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Abstract. A single mechanism is responsible for three pathologies of induction algorithms: attribute selection
errors, overfitting, and oversearching. In each pathology, induction algorithms compare multiple items based on
scores from an evaluation function and select the item with the maximum score. We call this amultiple comparison
procedure(MCP). We analyze the statistical properties ofMCPsand show how failure to adjust for these properties
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1. Introduction

This paper defines and analyzesmultiple comparison procedures(MCPs).1 MCPsare ubiq-
uitous in induction algorithms as well as other AI algorithms.MCPshave important sta-
tistical properties, and failure to adjust for these properties produces three pathologies of
induction algorithms—attribute selection errors, overfitting, and oversearching.

The contribution of this work is to identify a single statistical mechanism underlying these
pathologies. All induction algorithms implicitly or explicitly make statistical inferences, but
nearly all make them incorrectly. Understanding why these inferences are incorrect explains
the pathologies themselves, identifies potential solutions, and explains why previously pro-
posed solutions have succeeded and failed.

2. An example

Before discussingMCPsin induction algorithms, let’s begin with an analogy:
Suppose you are deciding whether to hire an investment advisor. This person’s job will

be to predict whether the stock market will close up or down on any given day. You hope to
avoid hiring a charlatan—someone whose predictions are no better than chance. To evaluate
a candidate, you devise a test: the candidate will make predictions for the next 14 days,
and if 11 or more predictions are correct, you will conclude that the candidate is not a
charlatan. The threshold of 11 is chosen because, if there is a 0.50 probability of a charlatan
predicting correctly on any one day, there is only a 0.0287 probability that he or she will
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predict correctly on 11 or more of the next 14 days. Therefore, you reason, if a candidate
passes the eleven-or-more test, he probably is not a charlatan, and the chances of making a
mistake by hiring him are no more than 0.0287.

Applied to only a single candidate, your logic is impeccable. However, what if you gather
ten candidates, record each of their predictions for 14 days, select the candidate with largest
number of correct predictions, and then apply the test to that candidate? A test on just one
candidate has a 0.0287 chance of producing an error, but the overall probability of an error
depends on the number of candidates,n, and is 0.0287 only if n= 1. Whenn> 1, each
charlatan has a 0.0287 probability of passing the test and, in general, the probability of se-
lecting a charlatan is no greater than 1− (1− .0287)n. If n= 10, the probability is no greater
than 0.253. By not adjusting for the number of candidates, you underestimate by roughly
an order of magnitude the probability thatat least one of them(or alternatively,the best of
them) will pass the eleven-or-more test. Given a sufficiently large pool of charlatans, you
can practically guarantee that at least one of them will exceedanyperformance threshold,
but this doesn’t mean the candidate in question is performing better than chance.

3. Multiple comparison procedures and statistical inferences

Many induction algorithms make inferences that are directly analogous to deciding whether
to hire an investment advisor. We discuss three instances of such inferences in Section 4,
but to understand the analogy, let’s analyze the investment advisor example in more detail.

The decision to hire an investment advisor can be divided into two parts: selecting the
top-scoring candidate and inferring whether that candidate is performing better than chance.
Selecting the top-scoring candidate uses a multiple comparison procedure (MCP):

Multiple comparison procedure (MCP)

1. Generate n items—Findn candidates.
2. Calculate a score x for each itemusing an evaluation functionf and data sampleS—

Calculate a score for each candidate wheref is the number of correct predictions and
S is the past fourteen days of stock market activity. That is,xi = f (candidatei,S).

3. Select the item with the maximum score xmax—Select the candidate with the largest
number of correct predictions.

Any scorexi is inherently statistical because it is based on a particular data sampleS, and
different samples will produce different scores. In statistical terms,xi is a specific value of
a random variableXi . Xi is defined by the evaluation functionf , the item being evaluated,
the size of the sample, and the population from which data samples are drawn. For a given
f and item, the valuesxi for all possible samples of size|S| from a given population define
the sampling distributionof Xi . Similarly, xmax is a specific value of a random variable,
Xmax, but Xmax is defined byall then items examined, not just a single item. The sampling
distribution ofXmax depends onn, the number of items examined.

This difference betweenXi andXmax is critical to making two types of inferences based
on the scorexmax. The example illustrates the first type: usingxmax to infer whether the
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top-scoring candidate is a charlatan. To make this inference, we comparexmax to a sampling
distribution generated under the assumption that a single candidate is performing at a chance
level, that is, we comparexmax to the sampling distribution forXi . If xmax is very unlikely
to have been drawn from that sampling distribution, we can conclude that the advisor is
probably not a charlatan. As indicated in the example, using the sampling distribution ofXi

will generally underestimate the probability of selecting a charlatan. The correct sampling
distribution is forXmax, and that distribution depends onn.

The second type of inference can be illustrated by supposing that you and a friend are
both selecting investment advisors. You evaluate the performance of 10 candidates, and
your friend evaluates 30 candidates. Can you compare the score of your best candidate with
the score of your friend’s best candidate?

Suppose that all the candidates are charlatans, and thus no advisor is better than another.
What is the probability that each top-scoring candidate will predict correctly for 11 or
more of the 14 days? In your case, the probability is no greater than 0.253, but in your
friend’s case, the probability is more than twice that: 1− (1− .0287)30 = 0.583. Merely
by examining more candidates, your friend is more likely to find one with a high score for
the past 14 days, even though all the candidates perform at a chance level. In general, if the
number of candidates you evaluate (n1) differs from the number of candidates your friend
evaluates (n2), the performance of the top-scoring candidates (xmax1 andxmax2, respectively)
are not directly comparable because they are drawn from different sampling distributions.

This problem is particularly acute if we usexmax as an estimate of the true, long-run
score for the candidate. This long-run score is called thepopulationscore, andxmax is
generally a poor estimate of it. Suppose, as is quite likely, that your friend’s top-scoring
candidate passed our test and predicted correctly on 11 of the 14 days. Based on this sample
performance, we might infer that, on the population, he will predict correctly more than
three-quarters of the time (11/14= 0.786). We would be mistaken, however, because your
friend’s top-scoring candidate is a charlatan, just like all the others, and his actual probability
of a correct prediction is only 0.50.

Both types of inferences are inherently statistical. The first is a problem of statistical
hypothesis testing. We wish to answer a yes-no question about a candidate (“Are a candi-
date’s predictions better than chance?”) based on a sample score. The second is a problem
of parameter estimation. We wish to estimate the value of a population (i.e., long-run) score
based on a sample score so we can accurately compare candidates (“What proportion of the
time will a candidate predict correctly?”). In both cases, the scores are calculated from a data
sampleS so they are inherently statistical, regardless of whether statistical techniques are
explicitly used. In both cases, using the scorexmax introduces special problems of statistical
inference.

4. Induction algorithms and pathologies

The example of the investment advisor is directly relevant to induction algorithms. Many
algorithms useMCPsand then make implicit or explicit statistical inferences based on the
scorexmax. Rather than examining advisors and their stock predictions for a given two-week
period, induction algorithms examine models and their predictions for a given training set.
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In nearly all cases, induction algorithms do not adjust for the number of itemsn when
making inferences.2

For example, induction algorithms useMCPs to decide which of several variables to
use in a model component (e.g., which variable to use at a node in a decision tree), to
decide whether to add a component to an existing model (e.g., whether to add a term to a
linear regression equation), and to select among several different models. In each of these
contexts, empirical studies have revealed an associated pathology—attribute selection error,
overfitting, andoversearching, respectively. Each pathology occurs because of incorrect
statistical inferences given the scorexmax. In one case—overfitting—the inferences can be
viewed as statistical hypothesis tests. In the two other cases—attribute selection errors and
oversearching—the inferences can be viewed as parameter estimates.

