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Abstract. We consider exact learning monotone CNF formulas in which each variable appears at most some
constantk times (“read-k” monotone CNF). Letf : {0, 1}n → {0, 1} be expressible as a read-k monotone CNF
formula for some natural numberk. We give an incremental output polynomial time algorithm for exact learning
both the read-k CNF and (not necessarily read restricted) DNF descriptions off . The algorithm’s only method of
obtaining information aboutf is through membership queries, i.e., by inquiring about the valuef (x) for points
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CNF/DNF dualization problem. The unrestricted versions remain open problems of importance.
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1. Introduction

We begin by defining the basic problems addressed and then follow with some motivation
and application to other areas. We consider Boolean functions that map points in then-
dimensional Boolean hypercube{0, 1}n onto{0, 1}. More specifically, we are interested in
monotoneBoolean functions. We say thaty = 〈y1y2, . . . yn〉 is above x= 〈x1x2, . . . xn〉 in
the Boolean hypercube iff for eachi , yi ≥ xi . Then a monotone Boolean function is one
which satisfies the following property: iff (x) = 1, then f (y) = 1 for eachy abovex.
Monotone Boolean functions are known to have unique reduced CNF (Conjunctive Normal
Form) and DNF (Disjunctive Normal Form) expressions.

This paper investigates two related problems. To facilitate their descriptions, we intro-
duce the notion of a membership query oracle forf which is an oracle that on query “x”
returns the valuef (x).

Monotone CNF conversion:Given a monotone CNF formula, find its equivalent reduced
DNF formula.
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Monotone function identification:Let f be a monotone Boolean function. Given a mem-
bership query oracle forf find both the CNF and DNF representations off .

A natural dual problem to the first is the monotone DNF conversion problem, that is, given
a monotone DNF, find its equivalent CNF. As we shall see in Section 2.1, these problems
are of equivalent complexity. That is, an algorithm for one can be used to solve the other
with relatively little increase in running time. Henceforth, our reference to the CNF/DNF
conversion problem, or “the conversion problem” means either of the two problems.

An efficient algorithm for the monotone function identification problem can be used to
efficiently solve the monotone CNF conversion problem, since the input CNF expression
for the conversion problem can be used to answer the required membership queries for
the identification problem. Furthermore, results of Bioch and Ibaraki (1995) show that
an efficient algorithm for the conversion problem also may be used to obtain an efficient
algorithm for the identification problem.

What do we mean by an efficient algorithm? We will be more careful about defining
efficiency in Section 2. For now we note that since the output for these algorithms may be
significantly larger than their input, we allow our algorithms to run in time polynomial in
the size of their output.

Whether or not an efficient algorithm exists for either the conversion or identification
problems is currently an open question. Recently, Fredman and Khachiyan (1996) gave an
O(mo(logm)) time algorithm for the identification problem, wherem is the sum of the size
of the desired CNF and DNF. This provides evidence that neither of the two problems are
likely to be NP-hard. Whether or not there is an algorithm that is polynomial inm remains
open.

Since an efficient solution to the general problem is not known, some research has focused
on determining which natural subcases of the general problem have efficient solutions. For
example, in the event that each clause of the CNF has at most two variables, efficient
solutions have been given under various definitions of efficiency (Tsukiyama et al., 1977;
Lawler, Lenstra, & Kan, 1980; Karp & Wigderson, 1985; Johnson, Papadimitriou, &
Yannakakis, 1988). Extending this work, Eiter and Gottlob (1995) give an efficient algorithm
for the case in which the size of each clause is bounded by some constant. Finally, Makino
and Ibaraki have also shown that an efficient solution exists for the class of monotone
formulas with “constant maximum latency” (Makino & Ibaraki, 1997, 1998).

The restriction considered in this paper is based on limiting the number of “reads”
(occurrences of each variable) in a formula, a restriction that has been well-investigated in
the learning-theory literature (Angluin, Hellerstein, & Karpinski, 1993; Pillaipakkamnatt
& Raghavan, 1995; Bshouty, Hancock, & Hellerstein, 1995a, 1995b; Pillaipakkamnatt
& Raghavan, 1996; Aizenstein et al., 1998a, 1998b). Previous work has shown that it is
possible to identify an arbitrary monotone read-once(∧,∨) formula under a stronger notion
of polynomial time (Angluin, Hellerstein, & Karpinski, 1993; Gurvich & Khachiyan, 1995).
We show here (for the conversion problem) that given a read-k monotone CNF expression
one can efficiently find its DNF expression. (Henceforth, we will refer to this problem
as theread-k-CNF conversion problem.) For the identification problem, we show that
given access to only membership queries of a function that can be represented as a read-k
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monotone CNF, one can efficiently find both its CNF and DNF expressions. (Henceforth,
we will refer to this problem as theread-k-CNF/DNF identification problem.)

1.1. Motivation

We now consider relationships between naturally arising problems and the unrestricted
cases of the monotone CNF conversion and monotone function identification problems. In
some cases, the read-k restriction that allows for our polynomial-time solution corresponds
to a natural restriction (and solution thereof) for the related problem.

Database applications. In the context of data-mining, an algorithm for the conversion
problem can be used to find all of the keys in a relation. In addition to providing high-
level information about a relation, the keys can be used for verifying that a collection of
mined rules are in fact all of the interesting rules in a relation (Mannila & Toivonen, 1996).
Similarly, key enumeration is related to the problem of finding a small cover for the set
of functional dependencies that hold in a database; a problem useful in database design or
query processing (Mannila & R¨aihä, 1992a, 1992b; Kivinen & Mannila, 1995).

Our read-k algorithm can be used to enumerate all of the keys of a single relation provided
that no attribute participates in more thank (constant) minimal keys. The time required is
polynomial in the size of the relation and the number of minimal keys.

Another recently studied problem in data mining is that of findingassociation rulesthat
hold in a relation (table)T (Agrawal et al., 1996). Each row of the tableT typically contains
binary data. Letα be a subset of the attributes ofT and letX be a single attribute not in
α. Let A denote the number of rows ofT for which each attribute ofα has value 1. LetB
denote the number of rows ofT for which each attribute ofα ∪ {X} has value 1. Let|T |
denote the number of rows inT . Thenα→ X is an association rule with “support”σ and
“confidence”δ provided that (1)B/|T | ≥ σ , and (2)B/A ≥ δ.

Efficiently enumerating association rules has become an important topic in data mining.
Typically, a heuristic approach is taken wherein one first enumerates all of the “frequent sets”
of T (Agrawal, Imielinski, & Swami, 1993; Agrawal & Srikant, 1994; Srikant & Agrawal,
1995; Agrawal et al., 1996; Gunopulos, Mannila, & Saluja, 1997; Mannila & Toivonen,
1997). A frequent set is any set of attributesS such that the fraction of rows that have all
attributes ofSset to 1 is at leastσ . Efficient algorithms for the conversion problem would
be useful as a heuristic for enumerating all maximal frequent sets (Gunopulos, Mannila, &
Saluja, 1997). Our read-k restriction translates in this context to finding maximal frequent
sets assuming that each variable appears in at mostk of the sets.

