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constank times (“readk” monotone CNF). Letf : {0, 1}" — {0, 1} be expressible as a re&dnonotone CNF
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1. Introduction

We begin by defining the basic problems addressed and then follow with some motivation
and application to other areas. We consider Boolean functions that map pointsrin the
dimensional Boolean hyperculp@ 1}" onto{0, 1}. More specifically, we are interested in
monotoneBoolean functions. We say thgt= (y1V», ... Vn) isabove x= (X1Xz, ... X,) in
the Boolean hypercube iff for eachy, > x;. Then a monotone Boolean function is one
which satisfies the following property: if (x) = 1, thenf(y) = 1 for eachy abovex.
Monotone Boolean functions are known to have unique reduced CNF (Conjunctive Normal
Form) and DNF (Disjunctive Normal Form) expressions.

This paper investigates two related problems. To facilitate their descriptions, we intro-
duce the notion of a membership query oracle fawhich is an oracle that on queryx™
returns the valud (x).

Monotone CNF conversionGiven a monotone CNF formula, find its equivalent reduced
DNF formula.
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Monotone function identification.et f be a monotone Boolean function. Given a mem-
bership query oracle fof find both the CNF and DNF representationsfof

A natural dual problem to the first is the monotone DNF conversion problem, that s, given
a monotone DNF, find its equivalent CNF. As we shall see in Section 2.1, these problems
are of equivalent complexity. That is, an algorithm for one can be used to solve the other
with relatively little increase in running time. Henceforth, our reference to the CNF/DNF
conversion problem, or “the conversion problem” means either of the two problems.

An efficient algorithm for the monotone function identification problem can be used to
efficiently solve the monotone CNF conversion problem, since the input CNF expression
for the conversion problem can be used to answer the required membership queries for
the identification problem. Furthermore, results of Bioch and Ibaraki (1995) show that
an efficient algorithm for the conversion problem also may be used to obtain an efficient
algorithm for the identification problem.

What do we mean by an efficient algorithm? We will be more careful about defining
efficiency in Section 2. For now we note that since the output for these algorithms may be
significantly larger than their input, we allow our algorithms to run in time polynomial in
the size of their output.

Whether or not an efficient algorithm exists for either the conversion or identification
problems is currently an open question. Recently, Fredman and Khachiyan (1996) gave an
O(m°legm)y time algorithm for the identification problem, whareis the sum of the size
of the desired CNF and DNF. This provides evidence that neither of the two problems are
likely to be NP-hard. Whether or not there is an algorithm that is polynomialiemains
open.

Since an efficient solution to the general problem is not known, some research has focused
on determining which natural subcases of the general problem have efficient solutions. For
example, in the event that each clause of the CNF has at most two variables, efficient
solutions have been given under various definitions of efficiency (Tsukiyama et al., 1977,
Lawler, Lenstra, & Kan, 1980; Karp & Wigderson, 1985; Johnson, Papadimitriou, &
Yannakakis, 1988). Extending this work, Eiter and Gottlob (1995) give an efficient algorithm
for the case in which the size of each clause is bounded by some constant. Finally, Makino
and Ibaraki have also shown that an efficient solution exists for the class of monotone
formulas with “constant maximum latency” (Makino & Ibaraki, 1997, 1998).

The restriction considered in this paper is based on limiting the number of “reads”
(occurrences of each variable) in a formula, a restriction that has been well-investigated in
the learning-theory literature (Angluin, Hellerstein, & Karpinski, 1993; Pillaipakkamnatt
& Raghavan, 1995; Bshouty, Hancock, & Hellerstein, 1995a, 1995b; Pillaipakkamnatt
& Raghavan, 1996; Aizenstein et al., 1998a, 1998b). Previous work has shown that it is
possible to identify an arbitrary monotone read-ofrcev) formula under a stronger notion
of polynomial time (Angluin, Hellerstein, & Karpinski, 1993; Gurvich & Khachiyan, 1995).

We show here (for the conversion problem) that given a keatbnotone CNF expression

one can efficiently find its DNF expression. (Henceforth, we will refer to this problem
as theread-k-CNF conversion problem) For the identification problem, we show that
given access to only membership queries of a function that can be represented ak a read-
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monotone CNF, one can efficiently find both its CNF and DNF expressions. (Henceforth,
we will refer to this problem as theead-k-CNF/DNF identification problem.)

1.1. Motivation

We now consider relationships between naturally arising problems and the unrestricted
cases of the monotone CNF conversion and monotone function identification problems. In
some cases, the re&destriction that allows for our polynomial-time solution corresponds

to a natural restriction (and solution thereof) for the related problem.

Database applications. In the context of data-mining, an algorithm for the conversion
problem can be used to find all of the keys in a relation. In addition to providing high-
level information about a relation, the keys can be used for verifying that a collection of
mined rules are in fact all of the interesting rules in a relation (Mannila & Toivonen, 1996).
Similarly, key enumeration is related to the problem of finding a small cover for the set
of functional dependencies that hold in a database; a problem useful in database design or
query processing (Mannila &&fid, 1992a, 1992b; Kivinen & Mannila, 1995).

Ourreadk algorithm can be used to enumerate all of the keys of a single relation provided
that no attribute participates in more thafconstant) minimal keys. The time required is
polynomial in the size of the relation and the number of minimal keys.

Another recently studied problem in data mining is that of findisgociation ruleshat
hold in arelation (table) (Agrawal etal., 1996). Each row of the taflaypically contains
binary data. Letx be a subset of the attributes Bfand letX be a single attribute not in
a. Let A denote the number of rows @f for which each attribute af has value 1. LeB
denote the number of rows df for which each attribute af U { X} has value 1. LefT|
denote the number of rows ih. Thenoe — X is an association rule with “support” and
“confidence”s provided that (1)B/|T| > o, and (2)B/A > §.

Efficiently enumerating association rules has become an important topic in data mining.
Typically, a heuristic approach is taken wherein one first enumerates all of the “frequent sets”
of T (Agrawal, Imielinski, & Swami, 1993; Agrawal & Srikant, 1994; Srikant & Agrawal,
1995; Agrawal et al., 1996; Gunopulos, Mannila, & Saluja, 1997; Mannila & Toivonen,
1997). A frequent set is any set of attributg@such that the fraction of rows that have all
attributes ofSset to 1 is at least. Efficient algorithms for the conversion problem would
be useful as a heuristic for enumerating all maximal frequent sets (Gunopulos, Mannila, &
Saluja, 1997). Our reaklrestriction translates in this context to finding maximal frequent
sets assuming that each variable appears in at knafsthe sets.