Below, we formally describe these pathologies and highlight their essential similarities;
overfitting first, then attribute selection errors and oversearching. Proofs of the effects
described in this section are provided in Section 5 and in several appendices.

4.1. Overfitting: Errors in hypothesis tests

Errors in adding components to a model, usually calledoverfitting, are probably the best
known pathology of induction algorithms (Einhorn, 1972; Quinlan, 1987; Quinlan & Rivest,
1989; Mingers, 1989a; Weiss & Kulikowski, 1991; White & Liu, 1995; Oates & Jensen,
1997) In empirical studies, induction algorithms often add spurious components to models.
These components do not improve accuracy, and even reduce it, when models are tested on
new data samples.3

Overfitting is harmful for several reasons. First, overfitted models are incorrect; they
indicate that some variables are related when they are not. Some applications use induced
models to support additional reasoning (e.g., Brodley & Rissland, 1993), so correctness
can be a central issue. Second, overfitted models require more space to store, and more
computational resources to use, than models that do not contain unnecessary components.
Third, using an overfitted model can require the collection of unnecessary features for
each instance, increasing the cost and complexity of making predictions. For example,
medical diagnosis with an overfitted model would require unnecessary medical tests. Fourth,
overfitted models are more difficult to understand. The unnecessary components complicate
attempts to integrate induced models with existing knowledge derived from other sources,
and overfitting avoidance has sometimes been justified solely on the grounds of producing
comprehensible models (Quinlan, 1987). Finally, overfitted models can have lower accuracy
on new data than models that are not overfitted. This effect has been demonstrated with a
variety of domains and systems (e.g., Quinlan, 1987; Jensen, 1992).

Overfitting occurs when a multiple comparison procedure is applied to model compo-
nents. An algorithm generates a set ofn componentsC = {c1, c2, . . . , cn}, calculates a
scorexi for each component, and selects the componentcmax with the maximum score
xmax. Algorithms decide whether addingcmax to an existing modelm would improve the
model’s predictive accuracy.

Induction algorithms vary widely in how they generate and evaluate components, but all
algorithms that decide whether to addcmax to a model make implicit or explicit statistical
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hypothesis tests.4 One common form of the test asks: “Under the null hypothesis that a
componentc will not improve the predictive power of the modelm, what is the probability
of a score at least as large asx?” When this probability is very small, algorithms reject the
null hypothesis and infer that addingc will improve the predictive power ofm. This form of
the test is usuallyincorrectlyapplied to the componentcmax and its associated scorexmax.

The test is incorrect because it does not adjust forn, the number of components exam-
ined. To avoid overfitting, the test should ask: “Under the null hypothesis thatnoneof the
components inC will improve the predictive power of the modelm, what is the probability
of a maximum score at least as large asxmax?” Overfitting occurs because the wrong form
of the test is used. The algorithm makes an incorrect inference and addscmax even though
it does not improve the predictive power ofm.5

4.2. Attribute selection errors: Errors in parameter estimates

Some induction algorithms suffer from another pathology: a systematic, unwarranted pref-
erence for certain types of variables. For example, some decision tree algorithms are far
more likely to construct models that use discrete variables with many values (e.g., home
town) rather than discrete variables with relatively few values (e.g., gender). This behavior
occurs even though models that use the latter variables have consistently higher scores when
tested on new data samples. This pathology is sometimes calledattribute selection error.6

Attribute selection errors, particularly in tree-building systems, have been reported for more
than a decade (Quinlan, 1986; Quinlan, 1988; Quinlan, 1996; Mingers, 1989b; Fayyad &
Irani, 1992; Liu & White, 1994). Such errors are harmful because the resulting models have
consistently lower accuracy on new data than other models considered and rejected by an
algorithm.

Attribute selection errors result from how induction algorithms construct model com-
ponents. Examples of model components include nodes in decision trees, clauses in rules,
nodes in connectionist networks, and terms in regression equations. In general, a component
consists of a variablev and a settingt . The variablev is either drawn directly from the data
sample or constructed from a combination of other variables. A settingt defines a mapping
from v’s values to a component’s output.

In decision trees, a setting maps a variable’s values to particular branches of a sub-
tree. For example, figure 1(a) shows a node in a decision tree. The setting of the node
({Green,Brown} | {Blue}) maps values of the variableeye colorto either the left or right
branches of the node. Similarly, a setting in a rule maps a variable’s values to a clause’s
truth value. Figure 1(b) shows a clause within a rule. The setting({Green,Brown}) of the
clause in bold maps values ofeye colorto either TRUE or FALSE.

Many algorithms select the setting of a component by using anMCPto find the best setting
for each variable in a sample. For simplicity, we will examine the two-variable case, and
later generalize tok variables. For two variables in a data sampleS, an algorithm generates
n1 settingsT = {t1, t2, . . . , tn1} for the first variable andn2 settingsT = {t1, t2, . . . , tn2} for
the second variable. For each variable, the algorithm then calculates a score for each setting,
and selects the settingtmax with the maximum scorexmax. This produces two settingstmax1
andtmax2 with scoresxmax1 andxmax2, respectively.
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Figure 1. Settings map between a variable’s values and a component’s output.

Ideally, we would like the two maximum scoresxmax1 and xmax2 to be a good esti-
mates of their respective population scoresψ∗1 andψ∗2. We denote the population score
of the item selected by anMCP asψ∗ rather thanψmax because the latter impliesψmax =
max(ψ1, ψ2, . . . , ψn), an incorrect interpretation.ψ∗ is the population score of the item
with the maximum sample score, not necessarily the maximum population score. Ifxmax1
and xmax2 are good estimates of the two population scoresψ∗1 andψ∗2, then we could
determine which of the two variables produces the best overall component. In the terms of
classical statistical inference, we wish to produce accurate estimates of two parameters—the
population scoresψ∗1 andψ∗2 of the settings selected by the twoMCPs.

Unfortunately, the most obvious estimates,xmax1 andxmax2, are biased and, ifn1 6= n2,
they are not directly comparable. To place the scores on an equal footing, each score should
be adjusted for its respectiven, the number of settings. Otherwise, scores resulting from
variables with largen will be incorrectly favored over scores resulting from variables with
smalln.7 This effect generalizes tok variables, where in generaln1 6= n2 6= n3 · · · 6= nk.

This is directly analogous to the second part of the investment advisor example. Recall
that you examined the performance of only 10 advisors while your friend examined the per-
formance of 30 advisors. All advisors perform at a chance level, but your friend was far more
likely to find a high-scoring advisor merely because he examined more advisors. Similarly,
an induction algorithm is more likely to construct a high-scoring component when the num-
ber of settingsn is large. Induction algorithms that directly comparexmax1, xmax2, . . . , xmaxk
are making the same mistake as we would if we directly compared your top-scoring advisor
with your friend’s top-scorer.

