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Abstract. Existing methods for exploiting flawed domain theories depend on the use of a sufficiently large
set of training examples for diagnosing and repairing flaws in the theory. In this paper, we offer a method of
theory reinterpretation that makes only marginal use of training examples. The idea is as follows: Often a small
number of flaws in a theory can completely destroy the theory’s classification accuracy. Yet it is clear that valuable
information is available even from such flawed theories. For example, an instance with several independent proofs
in a slightly flawed theory is certainly more likely to be correctly classified as positive than an instance with only
a single proof.

This idea can be generalized to a numerical notion of “degree of provedness” which measures the robustness
of proofs or refutations for a given instance. This “degree of provedness” can be easily computed using a “soft”
interpretation of the theory. Given a ranking of instances based on the values so obtained, all that is required to
classify instances is to determine some cutoff threshold above which instances are classified as positive. Such a
threshold can be determined on the basis of a small set of training examples.

For theories with a few localized flaws, we improve the method by “rehardening”: interpreting only parts of the
theory softly, while interpreting the rest of the theory in the usual manner. Isolating those parts of the theory that
should be interpreted softly can be done on the basis of a small number of training examples.

Softening, with or without rehardening, can be used by itself as a quick way of handling theories with suspected
flaws where few training examples are available. Additionally softening and rehardening can be used in conjunction
with other methods as a meta-algorithm for determining which theory revision methods are appropriate for a given
theory.

Keywords: logical theories, theory revision, probabilistic theories, flawed domain theories, approximate rea-
soning, machine learning

1. Introduction

A central concern of machine learning research is how to use prior knowledge effectively
to provide a useful learning bias. An important type of prior knowledge that may thus
be used is a flawed domain theory, obtained from some domain expert by knowledge
engineering. One of the main methods for using such a theory has been to attempt to
reviseit in order to improve its classification accuracy (Saitta, Botta, & Neri, 1993; Towell
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& Shavlik, 1993; Cohen, 1994; Koppel, Feldman, & Segre, 1994a; Ourston & Mooney,
1994). Although this idea has great intuitive appeal, revision is not always the best way to
use a given theory. Another class of methods does not attempt to repair the given theory,
but to reinterpret it in a more profitable manner. This can be done by using the theory
as a resource for constructive induction (Pazzani & Kibler, 1992; Donoho & Rendell,
1995; Ortega & Fisher, 1995; Koppel & Engelson, 1996), or by numerical refinement of
probabilistic theories (Mahoney & Mooney, 1994; Mahoney, 1996; Buntine, 1991; Lam &
Bacchus, 1994; Russell et al., 1995; Ramachandran & Mooney, 1998), or, most relevant
to this paper, by interpreting a logical theory in a probabilistic manner (Towell & Shavlik,
1993; Koppel, Feldman, & Segre, 1994b; Ortega, 1995).

All of these methods depend on the use of a sufficiently large set of training examples
for diagnosing and repairing flaws in the theory. In this paper, we offer a method of theory
reinterpretation that makes only marginal use of training examples. In the simplest version
of the method, examples are required only in order to approximate the number of positive
and negative instances. In a more sophisticated version of our method, which selectively
reinterprets the theory on the basis of training examples, empirical evidence indicates that
a very small training set is sufficient.

The idea is to squeeze out as much reliable information as possible from an unreliable
theory prior to invoking the information contained in training examples. The central ob-
servation is as follows: Often a small number of flaws in a theory can completely destroy
the theory’s classification accuracy. For example, one easily satisfied extra clause near the
root of a theory can render all instances positive, ostensibly destroying the theory. Yet it is
clear that valuable information is available even from such flawed theories. For example, an
instance with several independent proofs in the theory is certainly more likely to be correctly
classified as positive than an instance with only a single proof. This idea can be general-
ized to an easily computed numerical notion of “degree of provedness” which measures
the robustness of proofs or refutations for a given instance. That is, instead of interpreting
a theory in the usual Boolean manner, we interpret it “softly”, assigning each instance a
“degree of provedness” value between 0 and 1. Given a ranking of instances based on the
values so obtained, all that is required to classify is to determine some cutoff threshold
above which instances are classified as positive. Such a threshold can be determined on the
basis of a small set of training examples. (In fact, it might even be enough for this purpose
to know the approximate number of positive examples in some set of examples without
actually knowing the correct classification of any single example.)