A final database-related application is to the problem of enumerating allminimal failing
subqueriesof a given conjunctive query to a database. Consider a query to a student record
database asking for the student IDs of all female senior students who took the course CS
372 in the Spring of 1993. If there are no such students, then the query is a failing query.
The user then might broaden the search, successively dropping the query conditions that
the student be female, be a senior, or that the course be in the Spring of 1993. However, it
could be the case that the query fails because CS 372 is not even a valid course. It would be
preferable for the user to determine this right away. That is, if the query returns the empty
set, the user often would find it useful to know if the reason for the unsatisfiability of the
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query is some smaller subset of the constraints in the query. A minimal failing subquery
of a conjunctive query is just a minimal subset of the conjunctive constraints of a failing
query to a database that also results in failure. It has recently been shown that the general
problem of enumerating all such minimal failing subqueries is NP-hard (even when there
are only polynomially many minimal failing subqueries) (Godfrey, 1997) when the data-
base consists of more than a constant number of relations.1 It is also shown how to enumerate
failing subqueries in order of increasing size with time increasing exponentially in the size
k of the subqueries. In comparison, the result in this paper implies that if every attribute ap-
pears in at mostk minimal failing subqueries then there is an output polynomial time
algorithm for enumeration.

Graph-theory applications. The conversion problem is well motivated in graph theory
as it is exactly the hypergraph independent set problem. A hypergraphH is a collection
of subsets (edges)E of a finite set of verticesV . An independent set of a hypergraph is a
subset of vertices,V ′ ⊆ V , such that no edge inE is contained inV ′. An independent set
I is maximal if no supersetI ′ of I is also an independent set. Given a hypergraphH , the
hypergraph independent set problemis that of enumerating all maximal independent sets
of H . Note that while finding the maximum cardinality independent set is NP-hard (Garey
& Johnson, 1979), finding a maximal independent setI is easy: iteratively add vertices toI
while maintaining the property thatI is an independent set. We consider here the problem
of enumeratingall maximal independent sets.

Another equivalent graph theoretic formulation is: Given a hypergraphH , enumerate all
minimal vertex covers ofH . A vertex cover (or hitting set) is a subset of verticesV ′ ⊆ V
that intersects each edge of the hypergraph. The minimal vertex covers are precisely the
complements of the maximal independent sets. In the literature, generating all minimal
vertex covers of a hypergraph is also referred to as the hypergraph transversal problem
(Eiter & Gottlob, 1995). The read restriction we consider here in the CNF/DNF setting is
equivalent to the natural restriction of limiting the degree of each vertex in the hypergraph
in both the hypergraph transversal and independent set problems. Our result complements
output polynomial time algorithms for versions of these hypergraph problems restricted by
constant edge-size (Eiter & Gottlob, 1995).

Reasoning and knowledge representation.Another example of the utility of the con-
version problem arises in the context of reasoning. Given a knowledge base that can be
represented as a conjunction of propositional Horn clauses with empty consequents, an
efficient solution to the conversion problem could be used to efficiently generate a collec-
tion of characteristic models (Kautz, Kearns, & Selman, 1993; Khardon & Roth, 1994) to
use in various reasoning tasks (for example, determining whether a query is entailed by a
knowledge base) (Khardon, 1995; Khardon, Mannila, & Roth, 1999).

The conversion problem is also related to the problem of determining if a version space
has converged. For a concept classC the version space (Mitchell, 1982) induced by positive
example setP and negative example setN is the set of concepts inC consistent withP and
N. A version spaceV has converged if|V | = 1. An efficient solution to the CNF/DNF
conversion problem could be used to efficiently determine if a version space has converged
for the class of monotone functions (Hirsh, Mishra, & Pitt, 1997).
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The termknowledge compilationis used to denote methods by which one type of rep-
resentation of knowledge is translated into another, so as to make it easier to use that
knowledge. One example discussed in (Selman & Kautz, 1991) considers compiling an
arbitrary (non-monotone) CNF formulaC into a pair of Horn formulas—one more general
(say,g), and one more specific (say,f ), than the formula being “compiled”. While the
problem of determining whether a CNFC entails a clauseα is NP-hard, the problem of
determining whether a Horn formulaf or g entailsα has a polynomial-time solution. If we
are lucky enough thatg entailsα, or if f fails to entailα, thenC must entail (respectively,
fail to entail)α. The CNF/DNF conversion problem is also a form of compilation since we
are given a CNF (or DNF) and wish to compile that information into a DNF (respectively,
CNF).

A desirable property of our polynomial time solution to the read-k identification problem
is it does not depend on the representation of the function provided to us (e.g., it could be an
arbitrary Boolean formula). As long as that representation is polynomially evaluable and
corresponds to a monotone read-k CNF we can efficiently compile the representation into
both its DNF and CNF form.

Computational learning theory. The identification problem is also closely related to the
concept learning problem studied in computational learning theory. The general concept
learning problem is to learn to discriminate between objects that satisfy some unknown
rule, or “concept”, and those that do not. LetX be the space of possible examples (e.g.,
X = {0, 1, }n). An unknown conceptf classifies each pointx ∈ X either “+” or “−”
indicating thatx is a positive or negative (respectively) example off . The unknown
concept f is referred to as the target concept, and is often assumed to come from some
known class of candidate concepts.

Typically, a learning algorithm obtains examples off either randomly from nature, or
from a teacher, and is told which examples are positive and which are negative. Sometimes
the learning algorithm is allowed to pose a membership query which is an examplex of
its own choice, in response to which a teacher classifiesx as either a positive or negative
example. Sometimes the algorithm is allowed to both obtain examples and pose membership
queries.

The learnability of monotone Boolean functions has been widely studied under a vari-
ety of learning models. For example, an efficient algorithm exists for learning the class
of monotone DNF formulas when both examples and membership queries are available
(Angluin, 1988) (sketched in the appendix). Our result implies an efficient algorithm for
learning monotone read-k CNF formulas (and their corresponding DNF representations)
using membership queries alone.

A more thorough review of applications of both the monotone CNF/DNF conversion
problem and the monotone function identification problem can be found in (Eiter & Gottlob,
1995).

1.2. Overview

The remainder of this paper is organized as follows. Section 2 reviews standard defini-
tions, special terminology, complexity issues, and some related results on learning with
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membership queries. In Section 3, we give an output polynomial time algorithm for the
read-k-CNF conversion problem (finding a DNF expression equivalent to a given monotone
read-k CNF expression).

In Section 4, we solve in incremental polynomial time the apparently more difficult
read-k-CNF/DNF identification problem (findingboththe read-k-CNF expression, and the
DNF expression, of a monotone Boolean functionf given only membership queries off ).
While this problem appears to be more difficult than the read-k-CNF conversion problem,
the results of Bioch and Ibaraki (1995) imply that the problems are in fact equivalent.