4.3. Oversearching: Errors in parameter estimates

A third pathology was recently revealed by several studies (Murthy & Salzberg, 1995;
Quinlan & Cameron-Jones, 1995) examining the behavior of induction algorithms that



MULTIPLE COMPARISONS IN INDUCTION ALGORITHMS 315

efficiently search extremely large spaces of models. Paradoxically, these algorithms pro-
duce models that are often less accurate on new data than models produced by algorithms
that search only a fraction of the same space (Dietterich, 1995). This pathology, termed
oversearching, is harmful because the resulting models have lower accuracy, and because
constructing such models uses more computational resources.

Algorithms that suffer from oversearching examine progressively larger spaces of models.
Initially, an algorithm examines a small space of modelsM1 = {m1,m2, . . . ,mn1} and
selects the model with the maximum score. Then, it expands the search to a larger space
of modelsM2 = {m1,m2, . . . ,mn1, . . . ,mn2}, and selects the model with the maximum
score. Expansion continues until a fixed resource bound is reached or until some predefined
class of models has been searched exhaustively.

Searching progressively larger spaces of models involves several applications of a mul-
tiple comparison procedure. As in attribute selection errors, the relevant inference is which
of k MCPsproduces the item with the best population score given the sample scores
xmax1, xmax2, . . . , xmaxk . Becausen1 < n2 · · · < nk, the scoresxmax1, xmax2, . . . , xmaxk are
not directly comparable. Each score should be adjusted for the number of models exam-
ined by eachMCP. Otherwise, scores resulting fromMCPswith largen will be incorrectly
favored over scores resulting fromMCPswith smalln.

5. Individual and maximum scores

The validity of both types of statistical inferences made by induction algorithms—hypothesis
tests and parameter estimates—depend on using the correct sampling distribution. The in-
vestment advisor example sketched why the sampling distribution ofXmax depends onn,
the number of items examined by anMCP. In this section, we provide more general proofs
of the effect ofn on the sampling distribution ofXmax, and how that distribution compares
to the sampling distribution of an individual scoreXi .

5.1. The sampling distribution of the maximum

Statistical hypothesis tests use sampling distributions directly. By comparing a scorex to
the sampling distribution ofX derived under the null hypothesisH0, an algorithm can
estimatePr(X ≥ x | H0). Alternatively, an algorithm can use the sampling distribution to
derive acritical value xc such thatPr(X ≥ xc | H0) ≤ α, whereα is a given probability of
incorrectly rejecting the null hypothesis.

Even when induction algorithms do not explicitly test statistical hypotheses (and most do
not), they do so implicitly. Nearly all algorithms require that a component’s score exceed
a given threshold before the algorithm will include the component in the final model. A
threshold serves the same function as a critical value, and just like a critical value, the
threshold should be set based on a sampling distribution. If it is not, the probabilistic
interpretation of exceeding a threshold is unknown.

The sampling distribution ofXmax (or, alternatively, the correct threshold value) depends
on n, the number of items examined by anMCP. For simplicity and concreteness, assume
the scoresX1 and X2 have specific valuesx1 and x2 drawn from independent uniform
distributions of integers(0 . . .6). The distribution ofXmax is shown in Table 1. Each entry
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Table 1. The joint distribution of the maximum of two scores, each of which takes integer values (0...6).

X1

X2 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 1 2 3 4 5 6

2 2 2 2 3 4 5 6

3 3 3 3 3 4 5 6

4 4 4 4 4 4 5 6

5 5 5 5 5 5 5 6

6 6 6 6 6 6 6 6

in the table represents a joint event with the resulting maximum score; for example,(X1 =
3 ∧ X2 = 4) has the result,max(x1, x2) = 4. BecauseX1 and X2 are independent and
uniform, every joint event has the same probability, 1/49, but the probability of a given
maximum score is generally higher; for example,Pr(max(x1, x2) = 6) = 13/49.

For independent and identically distributed (i.i.d.) scoresX1, X2, . . . , Xn, it is easy to
specify the relationship between cumulative probabilities of individual scores and cumula-
tive probabilities of maximum scores:

If Pr(Xi < x) = q, thenPr(Xmax < x) = qn. (1)

For example, in Table 1,Pr(X1 < 4) = 4/7 (andPr(X2 < 4) is identical, becauseX1 and
X2 are i.i.d.), butPr(max(x1, x2) < 4) = (4/7)2 = 16/49. It is also useful to look at the
upper tail of the distribution of the maximum:

If Pr(Xi ≥ x) = p, thenPr(Xmax ≥ x) = 1− (1− p)n. (2)

These expressions and the distribution in Table 1 make clear that the distribution of
any individual scoreXi from i.i.d. scoresX1, X2, . . . , Xn underestimates the distribution
of Xmax. Pr(Xi ≥ x) underestimatesPr(Xmax ≥ x) for all valuesx if the distributions
are continuous. Said differently, the distribution ofXmax has a heavier upper tail than the
distribution ofXi .

This disparity increases withn, the number of scores. Consider three scores distributed
in the same way as the two in Table 1. Then,

Pr(Xi ≥ 4) = 3/7= 0.43

Pr(max(x1, x2, x3) ≥ 4) = 1− (1− 3/7)3 = 0.81.

Pr(Xi ≥ 4) underestimatesPr(Xmax ≥ 4) by almost half its value.
This effect can be demonstrated empirically. We draw 30,000 data samples of 250 in-

stances from a population with a single binary classification variable and 30 binary attribute
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variables. All variables are independent and uniformly distributed. For each attribute, we
calculate a score indicating how well it predicts the classification, using a chi-square statistic
as an evaluation function. This produces values of the scoresX1, X2, . . . , X30 where each
Xi is distributed as chi-square.

For each of the 30,000 samples, we findxmax. The maximum score is found for the
first ten scores (e.g.,xmax = max(x1, x2, . . . , x10)) as well as all thirty. The distributions
of these 30,000 maximum scores approximate the sampling distributions forXmax when
n = 10, andn = 30.

Figure 2 shows how the distribution of a single score (n = 1) compares to the distributions
of the maximum scores forn= 10 and 30. Forn> 1, the sampling distribution ofXmax

diverges from the sampling distribution ofXi (n= 1). The degree of divergence increases
with n. In practice, induction algorithms regularly useMCPs for which n> 100 or even
n> 1000. The number of itemsn considered by an MCP strongly affects the sampling

Figure 2. Distributions ofXmax for n = 1, 10, and 30.
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distribution for Xmax. Hypothesis tests will be inaccurate if they compare sample scores
xmax to the sampling distribution forXi rather thanXmax.

5.2. The maximum score and biased estimators

Poor parameter estimates are responsible for the pathologies of attribute selection error
and oversearching. Many induction algorithms use the sample scorexmax to estimateψ∗,
the population score of the item with the maximum sample score. One way to examine
how well xmax estimatesψ∗ is to compare the expected value ofXmax, E(Xmax), to ψ∗.
In statistical terms, an estimatorX of a population parameterψ is said to be unbiased if
E(X) = ψ . Below, we establish thatE(Xi ) < E(Xmax) for both discrete and continuous
random variables. Then, we use this relationship to show thatXmax is a biased estimator of
ψ∗.

Theorem. For discrete random variables X1, X2, . . . , Xn, where all xi are scores and
xmax= max(x1, x2, . . . , xn),

E(Xi ) ≤ E(Xmax).

Proof: The expected value of the discrete random variableX is defined as the sum, over
all possible valuesx, of the valuex multiplied by its probabilityp(x):

E(X) =
∑

x

xp(x).