A final database-related application is to the problem of enumeratingilinal failing
subquerie®f a given conjunctive query to a database. Consider a query to a student record
database asking for the student IDs of all female senior students who took the course CS
372 in the Spring of 1993. If there are no such students, then the query is a failing query.
The user then might broaden the search, successively dropping the query conditions that
the student be female, be a senior, or that the course be in the Spring of 1993. However, it
could be the case that the query fails because CS 372 is not even a valid course. It would be
preferable for the user to determine this right away. That is, if the query returns the empty
set, the user often would find it useful to know if the reason for the unsatisfiability of the
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query is some smaller subset of the constraints in the query. A minimal failing subquery
of a conjunctive query is just a minimal subset of the conjunctive constraints of a failing
guery to a database that also results in failure. It has recently been shown that the general
problem of enumerating all such minimal failing subqueries is NP-hard (even when there
are only polynomially many minimal failing subqueries) (Godfrey, 1997) when the data-
base consists of more than a constant number of relatitis also shown how to enumerate
failing subqueries in order of increasing size with time increasing exponentially in the size

k of the subqueries. In comparison, the result in this paper implies that if every attribute ap-
pears in at mosk minimal failing subqueries then there is an output polynomial time
algorithm for enumeration.

Graph-theory applications. The conversion problem is well motivated in graph theory
as it is exactly the hypergraph independent set problem. A hyperdtajsha collection
of subsets (edged§ of a finite set of vertice®¥ . An independent set of a hypergraph is a
subset of verticesy’ C V, such that no edge i& is contained irfv’. An independent set
| is maximal if no supersdt’ of | is also an independent set. Given a hypergrephhe
hypergraph independent set problésithat of enumerating all maximal independent sets
of H. Note that while finding the maximum cardinality independent set is NP-hard (Garey
& Johnson, 1979), finding a maximal independent deteasy: iteratively add vertices ko
while maintaining the property thatis an independent set. We consider here the problem
of enumeratingll maximal independent sets.

Another equivalent graph theoretic formulation is: Given a hypergkhpénumerate all
minimal vertex covers oH. A vertex cover (or hitting set) is a subset of vertia€sC V
that intersects each edge of the hypergraph. The minimal vertex covers are precisely the
complements of the maximal independent sets. In the literature, generating all minimal
vertex covers of a hypergraph is also referred to as the hypergraph transversal problem
(Eiter & Gottlob, 1995). The read restriction we consider here in the CNF/DNF setting is
equivalent to the natural restriction of limiting the degree of each vertex in the hypergraph
in both the hypergraph transversal and independent set problems. Our result complements
output polynomial time algorithms for versions of these hypergraph problems restricted by
constant edge-size (Eiter & Gottlob, 1995).

Reasoning and knowledge representationAnother example of the utility of the con-
version problem arises in the context of reasoning. Given a knowledge base that can be
represented as a conjunction of propositional Horn clauses with empty consequents, an
efficient solution to the conversion problem could be used to efficiently generate a collec-
tion of characteristic models (Kautz, Kearns, & Selman, 1993; Khardon & Roth, 1994) to
use in various reasoning tasks (for example, determining whether a query is entailed by a
knowledge base) (Khardon, 1995; Khardon, Mannila, & Roth, 1999).

The conversion problem is also related to the problem of determining if a version space
has converged. For a concept cl@sthe version space (Mitchell, 1982) induced by positive
example seP and negative example shitis the set of concepts i@ consistent withP and
N. A version spac&/ has converged ifV| = 1. An efficient solution to the CNF/DNF
conversion problem could be used to efficiently determine if a version space has converged
for the class of monotone functions (Hirsh, Mishra, & Pitt, 1997).
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The termknowledge compilatiois used to denote methods by which one type of rep-
resentation of knowledge is translated into another, so as to make it easier to use that
knowledge. One example discussed in (Selman & Kautz, 1991) considers compiling an
arbitrary (non-monotone) CNF formu@into a pair of Horn formulas—one more general
(say,g), and one more specific (saf), than the formula being “compiled”. While the
problem of determining whether a CNF entails a clause is NP-hard, the problem of
determining whether a Horn formulfaor g entailse has a polynomial-time solution. If we
are lucky enough tha entailse, or if f fails to entaile, thenC must entail (respectively,
fail to entail)oe. The CNF/DNF conversion problem is also a form of compilation since we
are given a CNF (or DNF) and wish to compile that information into a DNF (respectively,
CNF).

A desirable property of our polynomial time solution to the réadentification problem
is it does not depend on the representation of the function provided to us (e.g., it could be an
arbitrary Boolean formula). As long as that representation is polynomially evaluable and
corresponds to a monotone rela@NF we can efficiently compile the representation into
both its DNF and CNF form.

Computational learning theory. The identification problem is also closely related to the
concept learning problem studied in computational learning theory. The general concept
learning problem is to learn to discriminate between objects that satisfy some unknown
rule, or “concept”, and those that do not. Létbe the space of possible examples (e.g.,

X = {0,1,}"). An unknown concepf classifies each point € X either “+" or “—"
indicating thatx is a positive or negative (respectively) example fof The unknown
conceptf is referred to as the target concept, and is often assumed to come from some
known class of candidate concepts.

Typically, a learning algorithm obtains examplesfokither randomly from nature, or
from a teacher, and is told which examples are positive and which are negative. Sometimes
the learning algorithm is allowed to pose a membership query which is an exanople
its own choice, in response to which a teacher classxfias either a positive or negative
example. Sometimes the algorithm is allowed to both obtain examples and pose membership
queries.

The learnability of monotone Boolean functions has been widely studied under a vari-
ety of learning models. For example, an efficient algorithm exists for learning the class
of monotone DNF formulas when both examples and membership queries are available
(Angluin, 1988) (sketched in the appendix). Our result implies an efficient algorithm for
learning monotone reakl-CNF formulas (and their corresponding DNF representations)
using membership queries alone.

A more thorough review of applications of both the monotone CNF/DNF conversion
problem and the monotone function identification problem can be found in (Eiter & Gottlob,
1995).

1.2. Overview

The remainder of this paper is organized as follows. Section 2 reviews standard defini-
tions, special terminology, complexity issues, and some related results on learning with
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membership queries. In Section 3, we give an output polynomial time algorithm for the
readk-CNF conversion problem (finding a DNF expression equivalent to a given monotone
readk CNF expression).

In Section 4, we solve in incremental polynomial time the apparently more difficult
readk-CNF/DNF identification problem (findingoththe readk-CNF expression, and the
DNF expression, of a monotone Boolean functfogiven only membership queries 6J.

While this problem appears to be more difficult than the red@@NF conversion problem,
the results of Bioch and Ibaraki (1995) imply that the problems are in fact equivalent.