2. Preliminaries

2.1. Boolean formulas, etc.

Monotone functions. Let V = {v1, . . . , vn} be a collection of Boolean variables. A
vectorv is any assignment of the variables inV to 0 or 1, i.e.,v ∈ {0, 1}n. We use the terms
vector and assignment interchangeably. A Boolean functionf (v1, . . . , vn) is a function
f : {0, 1}n → {0, 1}. A monotone Boolean function fhas the property that iff (x) = 1
then for all y ≥ x, f (y) = 1, where “≥” is defined by the partial order induced by the
n-dimensional Boolean hypercube{0, 1}n. Equivalently,y ≥ x means that each bit of the
vectory is at least as large as the corresponding bit ofx. The class of Boolean formulaF
over variable setV = {v1, . . . , vn} is defined inductively as follows: (1) each of the symbols
{0, 1,v1, . . . , vn} is a Boolean formula overV ; (2) if F1 andF2 are Boolean formulas over
V then so are(F1 ∨ F2), (F1 ∧ F2); and (3) if F1 is a Boolean formula overV then so is
F1. The class ofmonotone Boolean formulas Fis defined inductively in the same way,
but using only rules (1) and (2). Thus, a monotone Boolean formula is one which contains
no negation symbols. We use the terms formula and expression interchangeably. Each
Boolean formula overV describes a Boolean function ofn Boolean variables in the usual
way, with the standard interpretation of the logical connectives∨ (OR),∧ (AND) and¬
(NOT).

A monotone Boolean functionf can be described by itsminimally positive assignments.
A minimally positive assignment off is a positive assignment with only negative assign-
ments below it, i.e., a vectorv ∈ {0, 1}n such thatf (v) = 1 and for allu < v f (u) = 0. A
monotone Boolean function can also be described dually by itsmaximally negative assign-
ments, i.e., the vectorsu such thatf (u) = 0 and for allv > u, f (v) = 1.

A term t is the function represented by a conjunction (AND)t = vi1 ∧ vi2 ∧ · · · ∧ vi s of
literalsvi j , where aliteral is either a variablexi or its negationxi . A term is monotone if
all literals are un-negated variables. Henceforth, we consider only monotone terms. The
(monotone) termt evaluates to 1 if and only if each of the variablesvi1, vi2, . . . , vi s have
value 1. Similarly, amonotone clause cis the function represented by a disjunction (OR)
c = v j1 ∨ v j2 ∨ · · · ∨ v jm of variables. The clausec evaluates to 1 if and only if at least one
of the variablesv j1, v j2, . . . , v jm has value 1.

A monotone DNFexpression is a disjunction (OR) of monotone termst1 ∨ t2 ∨ · · · ∨ ta,
and evaluates to 1 iff at least one of the terms has value 1. IfT = {t1, . . . , ta} is a set
of terms, then∨T is the DNF expressiont1 ∨ t2 ∨ · · · ∨ ta. Similarly, amonotone CNF
expression is a conjunction of monotone clausesc1 ∧ c2 ∧ · · · ∧ cb, and evaluates to 1 iff



EFFICIENT READ-RESTRICTED MONOTONE CNF/DNF DUALIZATION 95

each of the clauses has value 1. IfC = {c1, . . . , cb} is a set of clauses then∧C is the CNF
expressionc1 ∧ c2 ∧ · · · ∧ cb.

A term t implies a functionf iff for any Boolean assignmentEv to the variables ofV ,
(t (Ev) = 1) → ( f (Ev) = 1). Any such term is called an implicant. A prime implicant, or
minterm, of f , is an implicantt such that no implicant off can be formed by removing one
or more variables from the conjunctiont . A clausec is implied by a functionf iff for any
Boolean assignmentEv to the variables ofV , ( f (Ev) = 1)→ (c(Ev) = 1). Any such clause is
called an implicand. A prime implicand, ormaxterm, of f , is an implicandc such that no
implicand of f can be formed by removing one or more variables from the disjunctionc.

It is easily shown and well-known that every monotone Boolean function has a unique
monotone DNF expression, formed by the disjunction of all of its minterms. We call such
a DNF expressionreduced. Likewise, every monotone Boolean function has a unique
reduced monotone CNF expression, formed by the conjunction of all of its maxterms.

For a monotone functionf , let cnf(f ) and dnf(f ) be its corresponding (unique reduced)
CNF and DNF expressions, respectively. Let|cnf( f )| denote the number of maxterms of
cnf( f ) (similarly for the DNF representation). The length of the representation of cnf(f )
is at mostn · |cnf( f )|. For a CNF formulaC, we denote by|C| the number of maxterms of
C (similarly for a DNF formulaD).

It turns out that each minimally positive assignment corresponds naturally to a minterm
in the DNF expression. Likewise, each maximally negative point corresponds naturally to
a maxterm in the CNF expression. For example, consider the following monotone Boolean
function.

x1 x2 x3 f (x)

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

The minimally positive assignments off are 110 and 001, and the DNF expression for
f is (x1∧ x2)∨ x3. Note that a minterm contains a variablexi whenever its corresponding
minimally positive assignment contains a 1 in bit positioni . The maximally negative
assignments off are 010 and 100, and the CNF expression forf is (x1 ∨ x3) ∧ (x2 ∨ x3).
Note that a maxterm contains a variablexi wherever its corresponding maximally negative
assignment contains a 0 in bitpositioni .

Duality. Recall that if f is any Boolean formula, then the dual off (denoted dual(f))
is obtained by replacing each “∨” with “ ∧”, and vice-versa. (And, iff contains the con-
stants “0” or “1”, each “0” is replaced with “1”, and vice-versa.) Thus, the dual of a CNF
is a DNF, and the dual of a DNF is a CNF. Moreover, the dual of a read-k-CNF is a
read-k-DNF, and vice-versa. By the duality law (e.g., Tremblay & Manohar, 1961), any
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identity or theorem about formulas remains true when the formulas are replaced by their
duals.

Because of this duality, it is easily seen that an algorithm that solves the monotone
CNF conversion problem can be modified in a straightforward way to solve the monotone
DNF conversion problem. In particular, supposeA is an algorithm for the monotone
CNF conversion problem, and letA(C) denote the DNF formula output byA which is
equivalent to an input CNF formulaC. SupposeD is a DNF formula we wish to “convert”
to CNF. Then dual(D) is a CNF, andA(dual(D)) is the equivalent DNF for dual(D). By
the duality law, dual(dual(D)) is equivalent to dual(A(dual(D))). But dual(dual(D)) is just
D. Consequently, to find a CNF equivalent toD using algorithmA, we simply compute
dual(A(dual(D))). The running time increases only by an additive linear term.

Read-k. A Boolean formula isread-k if each variable appears at mostk times. Note that
the property of being read-k is a property of a formula, and not of the underlying function.
We’ll say that a function is read-k if it can be represented by some read-k formula. Similarly,
a function is a read-k CNF (respectively, DNF) if it can be represented as a read-k CNF
(respectively, DNF) formula. For a fixedk not all Boolean functions are representable as a
read-k CNF formula. Note that every read-k CNF formula has total length at mostk · n.