For scores, each possible valuex is derived from one or more samplesS. Each sample
produces only a single valuex, although many samples may produce the same valuex.
Because of this many-to-one mapping from samplesS to valuesx, the expected value of a
discrete random variable can equivalently be defined over all possible samplesS

E(X) =
∑
S

x(S)p(S)

wherex(S) is the value ofx for a given sampleS.
Given that the functionmax selects among the valuesx1, x2, . . . , xn, for any scorexi ,

xi ≤ max(x1, x2, . . . , xn), where 1≤ i ≤ n. More succinctly,xi ≤ xmax. For a given
population,xi and xmax are summed across the same samples, and those samples have
identical probability distributions. Therefore,

E(Xi ) ≤ E(Xmax).

If for one or more samples,xi < xmax, then

E(Xi ) < E(Xmax). 2

This can also be proven for continuous random variables:
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Table 2. Expected value of chi-square.

n 1 10 30

E(Xmax) 0.983 3.728 5.501

Theorem. For continuous random variables X1, X2, . . . , Xn,where all xi are scores and
xmax= max(x1, x2, . . . , xn),

E(Xi ) ≤ E(Xmax).

Proof: For all non-negative valuesx andxmax= max(x1, x2, . . . xn)

Pr(Xi > x) ≤ Pr(Xmax > x).

Integrating both sides∫ ∞
0

Pr(X1 > x) dx ≤
∫ ∞

0
Pr(Xmax > x) dx. (3)

A well-known theorem of probability states that
∫∞

0 Pr(X > x) dx= E(X) (Ross, 1984).
So,

E(Xi ) ≤ E(Xmax).

If, for one or more samples,xi < xmax, then

E(Xi ) < E(Xmax). 2

As before, this effect can be demonstrated empirically. Based on the distributions shown
in figure 2, we can calculate the expected value for each set of 30,000 scores. Table 2 shows
how the expected value of the maximum score varies withn.

Given what we now know about the expected value ofXmax, we can prove thatXmax is
a biased estimator ofψ∗.

Theorem. Given a sample S and a correspondingψ∗, the population score of the item
with the maximum sample score,

ψ∗ ≤ E(Xmax)

for n > 1. That is, Xmax is a biased estimator of the population scoreψ∗.

Proof: If every Xi is an unbiased estimator of the population scoreψi , then

ψi = E(Xi ).
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As previously proven,E(Xi ) ≤ E(Xmax). Thus, for allψi

ψi ≤ E(Xmax).

If, for one or more samples,xi < xmax, then

ψi < E(Xmax).

That is,Xmax is a positively biased estimator of anyψi , including the population score
ψ∗ of the item with the maximum sample score, so

ψ∗ < E(Xmax).

In words,Xmax is a biased estimator ofψ∗. 2

5.3. The effects of n on bias

We have shown thatXmax is a biased estimator ofψ∗. However, the descriptions of attribute
selection errors and oversearching in Section 4 made an additional claim: that the degree
of bias increases withn, making the scoresXmaxa andXmaxb incommensurable ifna 6= nb.
That is:

E(Xmaxa) < E(Xmaxb) for na < nb.

Proofs for two different cases are provided in appendix A.
To summarize this entire section, the sampling distribution ofXmax differs from that of

Xi such that for allx, Pr(Xmax ≥ x) > Pr(Xi ≥ x). In addition,Xmax is a biased estimator
of ψ∗, the population score of the item with the maximum sample score. The degree of bias
increases withn, the number of items examined by anMCP.

6. Influences on the maximum score

Several factors influence the degree to which the sampling distribution ofXmaxdiverges from
the sampling distribution ofXi . For convenience, we defineE = Pr(Xmax ≥ x)−Pr(Xi ≥
x). Informally, E indicates the probability of error if one assumes the distributions ofXi

andXmax are equal. IncreasingE increases the probability of error. We have already shown
that, if all other things are equal,E increases withn. In this section, we examine three
other factors.E increases as: 1)X1, X2, . . . , Xn approach independence; 2) sample size|S|
decreases; and 3)E(X1), E(X2), . . . , E(Xn) approach equality.

6.1. Independence

Two random variables,X andY, are independent if knowing the value of one variable tells
you nothing about the distribution of the other. Discrete random variables are independent
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Figure 3. Positive correlation affectsPr(Xmax ≥ x).

if and only if, for all x andy, Pr(x, y) = Pr(x)Pr(y). Continuous random variables are
independent if and only if, for allx andy, Pr(X < x,Y < y) = Pr(X < x)Pr(Y < y)
(Ross, 1984).

In practice,MCPsoften examine items whose scores are not independent. For example,
decision tree algorithms examine multiple partitions of a continuous variable (e.g., the
partitionsB< 1, B< 2, B< 3, andB< 4). These partitions are certain to have dependent
scores because they define related partitions. In addition, model components can have
dependent scores when they use variables that are intrinsically dependent (e.g., height and
weight).

We will prove that one form of dependence—positive correlation between scores—
decreasesE . To understand the effect informally, consider the effect of positive correlation
shown in figure 3. The figure shows three possible joint distributions ofX1 andX2. Each
point in a graph represents a joint event(x1, x2). The scorex is marked on each variable’s
axis. The points in the shaded region of each figure indicate the events whereXmax ≥ x.

In figure 3(a),X1 and X2 are independent. Because of the location ofx, Pr(Xi ≥
x)= 0.50. As indicated by the points in the shaded region,Pr(Xmax ≥ x)= 0.75, making
E = 0.25. Figure 3(b) shows the effect of strong positive correlation betweenX1 and X2.
Pr(Xmax ≥ x) is only slightly larger than 0.50, and thereforeE is nearer to zero. In
figure 3(c), the positive correlation of the scores is perfect. The distribution ofXmax is
identical to the distribution ofXi , Pr(Xmax ≥ x)=Pr(Xi ≥ x) and thusE = 0.

Appendix B contains a proof that, for continuous random variablesX1, X2, X3, andX4,

Ea > Eb.

for all values x where E =Pr(Xmax≥ x)−Pr(Xi ≥ x), xmaxa =max(x1, x2), xmaxb =
max(x3, x4), X1, X2, andX3 are i.i.d.,X1, X2, andX4 are i.i.d., butX3 andX4 are posi-
tively correlated.

6.2. Sample size

The size of the sampleS is another determinant ofE . Decreasing sample size increases
the standard deviation ofXi , increasing the probability of values far fromE(Xi ), thus
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Figure 4. Standard error affectsPr(Xmax ≥ x).

increasingPr(Xmax ≥ x), and thus increasingE . Xi is a sampling distribution of the score
xi , and thus the standard deviation ofXi is known as thestandard errorof the scorexi ,
denotedσxi . As the size ofS approaches the size of the entire population,σxi approaches
zero.

In practice, induction algorithms often calculate scores based on small samples. For ex-
ample, tree-building algorithms systematically decrease sample size by repeatedly splitting
the original data sample. Starting with a sample size of 1000, a tree with a branching factor
of three produces leaves with fewer than 15 instances after only four levels. Lower levels
of decision trees will thus have much largerE than higher levels.

We will show that increasing theσxi increasesE , for all x such thatPr(Xi ≥ x) 6= 0.50.
This latter restriction onx holds true for nearly all situations of interest—we are nearly
always interested in cases wherePr(Xi ≥ x) is very small, not where this probability is
near 0.5.

Consider the graphical example in figure 4. The standard errorsσx1 andσx2 are largest in
figure 4(a) wherePr(Xi ≥ x) ≈ 0.50,Pr(Xmax ≥ x) ≈ 0.75, andE ≈ 0.25. However, as
the standard errors decrease (e.g., figure 4(c)) these values all tend toward zero.