We will see that interpreting a theory softly is a remarkably effective method for clas-
sifying examples despite the presence of flaws. Moreover, the method is benign in that in
the case of an unflawed theory it does no harm. For theories with a few localized flaws, we
improve the method by “rehardening”: interpreting only parts of the theory softly, while
interpreting the rest of the theory in the usual manner. Isolating those parts of the theory
that should be interpreted softly can be done on the basis of a small number of training
examples.

Softening, with or without rehardening, can be used by itself as a quick way of handling
theories with suspected flaws where few training examples are available. Additionally
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softening and rehardening may be used in conjunction with other methods as a meta-
algorithm for determining which theory revision methods are appropriate for a given the-
ory. In particular, this method can be used to determine whether the theory has localized
flaws which should be revised, distributed flaws requiring reinterpretation, or whether the
theory contains no useful information and should not be used at all as a learning bias. When
revision is deemed appropriate, rehardening can offer suggestions as to which components
of the theory ought to be the focus of repair.

The outline of this paper is as follows: In Section 2, we explain and justify the soft
interpretation of theories and in Section 3 we show how to use softening to classify instances.
In Section 4 we explain and justify the technique of rehardening. In Section 5, we illustrate
how the methods work on several well-known theories and in Section 6 we give the results
of tests of these methods on a large testbed of synthetically generated flawed theories. In
the appendix, we offer proofs of some analytic claims concerning the connection between
our measure of degree of provedness and the actual robustness of proofs and refutations.

2. Softening logical theories

2.1. Logical provedness

We consider here the case of propositional theories expressed in definite-clause form, with
negation-as-failure. Each clause’s head is a positive literal, and its body is a conjunction
of positive and negative literals. We assume the concept to be learned is represented by a
unique ‘root’ proposition, which does not appear in the body of any clause.

In this section we review the theory probabilization method described in Koppel, Feldman,
and Segre (1994b), which serves as the basis for the current work. We first review the standard
method for computing a function which is 1 if an exampleE is proved in the propositional
theory0 and 0 otherwise. In the next section we will extend the function to take on values
between 0 and 1, measuring a relative notion of example ‘provedness’.

For each observable propositionP, define

u′(E, P, 0) =
{

0 if P is false inE

1 if P is true inE

For each clauseC with antecedentsl1, . . . , ln, let

u′(E,C, 0) =
n∏

i=1

u′(E, l i , 0)

Similarly, for each non-observable propositionP which is the head of clausesC1, . . . ,Cn,
let

u′(E, P, 0) = 1−
n∏

i=1

(1− u′(E,Ci , 0))
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And finally, for each negated proposition¬P, let

u′(E,¬P, 0) = 1− u′(E, P, 0)

These formulae are simply arithmetic forms of the boolean functions AND, OR, and NOT,
respectively.

This formulation can be simplified by reformulating the theory in terms of NAND rela-
tions. Define the children of a proposition to be the clauses for which it is a head, the children
of a clause to be its antecedent literals, and the children of a negated proposition to be the un-
negated proposition. For each primitive propositionk, we defineu(E, k, 0) = u′(E, k, 0).
For a component (proposition, clause, or negative literal)k with childrenc1, . . . , cn, define

u(E, k, 0) = 1−
n∏

i=1

u(E, ci , 0)

Since ANDs and ORs strictly alternate, we have for every propositionP thatu(E, P, 0) =
u′(E, P, 0) for every exampleE. In particular, ifr is the root proposition of0, u(E, r, 0) =
u′(E, r, 0). ThusE is proved in0 exactly whenu(E, r, 0) = 1.

2.2. Soft provedness

As defined,u(E, r, 0) can only assume the values 0 or 1,0 either proves or refutesr given
E. However, since0 is assumed to be flawed, we would like to evaluate more preciselyto
what degreean example is proved in the theory.

Consider, for example, the theory:

r ← a
r ← b, c
r ← d, e

and three examples proved in the theory:E1 = {a, b, c, d, e}, E2 = {a, b, d}, andE3 =
{a}. Although u(E1, r, 0) = u(E2, r, 0) = u(E3, r, 0) = 1, their intuitive ‘degree of
provedness’ varies.E1 can be considered ‘proved to a greater degree’ thanE2, since it
has three proofs toE2’s one. Furthermore, although bothE2 andE3 have one proof each,
E2 also has two ‘near proofs’ and so can be thought of as ‘proved to a greater degree’
than E3. That is, if we had reason to believe that the theory might be slightly flawed and
that the classification as positive of some of these examples might therefore be mistaken,
suspicion ought to fall most readily onE3, since reclassifyingE3 would require doing the
least violence to the theory.