2. Preliminaries
2.1. Boolean formulas, etc.

Monotone functions. Let V = {vy, ..., v} be a collection of Boolean variables. A
vectorv is any assignment of the variablesvirto O or 1, i.e.p € {0, 1}". We use the terms
vector and assignment interchangeably. A Boolean function, ..., vy) is a function
f : {0, 1}" — {0, 1}. A monotone Boolean function Has the property that if (x) = 1
then for ally > x, f(y) = 1, where =" is defined by the partial order induced by the
n-dimensional Boolean hyperculp@, 1}". Equivalently,y > x means that each bit of the
vectory is at least as large as the corresponding bit.oThe class of Boolean formula
overvariable se¥ = {vy, ..., vp}is defined inductively as follows: (1) each of the symbols
{0, 1,v4, ..., vn} is a Boolean formula ovev; (2) if F, andF, are Boolean formulas over
V then so aréF; v F,), (F1 A F2); and (3) if F, is a Boolean formula oveV then so is
F.. The class ofmonotone Boolean formulas i defined inductively in the same way,
but using only rules (1) and (2). Thus, a monotone Boolean formula is one which contains
no negation symbols. We use the terms formula and expression interchangeably. Each
Boolean formula ove¥ describes a Boolean function nfBoolean variables in the usual
way, with the standard interpretation of the logical connectivd®©R), A (AND) and —
(NOT).

A monotone Boolean functiofi can be described by itainimally positive assignments
A minimally positive assignment of is a positive assignment with only negative assign-
ments below it, i.e., a vectar € {0, 1}" such thatf (v) =1 andforallu < v f(u) =0. A
monotone Boolean function can also be described dually lgatemally negative assign-
mentsi.e., the vectors such thatf (u) = 0 and for allv > u, f(v) = 1.

A term tis the function represented by a conjunction (ANDS vi, A vi, A - - - A vj, Of
literals vi;, where diteral is either a variable; or its negatiorx;. A term is monotone if
all literals are un-negated variables. Henceforth, we consider only monotone terms. The
(monotone) ternt evaluates to 1 if and only if each of the variables v;,, ..., v, have
value 1. Similarly, anonotone clause is the function represented by a disjunction (OR)
c=vj, Vvj, V---Vuj, of variables. The clauseevaluates to 1 if and only if at least one

of the variables;,, vj,, ..., vj, has value 1.
A monotone DNFexpression is a disjunction (OR) of monotone tetmmgt, v - - - Vv tg,
and evaluates to 1 iff at least one of the terms has value T. # {t;,...,t;} is a set

of terms, thenvT is the DNF expressiofy v t, Vv --- Vv t;. Similarly, amonotone CNF
expression is a conjunction of monotone clauses ¢, A - - - A Gy, and evaluates to 1 iff
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each of the clauses has value 1Clf= {c, ..., Gy} is a set of clauses thexC is the CNF
expressiort; AC; A - -+ A Cp.

A termt implies a functionf iff for any Boolean assignmerit to the variables oV,

(t(v) = 1) — (f(¥) =1). Any such term is called an implicant. A prime implicant, or
minterm of f, is an implicant such that no implicant of can be formed by removing one
or more variables from the conjunctionA clausec is implied by a functionf iff for any
Boolean assignmeiitto the variables o/, (f () = 1) — (c(v) = 1). Any such clause is
called an implicand. A prime implicand, anaxterm of f, is an implicandt such that no
implicand of f can be formed by removing one or more variables from the disjunction

It is easily shown and well-known that every monotone Boolean function has a unique
monotone DNF expression, formed by the disjunction of all of its minterms. We call such
a DNF expressiomeduced Likewise, every monotone Boolean function has a unique
reduced monotone CNF expression, formed by the conjunction of all of its maxterms.

For a monotone functioff, let cnf(f) and dnf(f) be its corresponding (unique reduced)
CNF and DNF expressions, respectively. Latf(f)| denote the number of maxterms of
cnf(f) (similarly for the DNF representation). The length of the representation of ¢nf(
is at most - [cnf(f)|. For a CNF formulaC, we denote byC| the number of maxterms of
C (similarly for a DNF formulaD).

It turns out that each minimally positive assignment corresponds naturally to a minterm
in the DNF expression. Likewise, each maximally negative point corresponds naturally to
a maxterm in the CNF expression. For example, consider the following monotone Boolean
function.

x
iy
&
x
&)

f(x)
0

F r »r »r O O O O

P B OO R LR OO
 OFr OFr OFr O
R P R O R O R

The minimally positive assignments éfare 110 and 001, and the DNF expression for
f is (X1 A X2) V x3. Note that a minterm contains a variallevhenever its corresponding
minimally positive assignment contains a 1 in bit position The maximally negative
assignments of are 010 and 100, and the CNF expressionffds (X1 V X3g) A (X2 V X3).
Note that a maxterm contains a variaklevherever its corresponding maximally negative
assignment contagma 0 in bitpositioni .

Duality. Recall that if f is any Boolean formula, then the dual 6f(denoted dual(f))
is obtained by replacing eaclv* with “ A", and vice-versa. (And, iff contains the con-
stants “0” or “1”, each “0” is replaced with “1”, and vice-versa.) Thus, the dual of a CNF
is a DNF, and the dual of a DNF is a CNF. Moreover, the dual of a ke@NF is a
readk-DNF, and vice-versa. By the duality law (e.g., Tremblay & Manohar, 1961), any
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identity or theorem about formulas remains true when the formulas are replaced by their
duals.

Because of this duality, it is easily seen that an algorithm that solves the monotone
CNF conversion problem can be modified in a straightforward way to solve the monotone
DNF conversion problem. In particular, suppoB8eis an algorithm for the monotone
CNF conversion problem, and I&(C) denote the DNF formula output b#& which is
equivalent to an input CNF formufa. Suppose is a DNF formula we wish to “convert”
to CNF. Then dualD) is a CNF, andA(dual(D)) is the equivalent DNF for dudlf). By
the duality law, dual(dual))) is equivalent to duak(dual(D))). But dual(dualD)) is just
D. Consequently, to find a CNF equivalent@ousing algorithmA, we simply compute
dual(A(dual(D))). The running time increases only by an additive linear term.

Read-k. A Boolean formula isead-kif each variable appears at maéstimes. Note that
the property of being reaklis a property of a formula, and not of the underlying function.
We'll say that a function is realif it can be represented by some rdafbrmula. Similarly,

a function is a read- CNF (respectively, DNF) if it can be represented as a le&@NF
(respectively, DNF) formula. For a fixddnot all Boolean functions are representable as a
readk CNF formula. Note that every reddENF formula has total length at mdst n.