Projections. Let f be a Boolean function ofn variables{x1, . . . , xn}. We define fxi←b

as the projection of the Boolean functionf when variablexi is set to valueb ∈ {0, 1}.
That is, ifv = 〈v1, v2, . . . , vn〉, then letvxi←b = 〈v1, . . . , vi−1, b, vi+1, . . . , vn〉, and define
fxi←b as the function such that for anyv, fxi←b(v) = f (vxi←b). (Alternative definitions
of projection considerfxi←b as a function ofn− 1 arguments(x1, . . . , xi−1, xi+1, . . . , xn),
whose values are defined on the subspace{0, 1}i−1 × {b} × {0, 1}n−i .) Similarly, for a set
of variablesA ⊆ {x1, . . . , xn}, we definefA←b to be the projection of functionf when all
the variables from setA are set to valueb ∈ {0, 1}. We will make use of such projections
in the technical sections to follow.

2.2. Complexity issues

The standard definition of a polynomial-time algorithm is one that runs in time polynomial
in the size of its input. No such algorithm exists for the conversion problem since the output
may be exponentially larger than the input. The following CNF formula of size 2n over the
set{x1, . . . , xn, y1, . . . , yn} of 2n variables exemplifies this behavior.

(x1 ∨ y1) ∧ (x2 ∨ y2) ∧ · · · ∧ (xn ∨ yn) (1)

It is possible to show that the corresponding reduced DNF has size 2n:∨
bi∈{xi ,yi }

(b1 ∧ · · · ∧ bn)

Clearly there is no algorithm that can output a formula of size 2n in time polynomial
in n. This statement also applies to the class of read restricted CNF expressions since the
formula in (1) is read-once.
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Given that the output may be significantly larger than the input, a more reasonable measure
of complexity allows an algorithm to run in time polynomial in both its input and output
sizes. Such an algorithm is called atotal (or output) polynomial time algorithm (Johnson,
Papadimitriou, & Yannakakis, 1988; Eiter & Gottlob, 1995).

A stronger definition of a total polynomial time algorithm is anincrementalpolynomial
time algorithm (Johnson, Papadimitriou, & Yannakakis, 1988; Bioch & Ibaraki, 1995;
Eiter & Gottlob, 1995). In between all consecutive outputs an incremental polynomial time
algorithm spends time polynomial in the input sizen and what it has output so far. Thus,
if the algorithm outputso1, o2, . . . ,oj , whereoj is the final output, then the time it takes
to outputoi for any i ≤ j is polynomial inn, the input size, and the sum of the sizes of
o1, o2, . . . ,oi−1. Clearly an algorithm that runs in incremental polynomial time also runs
in total polynomial time. The converse does not necessarily hold.

In this paper, we first give a total polynomial time algorithm for the read-k-CNF conver-
sion problem (Section 3) and then show (in Section 4) how this may be used to obtain an
incremental polynomial time algorithm for the read-k-CNF/DNF identification problem.
In Section 4 we also provide a second method for solving the read-k-CNF/DNF identifica-
tion problem that is motivated by an analysis of some structural properties of read-k CNF
formulas.

2.3. Membership queries

In the read-k-CNF/DNF identification problem we consider the problem of finding both the
CNF and DNF expressions with membership queries. One may well wonder if it is possible
to efficiently learn just one of the expressions, say the DNF, with membership queries.

In fact, results of Angluin (1988) show that no algorithm exists for learning the class of
CNF formulas with membership queries in time polynomial in the size of the DNF formula.
Her result implies also that there are information theoretic barriers to learning the class of
read-k DNF formulas with membership queries (in time polynomial in the size of the read-k
DNF). The result also holds for CNF.

Furthermore, it is known that any algorithm that learns the class of monotone functions
with membership queries must poseÄ(max{|cnf( f )|, |dnf( f )|}) queries (wheref is the
monotone function to be compiled) (Korobkov, 1965; Bshouty et al., 1996). The result
also applies to the class of monotone functions representable as read-k CNF formulas when
k ≥ 2.

Finally, we note that while there is currently no knowntime-efficientalgorithm for learn-
ing the class of monotone functions with membership queries, the information-theoretic
complexity of the problem is understood better. Gainanov (1984) has given a time-
inefficient (but query-efficient) algorithm that identifies every monotone functionf with
O(n·max{|cnf( f )|, |dnf( f )|}) membership queries.

3. The conversion problem

Throughout the rest of this paper we will be manipulating DNF and CNF expressions. We
assume that any such expression is monotone and that it has been put into reduced (minimal)
form.
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We give an algorithm for finding a DNF expression equivalent to a given monotone read-k
CNF expression. Note that the fact that the CNF expression is monotone implies that its
corresponding DNF expression is also monotone. However, the fact that the CNF expression
is read restricted does not necessarily imply that the DNF expression is read-restricted. The
formula (1) is a read-once CNF with no equivalent read-k DNF for k < 2n−1.

3.1. A first stab

We first give a simple but inefficient algorithm for the general conversion problem that
motivates the efficient solution to the read-k case. The techniques we use are based on an
inductive characterization of the problem: When can the DNF corresponding to asubset
C′ of the clauses of a monotone CNF formulaC be used to compute the DNF ofC? We
demonstrate that a possible source of inefficiency of the algorithm is that the size of the
DNF for C′ may be significantly (exponentially) larger than the size of the DNF forC.
However, if we impose an order on the clauses ofC by considering those induced by larger
and larger subsets of the variables, we can (in Section 3.2) show that the method yields an
efficient algorithm for finding a monotone DNF representation of a given monotone read-k
CNF formula.

If C = c1∧· · ·∧cm is a monotone CNF formula we construct the DNF forC inductively
by constructing the DNF expressions forc1∧ · · · ∧ ci for eachi ≤ m. Assume inductively
thatg = t1 ∨ · · · ∨ ts is the (unique, sinceC is monotone) DNF forc1 ∧ · · · ∧ ci . Then the
DNF formula forc1 ∧ · · · ∧ ci ∧ ci+1 is equivalent to

g∧ ci+1 = (t1 ∨ · · · ∨ ts) ∧ ci+1

= (t1 ∧ ci+1) ∨ · · · ∨ (ts ∧ ci+1).

The above is not quite in DNF form since each disjunct is not necessarily a term. Each
disjunct can be translated to a collection of terms by a simple application of the distributive
property. We define the function “term-and-clause” that takes a termt and a clausec =
(y1 ∨ · · · ∨ ym) as input and returns their conjunction as follows:

term-and-clause(t, c) =
{

t if t andc share a variable

(t ∧ y1) ∨ · · · ∨ (t ∧ ym) otherwise.

It is easy to see that the function term-and-clause returns the conjunction of its arguments.
Independent of whethert andc share a variable, their conjunction is(t∧ y1)∨· · ·∨ (t∧ ym)

by the distributive property. Ift andc share a variable thent → c and the conjunctiont ∧ c
is equivalent tot .