What we want, therefore, is a relative measure of ‘degree of proof’. We extend here the
definition of u in such a way that it can assume values between 0 and 1 that correspond
to our intuitive notion of ‘degree of proof’. This has the effect ofsoftening0’s classifica-
tions.
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Let ε be some small value greater than 0. Now, similar to the development above, for
each observable propositionP define thesoftening function uε by:

uε(E, P, 0) =
{
ε if P is false inE

1 if P is true inE

For each componentk of 0 with childrenc1, . . . , cn, define

uε(E, k, 0) = 1− (1− ε)
n∏

i=1

uε(E, ci , 0)

The term(1− ε) can be thought of as introducing uncertainty into the theory by placing a
probability measure on subtheories of0, such that each component has independent prob-
ability of ε to be deleted. (Thus the asymmetry inuε(E, P, 0); deleting a false proposition
may cause its clause to become true, but not vice versa.) The computation ofuε(E, r, 0)
approximates the expected classification ofE over this measure (see the appendix). (Note
that these component ‘weights’ represent a meta-theory concept, giving a probability mea-
sure over possibletheories, and not, as in Bayesian networks (Pearl, 1988), conditional
probabilities of results given premises.)

In this way,uε(E, r, 0) provides a useful measure of the resilience ofE’s classification to
changes in the theory. In particular, as discussed in Section 4.4 below, for sufficiently small
ε, uε(E, r, 0) reflects the minimal number of components in0 which would need to be
revised in order to changeE’s classification (E’s revision distance, defined more precisely
below).

In the example above,E1 has the highest revision distance at 3, whereasE2 andE3 both
have revision distance 1, reflecting our intuitive notion thatE1 is more strongly classified as
positive by the theory than the other two examples. A more fine-grained measure is given by
uε , however. Indeed,u0.1(E1, r ) = 0.999,u0.1(E2, r ) = 0.925, andu0.1(E3, r ) = 0.916,
i.e., r is ‘more proved’ givenE1 than it is givenE2 and it is more ‘more proved’ given
E2 than it is givenE3, more completely reflecting our intuitions about the relative degree-
of-proof of the three examples. (In the experiments reported in this paper, we setε = 0.1
without tuning. Although our results to date show little sensitivity to this choice, properly
tuningε is a matter for further investigation.)

3. Soft classification

Given a flawed theory0 (for conceptr ), we can now consider how to use the softening
functionuε to classify examples. The idea is that examples which are proved to a greater
degree according touε are more likely to be truly positive, and vice versa, regardless of
whether or not the example actually is proved in0. Thus, we can rank a set of unclassified
examplesEi according touε(Ei , r, 0). Then by choosing a good thresholdθ , we classify
an exampleE as positive ifuε(E, r, 0) > θ and negative ifuε(E, r, 0) ≤ θ .

For example, consider the well-known domain theory for identifyingE. coli promoter
gene sequences (the ‘promoter theory’ (Merz, Murphy, & Aha, 1996)). The theory consists
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Figure 1. Softened truth values (u0.1) for the 106 examples of the promoter theory in rank order. The optimal
classification threshold for these examples is depicted by the vertical line.

of 10 rules and a single top-level proposition indicating whether a particular gene sequence
is a promoter or not.

The theory as given has a classification accuracy of only 50%; every example is classified
as negative, when in fact only half of them should be. However, when we sort byuε , we can
distinguish nearly perfectly between positive and negative examples (as shown in figure 1).
In fact, by choosing the optimal threshold foruε , where examples scoring above the threshold
are taken as proved and those scoring below as unproved, we get a classification accuracy of
93.4%. This example illustrates how by softening a theory we may dramatically improve its
classification accuracy (50% to 93.4%) without doing any revision whatsoever.1 Naturally,
the classification threshold must be chosen properly. In practice, the right threshold can be
estimated from a very small set of preclassified training examples, as we will see below.

More precisely, given a theory0 with rootr , a training setE , a softening functionuε , and
a thresholdθ , defineAcc(0, E , uε , θ ), as the fraction of examples inE accurately classified
by usingθ as a classification threshold foruε . Then, we can classify a new exampleE using
the algorithmSoftClassify.