Projections. Let f be a Boolean function af variables{x, ..., X,}. We definefy
as the projection of the Boolean functidnwhen variablex; is set to valueb € {0, 1}.
Thatis, ifv = (v1, va, ..., vn), thenletvy p = (v1, ..., vi_1, b, vit1, ..., vn), @and define
fx, <b as the function such that for any fy, .n(v) = f(vx<b). (Alternative definitions
of projection considefy, ., as a function oh — 1 argument$xa, ..., Xi—1, Xi4+1, - - - , Xn),
whose values are defined on the subsg@icg)' ~* x {b} x {0, 1}"'.) Similarly, for a set
of variablesA C {xy, ..., Xn}, we definef ., to be the projection of functiori when all
the variables from seA are set to valub € {0, 1}. We will make use of such projections
in the technical sections to follow.

2.2. Complexity issues

The standard definition of a polynomial-time algorithm is one that runs in time polynomial
in the size of its input. No such algorithm exists for the conversion problem since the output
may be exponentially larger than the input. The following CNF formula of sizever the
set{Xq, ..., %n, Y1, - . ., ¥n} Of 2n variables exemplifies this behavior.

X1 VYDAV YY) A A XV Yn) 1)

It is possible to show that the corresponding reduced DNF has size 2

\/ (byA---Abp)

bie{xi,yi}

Clearly there is no algorithm that can output a formula of sizén2ime polynomial
in n. This statement also applies to the class of read restricted CNF expressions since the
formula in (1) is read-once.
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Giventhat the output may be significantly larger than the input, a more reasonable measure
of complexity allows an algorithm to run in time polynomial in both its input and output
sizes. Such an algorithm is calledatal (or outpu) polynomial time algorithm (Johnson,
Papadimitriou, & Yannakakis, 1988; Eiter & Gottlob, 1995).

A stronger definition of a total polynomial time algorithm isiacrementalpolynomial
time algorithm (Johnson, Papadimitriou, & Yannakakis, 1988; Bioch & Ibaraki, 1995;
Eiter & Gottlob, 1995). In between all consecutive outputs an incremental polynomial time
algorithm spends time polynomial in the input sizand what it has output so far. Thus,
if the algorithm output®y, 0o, . . ., 0j, whereo; is the final output, then the time it takes
to outputo; for anyi < j is polynomial inn, the input size, and the sum of the sizes of
01, 0o, ..., 0j_1. Clearly an algorithm that runs in incremental polynomial time also runs
in total polynomial time. The converse does not necessarily hold.

In this paper, we first give a total polynomial time algorithm for the rka@NF conver-
sion problem (Section 3) and then show (in Section 4) how this may be used to obtain an
incremental polynomial time algorithm for the rekd=NF/DNF identification problem.

In Section 4 we also provide a second method for solving the ke@dbH-/DNF identifica-
tion problem that is motivated by an analysis of some structural properties okréat-
formulas.

2.3. Membership queries

In the readk-CNF/DNF identification problem we consider the problem of finding both the
CNF and DNF expressions with membership queries. One may well wonder if it is possible
to efficiently learn just one of the expressions, say the DNF, with membership queries.

In fact, results of Angluin (1988) show that no algorithm exists for learning the class of
CNF formulas with membership queries in time polynomial in the size of the DNF formula.
Her result implies also that there are information theoretic barriers to learning the class of
readk DNF formulas with membership queries (in time polynomial in the size of the kead-
DNF). The result also holds for CNF.

Furthermore, it is known that any algorithm that learns the class of monotone functions
with membership queries must poQ&max{|cnf( )|, |dnf(f)|}) queries (wheref is the
monotone function to be compiled) (Korobkov, 1965; Bshouty et al., 1996). The result
also applies to the class of monotone functions representable ak @ formulas when
k> 2.

Finally, we note that while there is currently no knotime-efficienalgorithm for learn-
ing the class of monotone functions with membership queries, the information-theoretic
complexity of the problem is understood better. Gainanov (1984) has given a time-
inefficient (but query-efficient) algorithm that identifies every monotone funcfiomith
O(n-max|cnf( f)|, |dnf(f)|}) membership queries.

3. The conversion problem
Throughout the rest of this paper we will be manipulating DNF and CNF expressions. We

assume that any such expression is monotone and that it has been put into reduced (minimal)
form.
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We give an algorithm for finding a DNF expression equivalent to a given monoton&read-
CNF expression. Note that the fact that the CNF expression is monotone implies that its
corresponding DNF expression is also monotone. However, the fact that the CNF expression
is read restricted does not necessarily imply that the DNF expression is read-restricted. The
formula (1) is a read-once CNF with no equivalent rées@INF for k < 2",

3.1. A firststab

We first give a simple but inefficient algorithm for the general conversion problem that
motivates the efficient solution to the rekdase. The techniques we use are based on an
inductive characterization of the problem: When can the DNF correspondingubsat
C’ of the clauses of a monotone CNF form@abe used to compute the DNF Gf? We
demonstrate that a possible source of inefficiency of the algorithm is that the size of the
DNF for C" may be significantly (exponentially) larger than the size of the DNFCor
However, if we impose an order on the clause€diy considering those induced by larger
and larger subsets of the variables, we can (in Section 3.2) show that the method yields an
efficient algorithm for finding a monotone DNF representation of a given monotoneread-
CNF formula.

If C =c1A---AcCyisamonotone CNF formula we construct the DNFGinductively
by constructing the DNF expressions f@rA - - - A ¢ for eachi < m. Assume inductively
thatg =t; v - - - v tsis the (unique, sinc€ is monotone) DNF foc; A - - - A ¢i. Then the
DNF formula forcy A -+ A G A Giy1 IS equivalent to

gAC1=MmV---VI) ACH

= ({1 AC4+1) V- V(s ACiy1).

The above is not quite in DNF form since each disjunct is not necessarily a term. Each
disjunct can be translated to a collection of terms by a simple application of the distributive
property. We define the function “term-and-clause” that takes a teand a clause =
(y1V -+ V ¥y as input and returns their conjunction as follows:

if t andc share a variable

term-and-clausg, c) = .
tAYy)V---V(tAYm otherwise.
It is easy to see that the function term-and-clause returns the conjunction of its arguments.
Independent of whethéandc share a variable, their conjunctiontsa y1) v - - - v (t A ym)
by the distributive property. If andc share a variable then— c and the conjunctiohA c
is equivalent td.
We also find useful the function “dnf-and-clause” that simply takes a (reduced) DNF
formula and a clause as input and returns the result of calling term-and-clause with each
term of the DNF. Thus,

dnf-and-clauséD, ¢) = \/ term-and-claugg, c).
teD
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Note that term-and-clauge€) runs in timeO(]t] - |c|). Since|D]| calls are made to term-
and-clause on a term and clause with at mosariables, dnf-and-clause requires time
O(ID| - n?