We also find useful the function “dnf-and-clause” that simply takes a (reduced) DNF
formula and a clause as input and returns the result of calling term-and-clause with each
term of the DNF. Thus,

dnf-and-clause(D, c) =
∨
t∈D

term-and-clause(t, c).
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Note that term-and-clause(t, c) runs in timeO(|t | · |c|). Since|D| calls are made to term-
and-clause on a term and clause with at mostn variables, dnf-and-clause requires time
O(|D| · n2)

We also define the function “reduce” that given a DNF formula,D, (not necessarily
reduced) and its corresponding CNF formula,C, reducesD in time linear in|C| and|D|.
For a termt in D, note thatt is an implicant ofD. Also t is an implicant ofC sinceC is
equivalent toD. So by definition for any Boolean assignmentx, (t (x) = 1)→ (C(x) = 1).
We wish to determine ift is a prime implicant ofD (or C). By definition, t is a prime
implicant iff C(u) 6= 1, whereu is the minimally positive assignment corresponding to
(t − {v}). In summary, reduce does the following.

reduce(D,C)
D′ ← ∅.
for all t in D

if for all v in t
the minimally positive assignment corresponding tot −{v} does not satisfyC
thenD′ ← D′ ∪ t

returnD′

Since O(n|C|) time is needed per term of the DNF formulaD, the running time of
reduce(D,C) is O(|D| ·n|C|). Since the CNF formulas considered in this paper are read-k,
the running time of reduce isO(|D| · n2).

We now have an algorithm to construct a DNF formula equivalent to the CNF formula
c1 ∧ · · · ∧ ci+1 given a DNF formulat1 ∨ · · · ∨ ts for c1 ∧ · · · ∧ ci . We simply call dnf-
and-clause on the input(t1 ∨ · · · ∨ ts, ci+1) and reduce the resulting formula. Doing the
above iteratively for eachi yields our “first stab” algorithm for translating a CNF formula
to a DNF formula.

first-stab(C = c1 ∧ · · · ∧ cm)
D← True
for i := 1 tom

D← dnf-and-clause(D, ci )
reduce(D, c1 ∧ · · · ∧ ci )

outputD

A simple induction oni ≤ m shows that after thei -th iteration of the for loop, the
formulaD is a (reduced) DNF that represents the CNF formulac1∧· · ·∧ci .Consequently,
wheni = m, first-stab(C) correctly outputs a reduced DNF formulaD that represents the
same function asC. Note that the inductive proof (hence correctness of the algorithm) is
independent of the ordering of clauses{ci }.

But, first-stab is not necessarily efficient. Let

C =
∧

i, j∈{1,...,n}
(xi ∨ yj ).
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Suppose the order in which the clauses are considered is (xi ∨ yi ), i = 1, . . . ,n followed
by the remaining clauses (in any order). Then, after the firstn clauses, the DNF formulaD
obtained by first-stab is exactly:

D =
∨

bi∈{xi ,yi}
(b1 ∧ · · · ∧ bn)

There are 2n terms inD, yet the DNF formula equivalent toC has only 2 terms, namely,

(x1 ∧ · · · ∧ xn) ∨ (y1 ∧ · · · ∧ yn).

In summary first-stab works correctly regardless of the ordering of clauses, but it is not
guaranteed to do so in total polynomial time because the DNFs for intermediate CNFs
constructed using a subset of the clauses ofC can be large.

3.2. The bounded degree case

We now show how in some circumstances we can impose an order on the clauses so that
the sizes of the intermediate DNFs remain small. The result implies a polynomial-time
algorithm for the bounded degree hypergraph transversal (and independent set) problem.

Let C be a monotone CNF formula2 over variables{x1, . . . , xn}. For eachi between 0
andn define

Ci (x1, . . . , xn) = C(x1, . . . , xi , 1, . . . ,1).

Thus,Ci is justC with all variables indexed greater thani “hardwired”, or projected, to 1.
Note thatC0 is the constant 1 function, represented by the empty set of clauses, and that
Cn = C. It is readily apparent that the CNFCi is obtained fromC by removing any clause
containing a variable in{xi+1, . . . , xn}. (If no clauses remain thenCi is equivalent to the
constant 1 function.) Analogously, ifDi is the DNF forCi then Di is obtained from the
DNF D for C by removing each of the variables{xi+1, . . . , xn} from any term in which it
participates. (If an empty term results, the DNF becomes the constant 1 function.) We thus
have the following.

Observation 1. If C, D,Ci , andDi are defined as above, then for 0≤ i ≤ n, |Ci | ≤ |C|
and|Di | ≤ |D|.

The example in Section 3.1 demonstrated that if the clauses ofC are processed by
dnf-and-clause in a “bad” order an intermediate CNF,C′, might have a DNF,D′, that is
exponentially larger than the size of the actual DNFD for C. Observation 1 points out that
if C′ is in fact a projection ofC then the size ofD′ will be bounded by the size ofD.

By a safestage of first-stab we mean a stage where the terms that have been passed to
dnf-and-clause so far correspond to a projection ofC. As long as we can ensure that the
time spent by the algorithm in between these safe stages is small, we can guarantee that
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there is not enough opportunity for the algorithm to construct a DNF that is too much larger
than the actual DNFD.

We can employ these observations to our advantage in the case of read-k CNF formulas.
We order the clauses in such a way so that after at most everykth clause passed to dnf-and-
clause, the intermediate formulaC′ corresponds to some projectionCi of C, i.e., is a safe
stage. In between safe stages the intermediate formula does not have a chance to grow by
a factor of more thanO(nk).

Algorithm read-k-cnf-to-dnf begins with the projectionC0 that sets all variables to 1.
The algorithm then iteratively “unprojects” each variablexi such that at mostk clauses of
C that had been projected away because ofxi , now “reappear”.

read-k-cnf-to-dnf(f ):

Input: Read-k CNF monotone formulaC
Output: DNF formulaD equivalent toC

G← True
for i = 1 ton

for each clausec of Ci that is not inCi−1

G← dnf-and-clause(G, c)
G← reduce(G,C1 ∧ · · · ∧ Ci )

returnG

We show that Algorithm read-k-cnf-to-dnf works correctly in total polynomial time.

Theorem 2. Let C be a read-k monotone CNF formula over n variables. Then read-k-
cnf-to-dnf(C) outputs the DNF formula D equivalent to C in time O(|D| · nk+3).

Proof: We first argue that the algorithm halts with the correct output and then discuss the
algorithm’s efficiency. LetPi be the set of clauses ofCi that are not contained inCi−1.
Step 3 is executed by read-k-cnf-to-dnf for each value ofi between 1 andn. During such a
step, for each clausec in Pi , the statementG ← dnf-and-clause(G, c) is executed. (Note
that reducing the DNFG affects the representation of the formula but not the function itself.)
Since the clauses ofC are exactly the disjoint unionP1∪ P2∪ · · · ∪ Pn, it follows from the
discussion in Section 3.1 and the correctness of first-stab that the algorithm processes all
clauses, and outputs the DNF equivalent toC.