SoftClassify(0, E , uε , E):

1. Letθ be the threshold maximizingAcc(0, E , uε , θ );
2. If uε(E, r, 0) > θ , classify it as positive;
3. Else, classify it as negative.

The promoter theory requires very little training to reach respectable classification accu-
racy when usingSoftClassify. For example, when choosing the optimal threshold based on
only 20 training examples we get an average classification accuracy of 91% (using 5-fold
cross-validation, withholding all but 20 training examples each time).

Figure 2 shows corresponding learning curves for softening and several other learning
techniques. We performed 5-fold cross-validation, withholding different amounts of training



MAXIMIZING THEORY ACCURACY 129

Figure 2. Softening for the promoter theory. Accuracy of the original theory and learning curves for C4.5,
softening, PTR, EITHER, and KBANN.

to generate each data point. We compare softening with the accuracy of the original theory,
with the example-based learning system C4.5 (Quinlan, 1993), and with the theory revision
systems2 PTR (Koppel, Feldman, & Segre, 1994a), EITHER (Ourston & Mooney, 1994),
KBANN (Towell & Shavlik, 1993), and RAPTURE (Mahoney & Mooney, 1994). As the
figure shows, softening on the promoter theory is better than most of the alternatives.3 The
only alternatives that are competitive with softening are KBANN and RAPTURE, both
theory revision systems that use numerical representations of the theory in the course of
revision. (In fact, the results of RAPTURE are virtually identical to those ofSoftClassify.)
It is interesting to note that softening still performs as well as those systems here, despite
the fact that the only learning it does is to estimate a single threshold.

4. Partial rehardening

4.1. The problem with softening

Although softening works remarkably well on a theory like promoter, where errors are
distributed throughout the theory (Koppel, Feldman, & Segre, 1994b; Ortega, 1995), we
should not expect it to work as well on a theory where flaws are highly localized. This is
because softening treats all components of the theory in the same way. Since both flawed and
correct components are softened equally,SoftClassifycannot always distinguish correctly
classified examples from incorrectly classified examples. Softening those parts of the theory
that are correct cannot be expected to improve classification accuracy.
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Figure 3. A flawed version of the chess endgame theory. Added antecedents and clauses are shown in boldface,
while deleted components (not actually in the flawed theory) are shown in italics. Low-level propositions such as
a=b are defined in terms of primitive attributesa throughf, each of which takes on values from 1 to 8 (not shown).

Figure 4. Sorting graph (as per figure 1) for 100 randomly chosen examples for the softened chess endgame
theory; the vertical dashed line shows the optimal classification threshold.

Consider, for example, the flawed domain theory for categorizing king-rook-king chess
endgames (Merz, Murphy, & Aha, 1996) depicted in figure 3, with rootr = illegal.
For this theory, softening neither improves nor harms classification accuracy, as shown in
figure 4. Using any number of training examples between 10 and 100,SoftClassifygives
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a maximum accuracy of 79% on a separate set of 100 test examples (34% positive, 66%
negative), which is the same as the theory’s raw accuracy. Soft classification doesn’t help
for the chess endgame theory because most of the theory should not be softened at all.

To illustrate this point, consider two examples for the theory:E1 for which adj-bf is
true, andE2 for whichsame-loc-ab-cd is true, where the examples are otherwise identical
and have no proofs in the theory as given. Sinceadj-bf is incorrectly added to the first
illegal clause,E2 is truly positive. Despite this,uε(E1, r, 0) in the flawed theory will
be greater thanuε(E2, r, 0), due to the greater number of occurrences ofadj-bf in the
theory.

Surprisingly, though, we will find that the fact that softening on this theory does not
reduce classification accuracy is no fluke. On the whole, even for locally flawed theories
softening almost never does harm and often improves classification accuracy significantly.
Nevertheless, we shall see below that for theories with localized flaws we can generally
obtain improved classification accuracy by softening in a more selective fashion.

4.2. Partially rehardened theories

As the above example illustrates, a given theory may contain regions which should be
interpreted in a soft manner (i.e., like promoter) and regions which should be interpreted
in a non-soft manner (i.e., are correct as is). For theories with localized flaws, such as the
chess endgame theory, classification by theSoftClassifyalgorithm would greatly improve
if we could somehow soften only the flawed portions of the theory. In this section we will
describe a simple algorithm which finds those components in a theory which should not be
interpreted in a soft manner. First, though, we will define more precisely what it means to
interpret a theory as partially soft, i.e., with some components defined ashard. Note that
here we consider each appearance of a proposition in an antecedent literal as a separate
component of the theory, so that one appearance of a proposition can be hard, while another
is soft.