Appendix C gives a proof that:

Ea > Eb

whereE =Pr(Xmax≥ x)−Pr(Xi ≥ x), xmaxa =max(x1, x2), xmaxb =max(x3, x4), σx1 =
σx2 >σx3 = σx4, X1 . . . X4 are otherwise identically and independently distributed.

6.3. Expected value

Previous sections assumed that the expected values of individual scoresX1, X2, . . . , Xn

were equal, an assumption that is often incorrect. For example, if we were constructing
model components in the domain of medical diagnosis, expected values would be equal
only if all diagnostic tests and symptoms were equally useful in predicting disease. In
reality, the utility of diagnostic signs varies greatly, and a similar situation prevails in most
induction problems—the scores for different models, components, and settings rarely have
identical expected values.
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Figure 5. Expected Value affectsE .

For convenience, we defineδ= E(X1)− E(X2) as the difference between the expected
values of two scoresX1 and X2. We will prove thatE varies inversely withδ. Fig-
ure 5 shows this effect graphically. In figure 5(a),E(X1)= E(X2), P(X1≥ x)= 0.50 and
P(Xmax≥ x)= 0.75 (the shaded portion of the figure), makingE = 0.25. In figure 5(c),
E(X1)À E(X2) makingP(X1≥ x)≈ P(Xmax≥ x)≈ 1.0 andE ≈ 0.

In appendix D, we prove that:

Ea > Eb

whereE = Pr(Xmax ≥ x) − Pr(X1 ≥ x), xmaxa = max(x1, x2), xmaxb = max(x3, x4),
E(X1) = E(X2) = E(X3) < E(X4), X1 . . . X4 are otherwise identically and indepen-
dently distributed.

7. Solutions

Several methods can compensate for the effects ofMCPsand allow valid statistical infer-
ences about the scorexmax. Four are covered below: 1) using a new data sample to derive
scores for the item with the maximum sample score; 2) using cross-validation to derive
scores; 3) constructing a reference distribution forxmax by randomization; or 4) modifying
the results of using a standard reference distribution by a Bonferroni adjustment. The first
two methods calculate a score that can be treated as an individual scoreXi rather than a
maximum scoreXmax. The last two methods create a sampling distribution appropriate to
Xmax.

7.1. New data sample

The simplest method to adjust for the effects of anMCP is to evaluate items on a new data
sampleSnew disjoint from the original sampleS. Suppose anMCP selects the component
c3 = cmax using the data sampleS. Valid statistical inferences aboutc3 that useS must
adjust forn. However, inferences aboutc3 that are based on a new data sampleSnew need not
consider howc3 was selected usingS, as long asSnew shares no instances withS. In the case
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of the investment advisor analogy, one could test the best candidate on 14 additional days—
a new sample. If that candidate passes the eleven-or-more test based on the new sample,
then the probability of incorrectly rejecting the hypothesis that he or she is a charlatan is
not greater than 0.0287.

Several induction algorithms (e.g., Quinlan, 1987; Jensen, 1992) use new data to com-
pensate for the effects ofMCPs. They partition the training sample into two samples, use
one sample forMCPs, and use the other for hypothesis tests and parameter estimates for
the resulting items.

7.2. Cross-validation

Cross-validation is a more sophisticated method for obtaining scores based on disjoint data
samples (Kohavi, 1995; Cohen, 1995; Weiss & Kulikowski, 1991). Cross-validation divides
a sampleS, with N instances, intok disjoint sets,Si , each of which containsN/k instances.
Then, for 1≤ i ≤ k, anMCP selects maximum-scoring items based on the sampleS−Si

and those items are evaluated on the sampleSi . This producesk different nearly unbiased
scores that can be combined to produce a single score (e.g., by averaging).

Cross-validation compensates for the effects ofMCPsand partially avoids the highly
variable results obtained by using only a single partition of the data. However, the method
is computationally-intensive (typically,k = 10) and its results can still be highly variable
(Kohavi, 1995).

7.3. Randomization

Randomization (Cohen, 1995; Edgington, 1995; Jensen, 1992; Noreen, 1989) can be used
to construct an empirical sampling distribution. Each iteration of randomization creates a
sampleS∗i that is consistent with the null hypothesis. TheMCP used to obtain the actual
scorexmax is repeated onS∗i , producing a valuex∗maxi from the sampling distribution of
Xmax under the null hypothesis. A large number of iterations produces an approximation to
the complete sampling distribution ofXmax.

For example, consider the problem of finding whether any of ten binary variablesA1,

A2, . . . , A10 is predictive of another binary variableA0. The most predictive variable is
the one most highly correlated withA0 based on a sampleS. Call its correlationxmax. An
hypothesis test requires the sampling distribution ofXmax under the null hypothesis thatA0

is uncorrelated with any of the ten variables. Randomization can produce an approximate
sampling distribution by generating 1000 randomized samples and finding the correlation
of the most predictive variable in each. Each randomized sample reproduces the values of
A1, A2, . . . , An but randomly reassigns the values ofA0 with respect to the values of the
other variables, thus enforcing the null hypothesis. Ifxmax exceeds a significant fraction
of the correlations from the randomized samples (e.g., 95%), we infer it is predictive of
A0.

Randomization tests have several desirable features. They produce reference distributions
appropriate forXmax rather than onlyXi . They do not require that the individual scores
examined by anMCP be independent and identically distributed (requirements of another
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technique, Bonferroni adjustment, discussed below). Finally, randomization tests can create
a reference distribution for any evaluation functionf , not just those for which reference
distributions have been analytically derived.

Unfortunately, randomization tests are computationally expensive, requiring evaluation
of k randomized samples. Values ofk are typically greater than 100, and the resolution of a
randomization test depends onk. If k < 100, it is certainly impossible to make distinctions
among probability values that differ by less than 1%, andkÀ 100 would be necessary
before such fine distinctions could be made reliably.

7.4. Bonferroni adjustment

Bonferroni adjustment converts probability values for a single scoreXi into probability
values forXmax. One basic form of the Bonferroni adjustment was given in Eq. 2. For
scoresXi that are i.i.d.:

If Pr(Xi ≥ x) = p, thenPr(Xmax ≥ x) = 1− (1− p)n. (4)

If we setx equal to an actual maximum score calculated for a particular sample, and
determinep based on the sampling distribution for a single scoreXi , then Eq. 4 can be
used to determinePr(Xmax ≥ x) under the null hypothesis. Consider an algorithm that
generates 50 models, evaluates each, and selects the model with the maximum score. If
the evaluation function is theG statistic and the maximum value is 7.88, thenPr(Xi ≥
7.88) = 0.005 using a chi-square distribution with 1 degree of freedom. The algorithm can
use the Bonferroni adjustment to compensate for evaluating 50 models and conclude that
Pr(Xmax ≥ 7.88) = 1− (1− 0.005)50 = 0.222.

Bonferroni adjustment imposes almost no additional computational burden to adjust for
the effects ofMCPs, but Eq. 4 only holds if the scoresXi are mutually independent and
identically distributed. Related adjustments exist for specific distributions and correlational
structures (Miller, 1981; Hand & Taylor, 1987; Cohen, 1995). However, the score distri-
butions and correlation must still be known in order to correctly adjust for the effects of
MCPs.