We also define the function “reduce” that given a DNF formulg, (not necessarily
reduced) and its corresponding CNF formulga,reduce in time linear in|C| and|D]|.
For a ternt in D, note that is an implicant ofD. Alsot is an implicant ofC sinceC is
equivalenttd. So by definition for any Boolean assignm&ngt (x) = 1) — (C(x) = 1).
We wish to determine if is a prime implicant oD (or C). By definition,t is a prime
implicant iff C(u) # 1, whereu is the minimally positive assignment corresponding to
(t — {v}). In summary, reduce does the following.

reduceD, C)
D' < @.
foralltin D
if forall vint
the minimally positive assignment corresponding to{v} does not satisfiC
thenD’ < D' Ut
returnD’

Since O(n|CJ) time is needed per term of the DNF formul?, the running time of
reduceD, C)is O(|D|-n|C)). Since the CNF formulas considered in this paper are kead-
the running time of reduce ©(|D| - n?).

We now have an algorithm to construct a DNF formula equivalent to the CNF formula
C1 A -+ ACy1 given a DNF formula; v --- v tgforcg A -+ - A ¢. We simply call dnf-
and-clause on the input; v --- Vv ts, ¢ 1) and reduce the resulting formula. Doing the
above iteratively for eachyields our “first stab” algorithm for translating a CNF formula
to a DNF formula.

first-stabC =c1 A--- ACy)
D « True
fori:=1tom
D <« dnf-and-clausdd, ¢;)
reduceD,ci1 A---ACG)
outputD

A simple induction oni < m shows that after thé-th iteration of the for loop, the
formulaD is a (reduced) DNF that represents the CNF fornaula- - - A ¢;. Consequently,
wheni = m, first-stabC) correctly outputs a reduced DNF formulathat represents the
same function a€. Note that the inductive proof (hence correctness of the algorithm) is
independent of the ordering of clauges.

But, first-stab is not necessarily efficient. Let

c= A &ivyp.
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Suppose the order in which the clauses are consideregdisy;),i = 1, ..., n followed
by the remaining clauses (in any order). Then, after therfickhuses, the DNF formul®
obtained by first-stab is exactly:

D= \/ (LA A by
bie{xi,yi}

There are 2terms inD, yet the DNF formula equivalent € has only 2 terms, namely,
e A AX) V(YL A A V).

In summary first-stab works correctly regardless of the ordering of clauses, but it is not
guaranteed to do so in total polynomial time because the DNFs for intermediate CNFs
constructed using a subset of the clauseS ofn be large.

3.2. The bounded degree case

We now show how in some circumstances we can impose an order on the clauses so that

the sizes of the intermediate DNFs remain small. The result implies a polynomial-time

algorithm for the bounded degree hypergraph transversal (and independent set) problem.
Let C be a monotone CNF formuaver variablegx, ..., x,}. For each between 0

andn define

CiXg,.... %) =C(Xq, ..., %, 1,...,1).

Thus,C; is justC with all variables indexed greater thathardwired”, or projected, to 1.

Note thatCy is the constant 1 function, represented by the empty set of clauses, and that
Cn = C. ltis readily apparent that the CNE; is obtained fronC by removing any clause
containing a variable ifix 11, . . ., Xn}. (If no clauses remain the@; is equivalent to the
constant 1 function.) Analogously, B; is the DNF forC; then D; is obtained from the

DNF D for C by removing each of the variabl¢s 1, ..., Xy} from any term in which it
participates. (If an empty term results, the DNF becomes the constant 1 function.) We thus
have the following.

Observation 1 If C, D, Cj, andD; are defined as above, then for0i < n, |Cj| < |C|
and|Dj| < [D|.

The example in Section 3.1 demonstrated that if the claus&3 afe processed by
dnf-and-clause in a “bad” order an intermediate CNF, might have a DNFD’, that is
exponentially larger than the size of the actual DNFor C. Observation 1 points out that
if C"is in fact a projection o€ then the size oD’ will be bounded by the size db.

By a safestage of first-stab we mean a stage where the terms that have been passed to
dnf-and-clause so far correspond to a projectio@ ofAs long as we can ensure that the
time spent by the algorithm in between these safe stages is small, we can guarantee that
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there is not enough opportunity for the algorithm to construct a DNF that is too much larger
than the actual DND.

We can employ these observations to our advantage in the case &f @lformulas.
We order the clauses in such a way so that after at most &tlegtause passed to dnf-and-
clause, the intermediate formuld corresponds to some projecti@y of C, i.e., is a safe
stage. In between safe stages the intermediate formula does not have a chance to grow by
a factor of more thai® (n¥).

Algorithm readk-cnf-to-dnf begins with the projectio@ that sets all variables to 1.
The algorithm then iteratively “unprojects” each variaklesuch that at modt clauses of
C that had been projected away becausg phow “reappear”.

readk-cnf-to-dnf(f):

Input Readk CNF monotone formul&
Output DNF formulaD equivalent taC
G <« True
fori =1ton
for each clause of C; that is not inCj_1
G « dnf-and-clausgs, c)
G < reducéG,Ci A ---AC))
returnG

We show that Algorithm read-cnf-to-dnf works correctly in total polynomial time.

Theorem 2. Let C be a read-k monotone CNF formula over n variables. Then read-k-
cnf-to-dnfC) outputs the DNF formula D equivalent to C in time|D| - n*+3).

Proof: We first argue that the algorithm halts with the correct output and then discuss the
algorithm’s efficiency. LetP, be the set of clauses @ that are not contained iG;_;.
Step 3 is executed by reddenf-to-dnf for each value afbetween 1 and. During such a
step, for each clausein P, the statemen® <« dnf-and-clause€s, c) is executed. (Note
that reducing the DN affects the representation of the formula but not the function itself.)
Since the clauses & are exactly the disjoint unioR; U P, U - - - U Py, it follows from the
discussion in Section 3.1 and the correctness of first-stab that the algorithm processes all
clauses, and outputs the DNF equivalentto

To see that the algorithm runs within the stated time bound, first note that forkeach
1 < k < n, after the iteration of the for loop of step 2 with= k, the algorithm is at a safe
stage, because the DNF returned is the projediipnWe need to show that the formula
does not grow too large in between safe stages. Sin@leenceC;) is readk there are at
mostk clauses inP, (those that contaiw;). Soduring any execution of the for loop in
step 3 dnf-and-clause is called at mksimes. Note that after each call of dnf-and-clause
in step 4, the growth of the intermediate DKHs bounded by a factor af. The reason is
thatG is multiplied by a clause of size at mast Consequently after calling dnf-and-clause
at mostk times (i.e., until the next safe stage is reached) the size of each intermediate
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formulaG between safe stages can grow to at m@gt- n¢. Once the next safe stage is
reached, the size @ is guaranteed again to be at m{3{ since the formuld is reduced.