To see that the algorithm runs within the stated time bound, first note that for eachk,
1≤ k ≤ n, after the iteration of the for loop of step 2 withi = k, the algorithm is at a safe
stage, because the DNF returned is the projectionDi . We need to show that the formula
does not grow too large in between safe stages. SinceC (henceCi ) is read-k there are at
mostk clauses inPi (those that containxi ). Soduring any execution of the for loop in
step 3 dnf-and-clause is called at mostk times. Note that after each call of dnf-and-clause
in step 4, the growth of the intermediate DNFG is bounded by a factor ofn. The reason is
thatG is multiplied by a clause of size at mostn. Consequently after calling dnf-and-clause
at mostk times (i.e., until the next safe stage is reached) the size of each intermediate



102 DOMINGO, MISHRA AND PITT

formula G between safe stages can grow to at most|D| · nk. Once the next safe stage is
reached, the size ofG is guaranteed again to be at most|D| since the formulaD is reduced.
Note that there aren iterations of the loop in step 2. For each of thesen iterations, at
mostk calls are made to dnf-and-clause, and to reduce, on a DNF formula of size at most
|D| · nk. Each of dnf-and-clause requireO(|DNF| · n2) time, so the overall running time is
O(n · k · |D| · nk · n2) = O(|D|nk+3). 2

Observe that a dual statement can be made for read-k DNF formulas: There is a total
polynomial time algorithm that converts read-k DNF formulas into their corresponding
CNF formulas. The statement follows from the duality law given in Section 2.1.

4. The identification problem

In this section, we construct an algorithm that improves the result given in the previous
section in three ways: (1) The algorithm finds both the CNF and DNF of a function instead
of finding the DNF given the CNF (2) The algorithm uses membership queries only rather
than relying on representational information inherent in the CNF and (3) The algorithm
runs in incremental polynomial time rather than total polynomial time.

4.1. The equivalence problem

We first introduce a third problem which is simply that of determining if a given monotone
CNF is equivalent to a given monotone DNF expression.

Monotone CNF and DNF equivalence:Let C be a monotone CNF formula and letD be a
monotone DNF formula. GivenC andD, determine whether or not they are equivalent.

For our purposes we will be interested in the read-restricted version of this problem which
we introduce below. The following has been proven for the general problem (restated in
our terminology):

Theorem 3 (Bioch and Ibaraki). There is a polynomial-time algorithm for the monotone
CNF and DNF equivalence problem if and only if there is an incremental polynomial time
algorithm for the monotone function identification problem.

The proof appears in the appendix because an understanding of why the following corol-
lary holds requires understanding Bioch and Ibaraki’s proof.

The restriction of the equivalence problem to the read-k case is as follows:

Read-k Monotone CNF and DNF equivalence:Let C be a monotone read-k CNF formula,
and letD be a monotone (not necessarily read-k) DNF formula. GivenC andD, determine
whether or not they are equivalent.
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While in general the proof of Theorem 3 does not apply to the read-restricted case, we
show in the appendix that the proof can be appropriately modified.

Corollary 4. There is a polynomial-time algorithm for the read-k monotone CNF and
DNF equivalence problem if and only if there is an incremental polynomial time algorithm
for the read-k-CNF/DNF identification problem.

By Corollary 4, to obtain an incremental output polynomial time algorithm for the read-
k-CNF/DNF identification problem we need only give a polynomial time algorithm for the
read-k monotone CNF and DNF equivalence problem.

4.2. Two algorithms for equivalence testing

For several reasons, we includetwo polynomial-time algorithms for the read-k monotone
CNF and DNF equivalence problem. The first method follows easily via a reduction from
the read-k-CNF conversion problem (Section 3). It demonstrates that the conversion prob-
lem is equivalent to the equivalence testing problem. This method will perhaps be most
appreciated by those interested in the conversion problem or any of the equivalent formu-
lations or related problems mentioned in the introduction. The second algorithm directly
attacks the read-k monotone CNF and DNF equivalence problem, and gives insight into
some structural properties of read-k CNF (and DNF) formulas. It should further be noted
that as the unrestricted versions of the conversion, identification, and equivalence prob-
lems remain open, we find it useful to provide a variety of possible methods for further
attack.

4.2.1. By reduction. The proof of Theorem 2 gives a total polynomial time algorithm for
the read-k-CNF conversion problem. We now show that this implies a polynomial time
algorithm for the read-k monotone CNF and DNF equivalence problem. Consequently, by
Corollary 4, this gives an incremental polynomial time algorithm for the read-k-CNF/DNF
identification problem.

Theorem 5. There is a polynomial time algorithm for the read-k monotone CNF and
DNF equivalence problem if and only if there is a total polynomial time algorithm for the
read-k-CNF conversion problem.

Proof: ← Let T be an algorithm for the read-k-CNF conversion problem that runs in
time p(|cnf( f )|, |dnf( f )|, n) wherep is some polynomial. To determine if the CNF for-
mulaC and the DNF formulaD input to the equivalence problem are in fact equivalent, we
run T with inputC for p(|C|, |D|, n) time steps.

SupposeD was in fact the DNF representation ofC. Then, sinceT is assumed to produce
the correct (minimized) output, it will halt with outputD in p(|C|, |D|, n) steps. The reason
is that sincef is the function represented byC, |C| = |cnf( f )| and in fact|D| = |dnf( f )|.
If D is not the DNF representation ofC then one of two things may happen.T may halt with
incorrect output orT may not finish running inp(|C|, |D|, n) steps. ThusD is equivalent
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to C iff T halts in p(|C|, |D|, n) steps and its output is equivalent toD. If T halts with a
DNF formulaD′ then output “yes” or “no” depending on whetherD andD′ are equivalent.
If T does not halt then output “no” since obviouslyC andD are not equivalent.
→ By Corollary 4, an algorithm for the equivalence problem implies an incremental

polynomial time algorithm for the read-k-CNF/DNF identification problem. Clearly an
incremental polynomial time algorithm for the read-k-CNF/DNF identification problem
implies a total polynomial time algorithm for the read-k-CNF conversion problem. 2

4.2.2. Directly. Here we give a more direct method for testing the equivalence of a read-k
monotone CNF formulaC and an arbitrary monotone DNFD. The algorithm runs in time
polynomial in the sum of the sizes ofC andD.

Before giving the main theorem of this section, we need the following definition and
results adapted from the ones in (Hancock & Mansour, 1991).

Definition 1. A function f : {0, 1}n→ {0, 1} dependson the variablexi if there exists an
assignmenty ∈ {0, 1}n such thatfxi←0(y) 6= fxi←1(y).

Definition 2. Let f be a monotone function over variable set{x1, . . . , xn}. We say that
A ⊆ {x1, . . . , xn} − {xi } is ablocking setfor xi in f if fA←1 does not depend on variable
xi . A blocking setA for xi is minimal if no proper subset ofA is also a blocking set forxi .
When the variablexi is clear from context, we simply refer toA as a blocking set.

We explain intuitively what it means for a set of variables to block a formulaD (instead
of a function). A set of variablesA blocksxi in D if projecting the variables ofA in D to 1
rendersxi irrelevant. For example, letD = (x1 ∧ x3) ∨ (x2 ∧ x3). Note that projectingx2

to 1 causesD to be equivalent tox3. In other words,x1 is not needed whenx2 is set to 1
in D. Thus we say thatA = {x2} blocksx1 in D.