Figure 6 illustrates how varying degrees of dependence among scores affects Bonfer-
roni adjustment, randomization, and cross-validation. The experiment is similar to that
which produced figure 2. We create random data samples, each with a binary classifi-
cation variable and 20 attribute variables and with varying levels of dependence among
the attributes (measured by median pairwise correlation). We conduct 500 trials for each
level of dependence among the attributes. Each trial uses four methods to infer whether
the correlation between the classification and the best attribute is significant at the 10%
level—a significance test using the distribution of the single scoreXi , cross-validation, ran-
domization, and a Bonferroni-adjusted test. They-axis indicates the percentage of trials in
which a method inferred a significant relationship. Ideally, this empirical probability should
be 0.10 across all values of median pairwise correlation. Using the distribution of a single
score clearly fails except when the attributes exhibit complete dependence. The Bonferroni
adjusted estimate is correct for low values of attribute dependence, but not for high values.
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Figure 6. How different methods compensate for dependence among scores.

Cross-validation and randomization both accurately adjust for the number of comparisons
n over the entire range of attribute dependence.

8. Previous work

Several previous theories and empirical findings in machine learning and statistics implicate
the statistical properties of multiple comparison procedures as the cause of pathologies in
induction algorithms. Our work provides explicit proof of some prior qualitative explana-
tions. For example, overfitting, oversearching, and attribute selection errors have often been
attributed to “fluke” relationships. The statistical properties ofMCPsexplain the frequency
of those flukes and indicate effective solutions. In other cases, previous work lends support
to the notion thatMCPshave an important influence on the credibility of induced models.
For example, the Vapnik-Chervonenkis dimension and minimum description length princi-
ple point toward the number of comparisonsn as an important factor in overfitting. Finally,
our explanation of the mechanism behind overfitting, oversearching, and attribute selection
errors is enhanced by looking at two related concepts: overfitting avoidance as bias and the
bias-variance tradeoff. Each of these points is elaborated below.

8.1. Multiple comparisons

A large statistical literature examines the effects of multiple comparisons, stemming from
the original work of David Duncan, Henry Scheff´e, and John Tukey between 1947 and
1955 (for an excellent review, see Miller (1981)). Much of this literature is concerned with
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experimental design, rather than the design of induction algorithms. Some work in machine
learning (Gascuel & Caraux, 1992; Feelders & Verkooijen, 1996; Salzberg, 1997) also
pursues this former course, correctly noting the effect of multiple comparisons on empirical
evaluation of learning algorithms.

Only a few induction algorithms explicitly compensate for multiple comparisons. CHAID

(Kass, 1980; Kass, 1975), FIRM (based on work by Hawkins & Kass (1982)), andTBA (Jensen
& Schmill, 1997) use Bonferroni adjustment to compensate for multiple comparisons during
tree construction. INDUCE (Gaines, 1989) uses a Bonferroni adjustment to compensate
for comparing multiple rules. IRT (Jensen, 1991; Jensen, 1992) uses randomization tests
to compensate for comparing multiple classification rules. CART (Breiman et al., 1984)
implicitly adjusts for multiple comparisons using cross-validation.

The effects of multiple comparisons has led some researchers to reject statistical hypoth-
esis tests entirely. For example, some early tree-building algorithms such asAID completely
dispense with significance tests. According to the program’s authors (Morgan & Andrews,
1973; Sonquist, Baker, & Morgan, 1971),AID’s multiple comparisons render statistical sig-
nificance tests useless. Similarly, Quinlan (Quinlan, 1987) rejects conventional significance
tests on empirical grounds in favor of error-based pruning, the current approach used inC4.5.

Despite this infrequent use of statistical tests and the lack of attention to multiple compar-
isons, the qualitative explanations for pathologies of induction algorithms often have statisti-
cal overtones. Explanations of overfitting (e.g., Mingers, 1989a) frequently cite the problem
of fitting models to “noise” or random variation. As noted above, explanations of oversearch-
ing (Murthy & Salzberg, 1995; Quinlan & Cameron-Jones, 1995) often cite “fluke” models
that are more likely to be discovered with extensive search. Many explanations of attribute
selection errors reference the increased likelihood of finding spuriously high scores when
components use variables with many possible discrete values (e.g., Mingers, 1989b). Few
of these explanations are more than qualitative, and even fewer include theoretical proofs.

8.2. Model complexity and credibility

Some of the work that attempts to provide a theoretical basis for avoiding pathologies,
particular overfitting, focuses on tradeoffs between the complexity and the accuracy of a
model. For example, some algorithms explicitly consider both complexity and accuracy
when evaluating model components (Iba, Wogulis, & Langley, 1988). Cost-complexity
pruning, a technique employed in theCART algorithm (Breiman et al., 1984), attempts to
find a near-optimal complexity for a given tree through cross-validation.

Several more formal treatments consider model complexity as a way to avoid overfitting.
One such treatment, the Minimum Description Length (MDL) principle, formally balances
accuracy and complexity (Quinlan & Rivest, 1989). MDL characterizes data samples and
models by the number of bits required to encode them. The total information in a data
sampleS is described as the sum of the information necessary to encode a model and to
encode any exceptions to the model remaining inS. The best model results in the smallest
total “description length” for the data, that is, the smallest sum of model description and
description of the remaining data. MDL has been applied to avoid overfitting (Quinlan &
Rivest, 1989) and attribute selection errors (Quinlan, 1996) in decision trees.
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The Vapnik-Chervonenkis (VC) dimension also links complexity and overfitting. It char-
acterizes a relationship between an hypothesis spaceH and an instance spaceX (Blumer
et al., 1989). If at least one member ofH can distinguish between any possible dichotomy
of X, thenX is said to be “shattered” byH . The VC dimension ofH is equal to the largest
number of instances inX that can be shattered byH . Thus, if an induction algorithm can
select any member ofH as its final model, and the training sampleS is smaller than the VC
dimension, then it is possible to achieve perfect classification even if there is no relationship
between the (binary) classification variable and the other variables. In theory, at least, the
VC dimension compensates for multiple comparisons by explicitly considering the ability
of an hypothesis space to perfectly classify an arbitrary assignment of class labels to an
instance space. However, understanding VC dimension provides little guidance about how
to construct realistic learning algorithms.

Despite this substantial body of research on complexity, there exists little theory for why
complexity and overfitting should be related. A notable exception is Pearl’s 1978 paper “On
the connection between the complexity and credibility of inferred models.” Pearl explains
why complexity should be related to accuracy—the complexity of the final model is often
related to the number of intermediate models (or components) that have been compared
during its construction. Comparing many models, in turn, makes overfitting more likely.
Pearl’s analysis shows persuasively that complexity is merely a surrogate for multiple
comparisons.

Like Pearl, it is probable that some researchers understand that complexity is a mere
surrogate for multiple comparisons, but it is easy to confuse the two. Complexity is often
a poor indicator of the number of comparisons. First, algorithms can search different pro-
portions of the space of possible components. Some algorithms might search exhaustively,
while others employ stronga priori search biases. Both could construct models of the same
complexity, but with vast differences in the number of comparisons. Work in oversearching
demonstrates precisely this effect. In many cases, extensive search produces models that are
less accurate and equally complex as models produced by less extensive search. Second,
the relationship between complexity and number of comparisons depends on the number of
variables in the data sampleS. If S contains many variables, an algorithm might evaluate
thousands of components in order to construct a relatively simple final model. IfS contains
only a few variables, the same algorithm would have to evaluate far fewer components to
construct a final model of the same complexity. The final models constructed in the two
cases would be of the same complexity, but would have resulted from radically different
numbers of comparisons.