Note that there arae iterations of the loop in step 2. For each of thesierations, at
mostk calls are made to dnf-and-clause, and to reduce, on a DNF formula of size at most
|D| - nk. Each of dnf-and-clause requi@(|DNF| - n?) time, so the overall running time is
O(n-k-|D|-nk.n?) = O(|D|nk+3). O

Observe that a dual statement can be made for kb= formulas: There is a total
polynomial time algorithm that converts readdNF formulas into their corresponding
CNF formulas. The statement follows from the duality law given in Section 2.1.

4. The identification problem

In this section, we construct an algorithm that improves the result given in the previous
section in three ways: (1) The algorithm finds both the CNF and DNF of a function instead
of finding the DNF given the CNF (2) The algorithm uses membership queries only rather
than relying on representational information inherent in the CNF and (3) The algorithm
runs in incremental polynomial time rather than total polynomial time.

4.1. The equivalence problem

We first introduce a third problem which is simply that of determining if a given monotone
CNF is equivalent to a given monotone DNF expression.

Monotone CNF and DNF equivalencket C be a monotone CNF formula and Btbe a
monotone DNF formula. Give@ and D, determine whether or not they are equivalent.

For our purposes we will be interested in the read-restricted version of this problem which
we introduce below. The following has been proven for the general problem (restated in
our terminology):

Theorem 3 (Bioch and Ibaraki). There is a polynomial-time algorithm for the monotone
CNF and DNF equivalence problem if and only if there is an incremental polynomial time
algorithm for the monotone function identification problem.

The proof appears in the appendix because an understanding of why the following corol-
lary holds requires understanding Bioch and Ibaraki's proof.
The restriction of the equivalence problem to the rkadse is as follows:

Read-k Monotone CNF and DNF equivalentet C be a monotone reaklCNF formula,
and letD be a monotone (not necessarily rdgddNF formula. GiverC andD, determine
whether or not they are equivalent.
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While in general the proof of Theorem 3 does not apply to the read-restricted case, we
show in the appendix that the proof can be appropriately modified.

Corollary 4. There is a polynomial-time algorithm for the read-k monotone CNF and
DNF equivalence problem if and only if there is an incremental polynomial time algorithm
for the read-k-CNF/DNF identification problem.

By Corollary 4, to obtain an incremental output polynomial time algorithm for the read-
k-CNF/DNF identification problem we need only give a polynomial time algorithm for the
readk monotone CNF and DNF equivalence problem.

4.2. Two algorithms for equivalence testing

For several reasons, we incluteo polynomial-time algorithms for the reddmonotone

CNF and DNF equivalence problem. The first method follows easily via a reduction from
the readk-CNF conversion problem (Section 3). It demonstrates that the conversion prob-
lem is equivalent to the equivalence testing problem. This method will perhaps be most
appreciated by those interested in the conversion problem or any of the equivalent formu-
lations or related problems mentioned in the introduction. The second algorithm directly
attacks the readl-monotone CNF and DNF equivalence problem, and gives insight into
some structural properties of read=NF (and DNF) formulas. It should further be noted
that as the unrestricted versions of the conversion, identification, and equivalence prob-
lems remain open, we find it useful to provide a variety of possible methods for further
attack.

4.2.1. By reduction. The proof of Theorem 2 gives a total polynomial time algorithm for
the readk-CNF conversion problem. We now show that this implies a polynomial time
algorithm for the readk- monotone CNF and DNF equivalence problem. Consequently, by
Corollary 4, this gives an incremental polynomial time algorithm for the te@NF/DNF
identification problem.

Theorem 5. There is a polynomial time algorithm for the read-k monotone CNF and
DNF equivalence problem if and only if there is a total polynomial time algorithm for the
read-k-CNF conversion problem.

Proof: Let T be an algorithm for the reaklkCNF conversion problem that runs in
time p(|cnf(f)[, |dnf(f)|, n) wherep is some polynomial. To determine if the CNF for-
mulaC and the DNF formuld input to the equivalence problem are in fact equivalent, we
run T with inputC for p(|C|, |D], n) time steps.

Suppose was in fact the DNF representation®©f Then, sincd is assumed to produce
the correct (minimized) output, it will halt with outp@tin p(|C|, | D], n) steps. The reason
is that sincef is the function represented &, |C| = |cnf(f)| and in fact| D| = |dnf(f)|.

If D is notthe DNF representation Gfthen one of two things may happeh.may halt with
incorrect output ol may not finish running irp(|C|, | D], n) steps. Thu® is equivalent
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to Ciff T halts inp(|C|, |D|, n) steps and its output is equivalent®o If T halts with a
DNF formulaD’ then output “yes” or “no” depending on whethgrand D’ are equivalent.
If T does not halt then output “no” since obviouslyand D are not equivalent.

By Corollary 4, an algorithm for the equivalence problem implies an incremental
polynomial time algorithm for the reakFCNF/DNF identification problem. Clearly an
incremental polynomial time algorithm for the ree=NF/DNF identification problem
implies a total polynomial time algorithm for the re&el=NF conversion problem. O

4.2.2. Directly. Here we give a more direct method for testing the equivalence of ekread-
monotone CNF formul& and an arbitrary monotone DNP. The algorithm runs in time
polynomial in the sum of the sizes 6fandD.

Before giving the main theorem of this section, we need the following definition and
results adapted from the ones in (Hancock & Mansour, 1991).

Definition 1 A function f : {0, 1}" — {0, 1} depend®n the variable if there exists an
assignmeny € {0, 1}" such thatfy _o(y) # fx<1(Y).

Definition 2 Let f be a monotone function over variable $g{, ..., x,}. We say that
A C {Xq,..., Xn} — {X} is ablocking sefor x; in f if fa. 1 does not depend on variable
X . A blocking setA for x; is minimalif no proper subset oA is also a blocking set fax;.
When the variable; is clear from context, we simply refer th as a blocking set.

We explain intuitively what it means for a set of variables to block a fornulgnstead
of a function). A set of variables blocksx; in D if projecting the variables o in D to 1
rendersy; irrelevant. For example, ldD = (X1 A X3) V (X2 A X3). Note that projecting,
to 1 cause®d to be equivalent txz. In other wordsx; is not needed whegr, is set to 1
in D. Thus we say tha® = {x,} blocksx, in D.