The idea behind our algorithm is that if we verify that the blocking sets for each variable
xi of a CNF formulaC are also blocking sets forxi in D, then we will have checked enough
projections to verify thatC = D. Further, sinceC is a read-k CNF formula, the number of
such projections is not too large.

To test whether a given (monotone) read-k CNF formulaC is equivalent to a given DNF
formula D, it is sufficient to test whetherD → C, and, assumingD → C, test whether
C→ D. Checking whetherD→ C is immediate: it is sufficient to test for each minterm
of D whether the corresponding minimal positive assignment satisfiesC. To test whether
C→ D, we will use the following lemma:

Lemma 6. Let C and D be nonconstant monotone CNF and DNF formulas respectively.
Further suppose that D→ C. Then the following two statements are equivalent:
1. C→ D.
2. For every variable xi , every blocking set for xi in C is a blocking set for xi in D.

Proof: Suppose that the hypothesis of the lemma holds and thatC → D. But thenC is
equivalent toD, and clearly each blocking set for each variablexi in C is also a blocking
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set forxi in D, since the definition of blocking set depends only on the function, and not
the representation.

Conversely, suppose that every blocking set for eachxi in C is a blocking set forxi in D,
and suppose by way of contradiction thatC does not implyD, that is, there is an assignment
y such thatC(y) = 1 andD(y) = 0. LetY1 be the set of variables assigned “1” byy, and
let Y0 be the set of variables assigned “0” byy. Notice thatY1 is a blocking set for any
xi ∈ Y0 in C, since setting each variable inY1 to 1 forcesC to 1. Starting aty, iteratively
flip 0-bits to 1, until the first assignmentp is obtained such thatD(p) = 1. (There must
be such an assignment becauseD is not the constant 0 function and thereforeD(1̄) = 1.)
Thenp witnesses thatDY1←1 depends on some variablexi in Y0 (the last one flipped), hence
Y1 is not a blocking set forxi in D, contradicting the assumption that every blocking set for
C was also one forD. 2

Thus, to test whether or notC implies D, assuming3 that D implies C, we need only
obtain for each variablexi the set of all blocking sets forxi in C, and test whether they are
also blocking sets forxi in D. In fact, we need only check that every minimal blocking
set forxi in C is a blocking set forxi in D, since any superset of a blocking set forxi is
also a blocking set forxi . What remains then, is a method to (1) efficiently list all minimal
blocking sets forC, and (2) efficiently test whether each is a blocking set forD.

(1) Obtaining the blocking sets:Suppose thatC = c1 ∧ · · · ∧ cs is a nonempty read-k
monotone CNF. We will show how to obtain the set of all minimal blocking sets forx1 in C.
The blocking sets for the rest of the variablesxi are obtained similarly. First, we rewrite
C asC = (x1 ∨ C1) ∧ C2 whereC1 is the conjunction of the clauses ofC that contain
x1 with variablex1 factored out, andC2 contains the rest of the clauses ofC. Notice that
if all the clauses inC containx1, thenC2 is the identically 1 function. We claim that the
minterms ofC1 are exactly the minimal blocking sets forx1 in C. (That is, for each minterm
t of C1, the set of variables appearing int is a minimal blocking set forx1, and if A is a
minimal blocking set forx1, then the term formed by the conjunction of the variables inA
is a minterm ofC1.)

To prove the claim, we’ll show that every implicant ofC1 is a blocking set forx1 in C,
and that every blocking set forx1 in C is an implicant ofC1. That the minterms (minimal
implicants) correspond to the minimal blocking sets follows trivially.

Suppose first thatt is an implicant ofC1. Let p be any assignment satisfyingt (henceC1)
with x1 set to 0. Ifp satisfiesC2, thenC(p) = 1 andC(px1←1) = 1. If p doesn’t satisfy
C2, then neither doespx1←1, since no clause ofC2 containsx1. Thus, bothC(p) and
C(px1←1) = 0. In other words, in any assignment with each variable oft set to 1, flipping
x1 does not change the value ofC. Equivalently,Ct←1 does not depend onx1, so t is a
blocking set forx1 in C.

Conversely, suppose thatA is a blocking set forx1 in C. Suppose by way of contradiction
that (the term whose variables are those in)A is not an implicant ofC1. Then there must be
some clauseα of C1 whose variable set is disjoint fromA, since otherwise each clause in
C1 would be satisfied when the variables ofA were set to 1, andA would be an implicant.
Now let assignmentp set each variable inα ∪ {x1} to 0, and all other variables to 1. Note
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that each variable inA is set to 1 byp, sinceA contains neitherx1 nor any variable in
α. Now, p must satisfyC2, because otherwise, there would be a clauseβ ∈ C2 such that
β ⊆ α ∪ {x1}, contradicting the choice ofC as reduced. Observe thatC(p) = 0, sincep
satisfies neitherC1 (because ofα) nor x1. But C(px1←1) = 1, sincep satisfiesC2. This
contradicts the assumption thatA was a blocking set forx1 in C. We conclude thatA must
in fact be an implicant ofC1, and that the set of minterms ofC1 are exactly the set of
minimal blocking sets forx1 in C.

To find the minterms (hence minimal blocking sets) ofC1, observe that by the read-k
property ofC, C1 is ak-clause CNF formula and each minterm therefore has size at mostk.
We can enumerate allO(nk) terms of size at mostk, and for each, test in linear time whether
it is a prime implicant ofC1. Note that our blocking set approach does not work for arbi-
trary (not read-restricted)C since in general we cannot bound the number of minterms ofC1.

(2) Testing if each blocking set is a blocking set for D:To test whether a minimal blocking
setA for a variablexi in C is also a blocking set forxi in D, we simply set each variable of
A to 1 in the formulaD, and simplify to obtainDA←1. We then reduceDA←1 by removing
any subsumed terms. SinceDA←1 is now reduced, it will depend onxi if and only if xi

appears in at least one term.

We now can state the following theorem:

Theorem 7. There is a polynomial time algorithm to determine given a monotone read-k
CNF C and a monotone DNF D whether or not C and D are equivalent.

Proof: We observed above that testing whetherD → C is trivial. By Lemma 6, to
determine whetherC→ D, it is sufficient to check if every minimal blocking set for each
variable inC is also a blocking set for the same variable inD. Above, we showed how
to (1) obtain all minimal blocking sets forC, and (2) determine whether each was also a
blocking set forD. The running time of all steps was polynomial in|C|, |D|, andn. 2

Appendix

Proof of Theorem 3: An incremental polynomial time algorithm for the monotone func-
tion identification problem can be used to test monotone CNF/DNF equivalence as follows.
Given CNFC and DNF D, to determine ifC is equivalent toD, run the algorithm for
the identification problem. When it asks for the valuef (x), give it C(x). C and D are
equivalent if and only if bothC andD have been output withinp(|C|, |D|, n) steps, where
p(|cnf( f )|, |dnf( f )|) is thetotal amount of time that the incremental algorithm spends on
a given f .

