

γ1
, then

εt |bt | − 2bt+1 > 0 and we haveεt+1 < εt − ωt , whereωt is decreasing not too fast (i.e. it
can be bounded byO(1/t)). Hence, we will reach the caseεt < 1/2 and get: Ift is large
enough(t > t3 := 20(2−1)

1γ
), then

−1 <
εt |bt | − 2bt+1

|bt+1| < 1,

i.e. adding a new hypothesis will not lead toεt+1 ≥ 1.
Therefore, after a finite numbert̃ of subsequent steps, we have we will reachεt < 1.

Furthermore, the discussion above shows that, ift is large enough, it is not possible to leave
the1area around 0. Hence, for each1 > 0, we can provide an indexT = max(t1, t2, t3)+ t̃
(wheret1, . . . , t3 are the lower bounds ont used above), such thatεt < 1 for all t > T .
This implies the desired result. 2

D. RBF nets with adaptive centers

The RBF nets used in the experiments are an extension of the method of Moody and Darken
(1989), since centers and variances are also adapted (see also Bishop, 1995; M¨uller et al.,
1998). The output of the network is computed as a linear superposition ofK basis functions

f (x) =
K∑

k=1

wkgk(x), (24)

wherewk, k = 1, . . . , K , denotes the weights of the output layer. The Gaussian basis
functionsgk are defined as

gk(x) = exp

(
−‖x− µk‖2

2σ 2
k

)
, (25)
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whereµk andσ 2
k denote means and variances, respectively. In a first step, the meansµk

are initialized with K-means clustering and the variancesσk are determined as the distance
betweenµk and the closestµi (i 6= k, i ∈ {1, . . . , K }). Then in the following steps we
perform a gradient descent in the regularized error function (weight decay)

E = 1

2

l∑
i=1

(yi − f (xi ))
2+ λ

2l

K∑
k=1

w2
k. (26)

Taking the derivative of Eq. (26) with respect to RBF meansµk and variancesσk we obtain

∂E

∂µk
=

l∑
i=1

( f (xi )− yi )
∂

∂µk
f (xi ), (27)

with ∂
∂µk

f (xi ) = wk
xi−µk

σ 2
k

gk(xi ) and

∂E

∂σk
=

l∑
i=1

( f (xi )− yi )
∂

∂σk
f (xi ), (28)

with ∂
∂σk

f (xi ) = wk
‖µk−xi ‖2

σ 3
k

gk(xi ). These two derivatives are employed in the minimization
of Eq. (26) by a conjugate gradient descent with line search, where we always compute the
optimal output weights in every evaluation of the error function during the line search. The
optimal output weightsw = [w1, . . . , wK ]> in matrix notation can be computed in closed
form by

w =
(

GT G+ 2
λ

l
I
)−1

GTy, whereGik = gk(xi ) (29)

andy = [y1, . . . , yl ]> denotes the output vector, andI an identity matrix. Forλ = 0, this
corresponds to the calculation of a pseudo-inverse of G.

So, we simultaneously adjust the output weights and the RBF centers and variances (see
figure 15 for pseudo-code of this algorithm). In this way, the network fine-tunes itself to
the data after the initial clustering step, yet, of course, overfitting has to be avoided by
careful tuning of the regularization parameter, the number of centersK and the number of
iterations (cf. Bishop, 1995). In our experiments we always usedλ = 10−6 and up to ten
CG iterations.
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Notes

1. An ensemble is a collection of neural networks or other types of classifiers (hypotheses) that are trained for
the same task.

2. In Friedman et al. (1998) it was mentioned that sometimes the randomized version shows a better performance,
than the version with weighted minimization. In connection with the discussion in Section 3 this becomes
clearer, because the randomized version will show an overfitting effect (possibly much) later and overfitting
may be not observed, whereas it was observed using the more efficient weighted minimization.

3. In our experiments we have often observed values for|b| that are larger than 100 after only 200 iterations.
4. A detailed description of the generation of the toy data used in the asymptotical simulations can be found in

the Internethttp://ida.first.gmd.de/ ˜ raetsch/data/banana.html.
5. The definition of the influence clearly depends on the base hypothesis spaceH. If the hypothesis space

changes, other patterns may be more difficult to classify.
6. Note that forp = 1 there is a connection to the leave-one-out-SVM approach of Weston (1999).
7. Interestingly, the (soft) SVM generates many more support vectors in the high noise case than in the low noise

case (Vapnik, 1995).
8. From the algorithm in figure 12, it is straight forward to get the following linear program, which is equivalent

for any fixedS> 0:

Minimize
%+

S
+ C

S

∑
i

ξ+i subject to S
T∑

t=1

ct Mi,t ≥ %+ − ξ+i ,

where%+ := S%, ξ+i := Sξi , bt ≥ 0, ξ+i ≥ 0,
∑

t

bt = S.

In this problem we can set%+ to 1 and try to optimizeS. To retrieve a linear program, we use the Taylor
expansion around 1:1S = S+O((S−1)2) and

∑
i ξ
+
i /S=

∑
i ξ
+
i +O(S−1). ForS= |b|we get algorithm

(22).
9. For p = 2, ‖b‖2 corresponds to the Renyi entropy of the hypothesis vector and we are effectively trying to

minimize this entropy while separating the data.
10. These data sets including a short description, the splits into the 100 realizations and the simulation results are

available athttp://ida.first.gmd.de/ ˜ raetsch/data/benchmarks.htm.
11. The breast cancer domain was obtained from the University Medical Center, Inst. of Oncology, Ljubljana,

Yugoslavia. Thanks go to M. Zwitter and M. Soklic for providing the data.
12. A random partition generates a mappingm of n to two classes. For this a random±1 vectorm of lengthn is

generated. The positive classes (and the negative respectively) are then concatenated.
13. The parameters selected by the cross validation are only near-optimal. Only 15–25 values for each parameter

are tested in two stages: first a global search (i.e. over a wide range of the parameter space) was done to find
a good guess of the parameter, which becomes more precise in the second stage.
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