The idea behind our algorithm is that if we verify that the blocking sets for each variable
x; of a CNF formuleC are also blocking sets for in D, then we will have checked enough
projections to verify tha€ = D. Further, sinc€ is a readk CNF formula, the number of
such projections is not too large.

To test whether a given (monotone) rda@NF formulaC is equivalent to a given DNF
formula D, it is sufficient to test whethed — C, and, assumind® — C, test whether
C — D. Checking whetheb — C is immediate: it is sufficient to test for each minterm
of D whether the corresponding minimal positive assignment satiSfieko test whether
C — D, we will use the following lemma:

Lemma 6. LetC and D be nonconstant monotone CNF and DNF formulas respectively.
Further suppose that B> C. Then the following two statements are equivalent

1.C— D.

2. For every variable x every blocking set forj»n C is a blocking set forixin D.

Proof: Suppose that the hypothesis of the lemma holds andXhat D. But thenC is
equivalent toD, and clearly each blocking set for each variaklén C is also a blocking
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set forx; in D, since the definition of blocking set depends only on the function, and not
the representation.

Conversely, suppose that every blocking set for eaah C is a blocking set fok; in D,
and suppose by way of contradiction tRatloes notimplyD, that is, there is an assignment
y such thalC(y) = 1 andD(y) = 0. LetY; be the set of variables assigned “1” yand
let Yy be the set of variables assigned “0” By Notice thatY; is a blocking set for any
X € Yo in C, since setting each variable ¥j to 1 forcesC to 1. Starting aty, iteratively
flip O-bits to 1, until the first assignmemtis obtained such thad(p) = 1. (There must
be such an assignment becaisé not the constant 0 function and theref@e¢l) = 1.)
Thenp witnesses thady, .1 depends on some variablein Yy (the last one flipped), hence
Y; is not a blocking set fox; in D, contradicting the assumption that every blocking set for
C was also one fob. O

Thus, to test whether or n@ implies D, assuming that D implies C, we need only
obtain for each variablg the set of all blocking sets fog in C, and test whether they are
also blocking sets fox; in D. In fact, we need only check that every minimal blocking
set forx; in C is a blocking set fox; in D, since any superset of a blocking set fpiis
also a blocking set fox;. What remains then, is a method to (1) efficiently list all minimal
blocking sets folC, and (2) efficiently test whether each is a blocking setdor

(1) Obtaining the blocking setsSuppose tha€C = c; A --- A Cg IS @ nonempty read-
monotone CNF. We will show how to obtain the set of all minimal blocking setgfor C.
The blocking sets for the rest of the variablesare obtained similarly. First, we rewrite
C asC = (x; v CY) A C? whereC! is the conjunction of the clauses 6fthat contain
X1 with variablex; factored out, an€2 contains the rest of the clauses®f Notice that
if all the clauses irC containx;, thenC? is the identically 1 function. We claim that the
minterms ofC* are exactly the minimal blocking sets forin C. (Thatis, for each minterm
t of C%, the set of variables appearingtiis a minimal blocking set fok,, and if Ais a
minimal blocking set fox;, then the term formed by the conjunction of the variableAin
is a minterm ofC?.)

To prove the claim, we'll show that every implicant@f is a blocking set fox; in C,
and that every blocking set fox in C is an implicant ofC*. That the minterms (minimal
implicants) correspond to the minimal blocking sets follows trivially.

Suppose first thatis an implicant ofC?. Let p be any assignment satisfyih¢henceC?)
with x; set to 0. Ifp satisfiesC?, thenC(p) = 1 andC(py,..1) = 1. If p doesn't satisfy
C2, then neither doepy, 1, since no clause of? containsx;. Thus, bothC(p) and
C(px,<1) = 0. In other words, in any assignment with each variablesst to 1, flipping
x; does not change the value Gf Equivalently,C;. ; does not depend oxy, sot is a
blocking set forx; in C.

Conversely, suppose thatis a blocking set fok; in C. Suppose by way of contradiction
that (the term whose variables are thoseAr$ not an implicant o€*. Then there must be
some clause of C! whose variable set is disjoint from, since otherwise each clause in
C! would be satisfied when the variablesAfvere set to 1, ané would be an implicant.
Now let assignmenp set each variable ia U {x;} to 0, and all other variables to 1. Note
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that each variable i is set to 1 byp, since A contains neithek; nor any variable in
«. Now, p must satisfyC?, because otherwise, there would be a clggise C? such that
B C a U {xq}, contradicting the choice & as reduced. Observe thatp) = 0, sincep
satisfies neithe€?! (because of) nor x;. But C(py,.1) = 1, sincep satisfiesC2. This
contradicts the assumption thatvas a blocking set fox; in C. We conclude tha must
in fact be an implicant o1, and that the set of minterms 6f* are exactly the set of
minimal blocking sets fok; in C.

To find the minterms (hence minimal blocking sets)adf, observe that by the redd-
property ofC, C? is ak-clause CNF formula and each minterm therefore has size atknost
We can enumerate a (n¥) terms of size at mo&t, and for each, test in linear time whether
it is a prime implicant ofC!. Note that our blocking set approach does not work for arbi-
trary (not read-restricted) since in general we cannot bound the number of minterr@s of

(2) Testing if each blocking set is a blocking set for To:test whether a minimal blocking
setA for a variablex; in C is also a blocking set fax; in D, we simply set each variable of
Ato 1in the formulaD, and simplify to obtairD . 1. We then reduc® 5.1 by removing
any subsumed terms. Sin€&. ; is now reduced, it will depend ox if and only if X
appears in at least one term.

We now can state the following theorem:

Theorem 7. There is a polynomial time algorithm to determine given a monotone read-k
CNF C and a monotone DNF D whether or not C and D are equivalent.

Proof: We observed above that testing whetlier— C is trivial. By Lemma 6, to
determine whethe€ — D, it is sufficient to check if every minimal blocking set for each
variable inC is also a blocking set for the same variableDn Above, we showed how
to (1) obtain all minimal blocking sets fdg, and (2) determine whether each was also a
blocking set forD. The running time of all steps was polynomial|@|, |D|, andn. O

Appendix

Proof of Theorem 3: An incremental polynomial time algorithm for the monotone func-
tion identification problem can be used to test monotone CNF/DNF equivalence as follows.
Given CNFC and DNFD, to determine ifC is equivalent toD, run the algorithm for

the identification problem. When it asks for the valtigx), give it C(x). C andD are
equivalent if and only if botl€C andD have been output withip(|C|, |D|, n) steps, where
p(lenf( )], |dnf( f)|) is thetotal amount of time that the incremental algorithm spends on
agivenf.