Formally, given a setH of theory components defined ashard, for each componentk
with childrenc1, . . . , cn we define

uH
ε (E, k, 0) =


1−

n∏
i=1

uH
ε (E, ci , 0) if k ∈ H

1− (1− ε)
n∏

i=1

uH
ε (E, ci , 0) otherwise

whereas, for each appearancel of a primitive propositionP, we have

uH
ε (E, l , 0) =

{
u(E, P, 0) if l ∈ H

uε(E, P, 0) otherwise
.

Intuitively, uH
ε introduces uncertainty only into the soft components of the theory; all others

are assumed to be correct. (For example, evaluating an example in a theory with all com-
ponents hardened simply gives 1 or 0, according as the example is positive or negative in
the theory.)
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4.3. The rehardening algorithm

We now wish to exploit a given set of training examples in order to determine which
components in0 should be hardened and which softened. The idea is to harden those
components whose hardening improves classification accuracy usingSoftClassify. We can
then useSoftClassify to classify new examples using the partially rehardened theory thus
obtained.

The idea is to iteratively harden components of the theory, each time evaluating the
optimal accuracy of the theory on the training set. Thus, given a theory0, a training set
E , and softening functionuε , we define thesoft accuracyof 0 as:SoftAcc(0, E, uH

ε ) =
maxθ Acc(0, E, uH

ε , θ). TheRehardenalgorithm greedily hardens components of0 until
doing so would reduce the accuracy of the theory on the training setE , i.e.SoftAcc(0, E, uH

ε ).
Note that evaluating a theory withn components for a given set of hardened components
takes O(n|E |) time. Since such an evaluation is performedn times for each component
that is hardened, in the worst case, a straightforward implementation ofReharden takes
O(n3|E |) time. The method is usually much faster than this in practice, and efficiency can
be further improved by caching of intermediate results.

Reharden(0,E):

1. H ← ∅;
2. Evaluatea0 = SoftAcc(0, E, uH

ε );
3. Evaluate, for every componentci ∈ 0\H , its hardening accuracy

ai = SoftAcc(0, E, uH∪{ci }
ε );

4. Letc∗ be the component closest to the root whose accuracya∗ > a0

(breaking ties arbitrarily);
5. If such a component exists:

a) H ← H ∪ {c∗},
b) Goto Step 2;

6. Else, letc∗ be the component closest to the root whose hardening accuracya∗ = a0

(breaking ties arbitrarily);
7. If such a component exists:

a) H ← H ∪ {c∗},
b) Goto Step 2;

8. Else returnH .

4.4. Justification: Rehardening and revision distance

The reason the rehardening procedure works is that (i) hardeningflawedcomponents tends
to reducethe accuracy ofSoftClassify, and (ii) hardeningunflawedcomponents of the
theory tends toincreasethe accuracy ofSoftClassify. Since hardening flawed components
usually reduces accuracy, our greedy rehardening algorithm will, in general, harden only



MAXIMIZING THEORY ACCURACY 133

unflawed components, which in turn will tend to increaseSoftClassify’s accuracy using the
theory.

The connection between the choice of components to be hardened and the resulting
accuracy ofSoftClassify is a consequence of a fundamental property of theuH

ε function
which forms the basis forSoftClassify. The property is thatuH

ε sorts examples primarily
by how many revisions (that is, deletions) to non-hardened components in the theory would
suffice to change the examples’ classifications (an example’srevision distance). Classifying
using revision distance is obviously correlated with hardening unflawed components, in
that hardening unflawed components causes the revision distance of correctly classified
examples to increase as the number of possible revision sites decreases. For incorrectly
classified examples, however, it is always sufficient to revise only flawed components.
Thus, if flawed components remain unhardened, the revision distance of an incorrectly
classified example cannot increase beyond the minimum number of flawed components
which need to be revised in order to change the example’s class.