The converse is more interesting. First, we describe theexact learning with queries
framework due to Angluin (1988). In this learning framework, a learner tries to learn a
function f from a known classC by asking queries to a teacher that knowsf . In this paper
we restrict to the problem of learning Boolean formulas, and therefore, the classC will
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be a subclass of the class of all Boolean formulas. The goal of the learner is to output a
hypothesish that is logically equivalent tof by getting information aboutf via queries.

There are two kinds of queries that have been commonly used in the learning literature
and that we consider here: membership and equivalence queries. The input of a membership
query is a Boolean assignmentx ∈ {0, 1}n and the answer is the valuef (x). An equivalence
query takes as input a hypothesish and returns “yes” ifh is equivalent tof and otherwise
an arbitrary counterexampley ∈ {0, 1}n such thath(y) 6= f (y) is returned.

One of the early positive results in this model is due to Angluin (1988) (see also Valiant,
1984) and states that the class of monotone DNF formulas is exactly learnable using mem-
bership and equivalence queries. The time and number of queries is polynomial in the
number of terms of the DNFD to be learned. It will be helpful to have a basic understand-
ing of this learning algorithm.

Let D be a monotone DNF overn variables andm terms. The algorithm works by
iteratively and greedily collecting all the terms ofD. It starts with the empty formula
representing the identically 0 function. The algorithm maintains a hypothesis that implies
D. In fact, each hypothesish will consist of a subset of the terms ofD. (Hence,h impliesD.)
The algorithm uses an equivalence query to generate a new counterexample toh, which by
the above comment, must be an assignmenty such thath(y) = 0 andD(y) = 1. Because
this positive exampley of D is not above any minterm ofh, an assignmenty′ ≤ y (in the
Boolean hypercube) can be found using at mostn (the number of variables) membership
queries, such thath(y′) = 0 andD(y′) = 1, and such that noy′′ < y has this property. It
is easily seen thaty′ corresponds to a minterm ofD that is not yet inh. Consequently, the
algorithm adds that minterm toh and iterates the above process with another equivalence
query. Afterm iterations of this process,h = D. We will denote this algorithm byA.

It is easy to observe that algorithmA can be “inverted” to obtain a dual algorithmAδ that
exactly learns any monotone CNF formulaC. In this case, the algorithm starts with the set
of empty clauses, representing the identically 1 function. It maintains a hypothesis that is
always implied byC. Each equivalence query is used to obtain a negative example. With
membership queries this negative example will allowAδ to obtain a maximum negative
example from which a clause is constructed. This clause is added to the current hypothesis.
The algorithm will use as many iterations as clauses inC.

Now suppose that we have an algorithmEquivfor testing the equivalence of a monotone
DNF,h, and CNF,hδ, formula in timeq(|h|, |hδ|, n)whereq is some polynomial. We show
how to useEquiv to solve the identification problem in incremental polynomial time. Let
f be the function to be “identified”. We assume we have an oracle forf that returns the
value f (x) on queryx. To find both its DNF and CNF representations, we will run bothA
andAδ in parallel, using the oracle forf to answer membership queries, until both of them
stop and ask an equivalence query. Leth be the hypothesis output byA and lethδ be the
hypothesis output byAδ. By the properties of these algorithms just mentioned,h implies
f , f implieshδ and thus,h implieshδ. Now we runEquivwith h andhδ as inputs. If the
answer ofEquiv is “yes”, thenh andhδ are logically equivalent, and sinceh ⇒ f ⇒ hδ

we conclude that we have obtained both the DNF and CNF expressions forf .
Otherwise, ifEquivanswers “no”, then we use an algorithmCtrx (described below) to

obtain a counterexamplex such thath(x) 6= hδ(x). We use a membership query with input
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x to determine which hypothesis is misclassifyingx and passx as a counterexample to
the algorithm that delivered that hypothesis. That algorithm will resume its computation
and at some point it will output a new hypothesis. We then proceed in the same fashion.
In other words, we can combine both algorithms to avoid asking equivalence queries by
using algorithmsEquivandCtrx. However, now the number of membership queries will
be polynomial in thesumof the sizes of the monotone DNF and monotone CNF formulas
for f .

How can we implement algorithmCtrx? We describe here how algorithmCtrx can be
easily constructed using algorithmEquiv. First, we choose one variable, sayx1, and we
runEquivtwice with inputshx1←0 andhδx1←0 in one case and inputshx1←1 andhδx1←1 in the
other. Note that the formulas corresponding tohx1←0 andhx1←1 can be obtained by simply
projectingx1 to 1 and 0 (respectively) whenever the variablex1 appears in the formula. Also
note that after projectingx1, the formulashx1←0 andhx1←1 are monotone DNF formulas.
Similar remarks apply to the CNF representations ofhδx1←0 andhδx1←1.

Since we already know thath and hδ are not equivalent, at least one of the answers
of the two runs is “no”. Suppose that Equiv(hx1←1, hδx1←1) returns “no”. Then we know
that there is a counterexample where the first bit is set to 1. To obtain the next bit of a
counterexample, we call Equiv twice with inputshx1←1,x2←1, hδx1←1,x2←1 andhx1←1,x2←0,
hδx1←1,x2←0. Again, at least one of these calls to Equiv must return “no”. The run that
fails provides information about the second bit of the counterexample. We can repeat the
above procedure with further projected formulas so that after at most 2n calls we will have
obtained a complete counterexample.

To analyze the time complexity, note that obtaining a counterexamplex requires time
O(n · q(|h|, |hδ|, n)) since 2n calls to Equiv are made on formulas of size at most|h|
and|hδ|. Determining which hypothesis misclassifiesx requires one membership query to
obtain its true classification plus time linear in|h| and|hδ| to determine which hypothesis
h or hδ needs to be modified. Thus the time needed to produce the next output (minterm or
maxterm) is 2n ·q(|h|, |hδ|, n)+|h|+|hδ|. Since|h|+|hδ| is the size of what the algorithm
has output so far, and the algorithm requires time polynomial in|h| + |hδ| to produce the
next output, the algorithm runs in incremental polynomial time. 2

Proof of Corollary 4: In general Theorem 3 does not immediately apply to an arbitrary
subset of CNF formulas. In the case of read-k-CNF formulas any hypotheses posed by the
combinedA andAδ algorithm will also be a read-k monotone CNF. The reason is that any
hypothesis of this algorithm is a subset of the clauses of the read-k monotone CNF to be
learned. The remainder of the proof is unchanged. 2
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Notes

1. In the case of a single relation the problem is easily shown to be equivalent to the conversion problem. Given
the recent results of Fredman and Khachiyan (1996) the single relation case is unlikely to be NP-complete.

2. We assume thatC is not the constant 0 function for the remainder of this paper. The conversion problem is
trivial whenC is the constant 0 function sinceD is also the constant 0 function.

3. The assumption thatD→ C in the hypothesis of Lemma 6 is necessary. It is not difficult to construct an
example without this assumption for which the first statement holds but not the second.
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