The converse is more interesting. First, we describeettat learning with queries
framework due to Angluin (1988). In this learning framework, a learner tries to learn a
function f from a known clas€§ by asking queries to a teacher that knofvdn this paper
we restrict to the problem of learning Boolean formulas, and therefore, the&hadls
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be a subclass of the class of all Boolean formulas. The goal of the learner is to output a
hypothesis that is logically equivalent td by getting information about via queries.

There are two kinds of queries that have been commonly used in the learning literature
and that we consider here: membership and equivalence queries. The input of amembership
guery is a Boolean assignment {0, 1}" and the answer is the valdé€x). An equivalence
query takes as input a hypothebkiand returns “yes” ih is equivalent tof and otherwise
an arbitrary counterexamplee {0, 1}" such thah(y) # f (y) is returned.

One of the early positive results in this model is due to Angluin (1988) (see also Valiant,
1984) and states that the class of monotone DNF formulas is exactly learnable using mem-
bership and equivalence queries. The time and number of queries is polynomial in the
number of terms of the DNP to be learned. It will be helpful to have a basic understand-
ing of this learning algorithm.

Let D be a monotone DNF ovar variables andn terms. The algorithm works by
iteratively and greedily collecting all the terms ©f. It starts with the empty formula
representing the identically O function. The algorithm maintains a hypothesis that implies
D. In fact, each hypothesiswill consist of a subset of the terms bBf (Henceh impliesD.)

The algorithm uses an equivalence query to generate a new counterexampidnich by

the above comment, must be an assignnyesuch thah(y) = 0 andD(y) = 1. Because

this positive examplg of D is not above any minterm df, an assignment’ < y (in the
Boolean hypercube) can be found using at m@he number of variables) membership
queries, such thdt(y’) = 0 andD(y’) = 1, and such that ng” < y has this property. It

is easily seen that' corresponds to a minterm &f that is not yet irh. Consequently, the
algorithm adds that minterm foand iterates the above process with another equivalence
query. Afterm iterations of this procesf, = D. We will denote this algorithm by.

Itis easy to observe that algorithrhcan be “inverted” to obtain a dual algorithd? that
exactly learns any monotone CNF form@a In this case, the algorithm starts with the set
of empty clauses, representing the identically 1 function. It maintains a hypothesis that is
always implied byC. Each equivalence query is used to obtain a negative example. With
membership queries this negative example will alldivto obtain a maximum negative
example from which a clause is constructed. This clause is added to the current hypothesis.
The algorithm will use as many iterations as clauses.in

Now suppose that we have an algoritkiquivfor testing the equivalence of a monotone
DNF, h, and CNFh?, formula in timeg(|h|, [h%|, n) whereq is some polynomial. We show
how to useEquivto solve the identification problem in incremental polynomial time. Let
f be the function to be “identified”. We assume we have an oracld fitrat returns the
value f (x) on queryx. To find both its DNF and CNF representations, we will run hdth
and.A% in parallel, using the oracle fdr to answer membership queries, until both of them
stop and ask an equivalence query. hdde the hypothesis output by and leth® be the
hypothesis output byl’. By the properties of these algorithms just mentiorfedmplies
f, f impliesh® and thush impliesh®. Now we runEquivwith h andh? as inputs. If the
answer ofEquivis “yes”, thenh andh?® are logically equivalent, and sinte= f = h?
we conclude that we have obtained both the DNF and CNF expressiofis for

Otherwise, ifEquivanswers “no”, then we use an algorith®trx (described below) to
obtain a counterexamplesuch thah(x) # h’(x). We use a membership query with input
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X to determine which hypothesis is misclassifying@nd pass as a counterexample to
the algorithm that delivered that hypothesis. That algorithm will resume its computation
and at some point it will output a new hypothesis. We then proceed in the same fashion.
In other words, we can combine both algorithms to avoid asking equivalence queries by
using algorithm€£quivandCtrx. However, now the number of membership queries will
be polynomial in thesumof the sizes of the monotone DNF and monotone CNF formulas
for f.
How can we implement algorithi@trx? We describe here how algorith@trx can be
easily constructed using algorithBquiv. First, we choose one variable, say and we
run Equivtwice with inputshy, o andh;__, in one case and inpuls, .., andhj, _, inthe
other. Note that the formulas correspondindpin o andhy, .1 can be obtained by simply
projectingx; to 1 and O (respectively) whenever the variablappears in the formula. Also
note that after projecting,, the formulashy, . ¢ andhy, .1 are monotone DNF formulas.
Similar remarks apply to the CNF representation!af(clJL0 andh‘f(l(_l.
Since we already know thdt and h? are not equivalent, at least one of the answers
of the two runs is “no”. Suppose that Equiy(. 1, hi1<—1) returns “no”. Then we know
that there is a counterexample where the first bit is set to 1. To obtain the next bit of a
counterexample, we call Equiv twice with inpuig .1 x,«1, h§1<—1,xZ<—1 andhy, 1 x,<o0,
hd. 1.0 Again, at least one of these calls to Equiv must return “no”. The run that
fails provides information about the second bit of the counterexample. We can repeat the
above procedure with further projected formulas so that after at masdl® we will have
obtained a complete counterexample.
To analyze the time complexity, note that obtaining a counterexampguires time
O(n - q(|h], |h?], n)) since 2 calls to Equiv are made on formulas of size at midxgt
and|h?®|. Determining which hypothesis misclassifiesequires one membership query to
obtain its true classification plus time linear|im and|h?| to determine which hypothesis
h or h? needs to be modified. Thus the time needed to produce the next output (minterm or
maxterm) is &-q(|h|, [h’|, n) +|h|+|h?|. Sincelh|+ |h?| is the size of what the algorithm
has output so far, and the algorithm requires time polynomii|ig- |h’| to produce the
next output, the algorithm runs in incremental polynomial time. O

Proof of Corollary 4:  In general Theorem 3 does not immediately apply to an arbitrary
subset of CNF formulas. In the case of rda@NF formulas any hypotheses posed by the
combinedA4 and.4? algorithm will also be a reall-monotone CNF. The reason is that any
hypothesis of this algorithm is a subset of the clauses of thekeadnotone CNF to be
learned. The remainder of the proof is unchanged. O
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Notes

1. In the case of a single relation the problem is easily shown to be equivalent to the conversion problem. Given
the recent results of Fredman and Khachiyan (1996) the single relation case is unlikely to be NP-complete.

2. We assume thal is not the constant 0 function for the remainder of this paper. The conversion problem is
trivial whenC is the constant O function sind2 is also the constant O function.

3. The assumption thdd — C in the hypothesis of Lemma 6 is necessary. It is not difficult to construct an
example without this assumption for which the first statement holds but not the second.
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