Intriguingly, while the VC dimension and MDL are usually cast as defining model com-
plexity, both are more closely related to the number of comparisons made by an induction
algorithm. Thus, Pearl’s insights, the VC dimension, and the MDL principle all point toward
multiple comparisons as an important factor in overfitting.

8.3. Overfitting avoidance as bias

Schaffer (Schaffer, 1993) characterizes overfitting avoidance as a learning bias—that is, a
method of preferring one model over another whose appropriateness is domain specific.
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This view has been extended to more extreme forms, referred to as a “law of generalization
performance” or a “no free lunch (NFL) theorem” (Schaffer, 1994; Wolpert, 1992, 1994).
This work holds that any gain in accuracy obtained by avoiding overfitting (or by any
other bias) in one domain will necessarily be offset by reduced accuracy in other domains.
Thus, over the course of many induction problems, no overfitting avoidance technique will
produce a net gain in accuracy. These theories are still highly controversial, and they rest on
two unrealistic assumptions: 1) that estimates of true accuracy should exclude all instances
in the sampleS; and 2) that all possible assignments of class labels are equally likely,
effectively making generalization impossible (Rao, Gordon, & Spears, 1995).

Regardless of the larger claims about generalization accuracy, the work on overfitting
avoidance as bias (Schaffer (1993) as well as earlier work in this area such as Fisher &
Schlimmer (1988)) indicates that avoiding overfitting will not invariably improve accu-
racy. Attempts to avoid overfitting will decrease accuracy on new data in some situations.
However, the work of Schaffer and others does little to identify the conditions that lead to
such situations. In contrast, understanding the statistical properties ofMCPsidentifies when
overfitting, attribute selection errors, and oversearching will be most severe, complementing
the work of Schaffer and others. For example, Section 6 shows that these pathologies will
be most severe when induction algorithms evaluate items whose scores are independent,
when algorithms use small data samples to produce those scores, and when the population
scores of items are most similar.

8.4. Bias-variance analysis

Several recent analyses of induction algorithms (Geman, Bienenstock, & Doursat, 1992;
Kohavi & Wolpert, 1996) have used a characterization of prediction errors that appeared
originally in the statistics literature. In the context of linear regression, total error is de-
fined as the sum of intrinsic measurement error and errors due to two other factors:
bias and variance.Bias errorsstem from systematic errors made by the model. In re-
gression, these typically arise from incorrectly specified models—models with missing
components, extra components, or an incorrect functional form.Variance errorsstem from
random errors made by the model. In regression, these typically arise from errors in para-
meter estimation—variance in the estimates of the coefficients for variables in the regression
equation.

MCPscan produce both bias and variance errors. Bias errors can increase because of
attribute selection errors and oversearching. For example, if some components of a de-
cision tree are systematically favored (e.g., because the attribute used by the node has a
very large number of discrete values), then suboptimal components will be added to the
model. Models with suboptimal components are more likely to be incorrectly specified, thus
introducing bias errors. Variance errors can also increase because of overfitting. For exam-
ple, decision trees that are overly complex can reduce the number of instances available
at a leaf to estimate the correct label. This will increase the variance of parameter esti-
mates, thus introducing variance errors. Bias-variance analysis complements our analysis
of MCPs, by characterizing the errors introduced by attribute selection errors, overfitting,
and oversearching.
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9. Implications

The statistical properties of multiple comparison procedures depend strongly onn, the num-
ber of items compared. These statistical properties affect the inferences of every induction
algorithm that generates and tests models or model components. Unless they adjust for
n, algorithms will add useless components to models, and they will systematically prefer
suboptimal models and model components.

While the effects of multiple comparisons on statistical experiments are well known, their
effects on induction algorithms have not been well explored. We have tried to address this gap
through theoretical proofs and empirical demonstrations that relate multiple comparisons
to common procedures in inductive learning. We have also surveyed four approaches to
adjusting for multiple comparisons: new data, cross-validation, randomization tests, and
Bonferroni adjustment.

In addition to the practical implications, however, the properties of multiple comparisons
provide a single causal explanation for three phenomena that have been widely observed
in induction algorithms: overfitting, attribute selection errors, and oversearching. Prior re-
search documents situations where these pathologies occur, we provide a quantitative and
causal explanation of why they occur.

Appendix A: The effects ofn on bias

Theorem.

E
(
Xmaxa

)
< E

(
Xmaxb

)
for na < nb.

Proof:

Case 1. maxa considers a subset of the items considered bymaxb. In the simplest case,

xmaxa = max(x1, x2, . . . , xn)

xmaxb = max(x1, x2, . . . , xn, xn+1).

For all scoresxn+1,

xmaxa ≤ xmaxb.

Becausexmaxa andxmaxb are summed over the same samples,

E
(
Xmaxa

) ≤ E
(
xmaxb

)
. (A.1)

If, for one or more samples,xmaxa < xn+1, then

E
(
Xmaxa

)
< E

(
xmaxb

)
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Case 2. maxa andmaxb consider disjoint sets of items.
Consider two disjoint sets ofn random variables, such that

xmaxa = max(x1, x2, . . . , xn)

xmaxb = max(xn+1, xn+2, . . . , x2n, x2n+1)

and a third set such that

xmaxc = max(xn+1, xn+2, . . . , x2n)

If all variables are i.i.d., they have the same domains and probability distributions. Therefore,

E
(
Xmaxa

) = E
(
Xmaxc

)
We know from Eq. A.1 that

E
(
Xmaxa

) ≤ E
(
Xmaxb

)
If, for some sample,xmaxc < x2n+1, then

E
(
Xmaxa

)
< E

(
Xmaxb

)
. 2

Appendix B: Influence of independence on the maximum score

Theorem. For continuous random variables X1, X2, X3, and X4,

Ea > Eb.

for all values x whereE =Pr(Xmax≥ x) − Pr(Xi ≥ x), xmaxa =max(x1, x2), xmaxb =
max(x3, x4), X1, X2, and X3 are i.i.d., X1, X2, and X4 are i.i.d., but X3 and X4 are pos-
itively correlated across their entire range.

Proof: Given thatX3 andX4 are positively correlated,

Pr(X3 < x) < Pr(X3 < x | X4 < x).

X1 andX3 are identically distributed, soPr(X1 < x) = Pr(X3 < x) and

Pr(X1 < x) < Pr(X3 < x | X4 < x).

X1 andX2 are independent, soPr(X1 < x) = Pr(X1 < x | X2 < x) and

Pr(X1 < x | X2 < x) < Pr(X3 < x | X4 < x).
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X2 andX4 are identically distributed, soPr(X2 < x) = Pr(X4 < x) and

Pr(X1 < x | X2 < x)Pr(X2 < x) < Pr(X3 < x | X4 < x)Pr(X4 < x).

By simple axioms of probability and inequality,

Pr(X1 < x, X2 < x) < Pr(X3 < x, X4 < x)

−Pr(X1 < x, X2 < x) > −Pr(X3 < x, X4 < x)

1− Pr(X1 < x, X2 < x) > 1− Pr(X3 < x, X4 < x)

Pr
(
Xmaxa ≥ x

)
> Pr

(
Xmaxb ≥ x

)
.

X1, X2 are i.i.d. withX3, X4 thus,

Pr
(
Xmaxa ≥ x

)− Pr
(
Xia ≥ x

)
> Pr

(
Xmaxb ≥ x

)− Pr
(
Xib ≥ x

)
Ea > Eb. 2

Appendix C: Influence of standard error on the maximum score

Theorem.

Ea > Eb

whereE =Pr(Xmax ≥ x)−Pr(Xi ≥ x), xmaxa =max(x1, x2), xmaxb =max(x3, x4), σx1 =
σx2 >σx3 = σx4, X1 . . . X4 are otherwise identically and independently distributed(see
figure C.1).

Figure C.1. DistributionsX1 . . . X4.
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Proof: For allx such thatPr(Xi < x) > 0.5 andσx1 > σx3, we know that 0.5< Pr(X1 <

x) < Pr(X3 < x) < 1.0. Under these conditions, as proven in appendix E,

Pr(X1 < x)(1− Pr(X1 < x)) > Pr(X3 < x)(1− Pr(X3 < x))

X1, X2 are i.i.d. andX3, X4 are i.i.d., so:

Pr(X1 < x)(1− Pr(X2 < x)) > Pr(X3 < x)(1− Pr(X4 < x))

Pr(X1 < x)− Pr(X1 < x)Pr(X2 < x) > Pr(X3 < x)− Pr(X3 < x)Pr(X4 < x)

Adding one to both sides and converting probabilities,

Pr(X1< x)+1−Pr(X1 < x)Pr(X2 < x)>Pr(X3 < x)+1−Pr(X3< x)Pr(X4< x)

Pr(X1 < x)+ Pr
(
Xmaxa ≥ x

)
> Pr(X3 < x)+ Pr

(
Xmaxb ≥ x

)
.

Adding negative one to both sides and converting probabilities:

−1+ Pr(X1 < x)+ Pr
(
Xmaxa ≥ x

)
> −1+ Pr(X3 < x)+ Pr

(
Xmaxb ≥ x

)
Pr
(
Xmaxa ≥ x

)− (1− Pr(X1 < x)) > Pr
(
Xmaxb ≥ x

)− (1− Pr(X3 < x))

Pr
(
Xmaxa ≥ x

)− Pr(X1 ≥ x) > Pr
(
Xmaxb ≥ x

)− Pr(X3 ≥ x)

X1, X2 are i.i.d. andX3, X4 are i.i.d., so:

Pr
(
Xmaxa ≥ x

)− Pr
(
Xia ≥ x

)
> Pr

(
Xmaxb ≥ x

)− Pr
(
Xib ≥ x

))
Ea > Eb

Similarly, for all x such thatPr(Xi < x)<0.5, we know that 0<Pr(X1< x)<
Pr(X3< x)<0.5. Under these conditions, as proven in appendix E,

Pr(X1 < x)(1− Pr(X1 < x)) > Pr(X3 < x)(1− Pr(X3 < x))

and we can proveEa > Eb as above. In only one special case—Pr(Xi < x) = 0.5—is
Ea = Eb. 2

Appendix D: Influence of difference in expected value on the maximum score

Theorem.

Ea > Eb

whereE =Pr(Xmax ≥ x) − Pr(X1 ≥ x), xmaxa =max(x1, x2), xmaxb =max(x3, x4),

E(X1)= E(X2)= E(X3)< E(X4), X1 . . . X4 are otherwise identically and independently
distributed.
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Figure D.1. DistributionsX1 . . . X4.

Proof: Given E(X2) < E(X4) andX2, X4 otherwise i.i.d., for allx

Pr(X2 < x) > Pr(X4 < x).

X1 andX3 are i.i.d., so

Pr(X2 < x)Pr(X1 ≥ x) > Pr(X4 < x)Pr(X3 ≥ x)

Pr(X2 < x)(1− Pr(X1 < x)) > Pr(X4 < x)(1− Pr(X3 < x))

Pr(X2 < x)− Pr(X1 < x)Pr(X2 < x) > Pr(X4 < x)− Pr(X3 < x)Pr(X4 < x)

Pr(X2 < x)− Pr(X1 < x, X2 < x) > Pr(X4 < x)− Pr(X3 < x, X4 < x)

Adding one to both sides and converting probabilities:

Pr(X2 < x)+ 1− Pr(X1 < x, X2 < x) > Pr(X4 < x)+ 1− Pr(X3 < x, X4 < x)

Pr(X2 < x)+ P
(
Xmaxa ≥ x

)
> Pr(X4 < x)+ Pr

(
Xmaxb ≥ x

)
.

Subtracting one from both sides and converting probabilities:

−1+ Pr(X2 < x)+ P
(
Xmaxa ≥ x

)
> −1+ Pr(X4 < x)+ Pr

(
Xmaxb ≥ x

)
P(Xmax ≥ x)− Pr(X2 ≥ x) > Pr(Xmax ≥ x)− Pr(X4 ≥ x).

X4 has the maximum expected value, so we should measureE with respect to it, rather
than with respect toX3. X1, X2 are i.i.d., so

Pr
(
Xmaxa ≥ x

)− Pr
(
Xia ≥ x

)
> Pr

(
Xmaxb ≥ x

)− Pr(X4 ≥ x))

Ea > Eb.

2

Appendix E: Probability relations used in prior proofs

Theorem. If x and y are probabilities and0.5< x < y < 1, then

x − x2 > y− y2
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Proof: Given 0.5< x < y < 1, then

x > 1− y

Sincey− x > 0

x(y− x) > (1− y)(y− x)

Adding x(1− y) to both sides

x(1− y)+ x(y− x) > x(1− y)+ (1− y)(y− x)

x − xy+ xy− x2 > x − xy+ y− x − y2+ xy

x − x2 > y− y2.

2

The same proposition can be proven for values ofx andy less than 0.5.

Theorem. If x and y are probabilities and0< y < x < 0.5, then

x − x2 > y− y2

Proof: Given 0< y < x < 0.5, then

1− x > y

Sincex − y > 0

(1− x)(x − y) > y(x − y)

Adding y(1− x) to both sides

y(1− x)+ (1− x)(x − y) > y(1− x)+ y(x − y)

y− xy+ x − y− x2+ xy > y− xy+ xy− y2

x − x2 > y− y2. 2
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Notes

1. In this paper, we use the term “multiple comparisons” and “multiple comparison procedure” to designate the
act of comparing multiple scores and selecting the maximum. Statisticians sometimes use these terms to refer
to solutions such as those presented in Section 7.4.

2. This problem is by no means limited to induction algorithms. Any algorithm that uses anMCPmust consider
n when making statistical inferences givenxmax.

3. The term “overfitting” is used in several ways in the literature on induction algorithms. In this paper, it refers
to producing models with components that reduce population accuracyor leave it unchanged. Other uses are
more constraining, requiring that the added components always reduce accuracy.

4. Some algorithms delay decisions about whethercmax will appear in the final model until a pruning phase, but
they still make implicit or explicit hypothesis tests at that time.

5. Incorrect inferences can occur even when statistical hypotheses are tested correctly. However, the probability
of such errors can be made arbitrarily small.

6. The term “attribute” in the pathology’s name is derived from tree-building algorithms, where variables are
sometimes called attributes.

7. Some early treatments of attribute selection error (e.g., Quinlan, 1988) identify an additional cause of the
pathology—an evaluation function inherently biased toward attributes with larger numbers of possible values.
This source of error has long been corrected in most induction algorithms yet the pathology remains (Quinlan,
1996).
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