We make this intuitive notion more precise by considering thesubtheoriesof the given
theory0, obtained by deleting some of0’s non-hardcomponents (i.e., components not in
H ), where the distance of a subtheory0′ from0, dist(0, 0′), is the number of components
deleted. In order to quantify how robust an exampleE’s classification is, with respect to
possible flaws in0, we measure the distance of the nearest subtheory0′ which classifiesE
differently from0. We define therevision distance, DH (0, E), of E in 0 with respect to the
set of hardened componentsH as the number of deletions required to change an example’s
classification. In particular:

– A positive revision distance gives the number of component deletions needed to make
an unproved example proved,

– A negative revision distance gives the number needed to make a proved example un-
proved.

(In a theory without negation, the former deletions are of antecedents, while the latter are
of clauses.)

The key idea here is that there exists a close relationship betweenuH
ε and revision

distance. For the case oftree-structuredtheories, where each non-primitive proposition
appears (possibly negated) as an antecedent of no more than one clause, the relationship
can be neatly formulated as follows:

Theorem 1. Given a tree-structured theory0 with root r, a set H of components of0,
and examples E1 and E2 for 0, such that DH (0, E1) > DH (0, E2), then for all sufficiently
smallε, we have that uHε (E1, r, 0) < uH

ε (E2, r, 0).

This theorem states that, in the limit, larger values ofDH lead to smaller values ofuH
ε .

That is, sorting according touH
ε is consistent with sorting according to how much the

theory would have to change in order to change each example’s classification. Sorting by
uH
ε , however, provides a more fine-grained measure which gives useful information even

when revision distances are identical.
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For example, if all components of a theory are soft, revision distance is nearly useless,
since any example’s classification can be changed by revising a few components at the root.
Revision distance becomes meaningful, however, as more and more components in a theory
are hardened. The more components are hardened, the more precise a measure it becomes
for distinguishing the degree to which examples are proved.

See the appendix for a more formal treatment of these ideas and a proof of the theorem.

5. Illustrations of softening and rehardening

In the section following we will show the results of a systematic set of experiments designed
to test our hypotheses about the effectiveness of softening and rehardening flawed theories.

Figure 5. Results of rehardening: (a) A hardened version of the chess-endgame theory with softened clauses in
boldface and softened antecedents underlined. (b) The sorting graph of the rehardened theory (using the same 100
examples as in figure 4); the vertical dashed line shows the optimal classification threshold.
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Figure 6. Rehardening for the chess endgame theory. Averaged learning curves for C4.5 andSoftClassifywith
and without rehardening.

Before getting to that, though, let us consider a few illustrations of the method on some
familiar theories.

5.1. Rehardening the chess theory

Let us now reconsider0, the flawed version of the chess endgame theory shown in figure 3.
Figure 5(a) shows the results of rehardening that theory on a training setE of just 30
examples. Note that the components which remain soft are almost exactly those which
contain flaws in the theory. Figure 5(b) shows howSoftClassifysorts 100 test examples (not
in E) using the rehardened theory shown. With rehardening,SoftAcc(0, E , uH

ε ) increases
to 90%, as opposed toSoftAcc(0, E , uε)=79% without rehardening.

In figure 6 we compare the accuracies obtained on a test set using C4.5, softening alone,
and rehardening, respectively, with varying amounts of training data. We evaluated the
methods over 10 trials. Each trial trained on each of 10, 20, 30, up to 120 examples, and
accuracy was tested on a disjoint 100-example test set (separate for each trial). We then
averaged the accuracies from all trials. It is evident that rehardening significantly improves
over softening (which never exceeds the original theory accuracy here). Furthermore, for few
training examples (less than 70), rehardening is better than learning directly from examples.
(We performed t-tests on the paired data for the 10 trials, giving a significance ofp < 0.05 to
the difference in accuracy in all cases tested.) The rehardening curve flattens very quickly,
however, even as C4.5 continues to improve. Since rehardening is somewhat crude (for
example, it cannot fine-tune theories by adding components) its potential is limited. Thus
when sufficient examples are available, it may be preferable to use inductive methods.
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5.2. Comparing types of flawed theories

Here we examine our proposed explanation for the difference in softening performance
between the promoter and chess endgame theories. In addition to the “locally flawed” theory
presented above, therefore, we also created a flawed theory with synthetic “distributed
flaws”, to show how we can distinguish between these types of theories based on their
performance under softening and rehardening. In a theory with distributed flaws, many or
most components of the theory are flawed, but each flaw does not change the meaning of
the theory very much. For example, if the antecedents of two clauses for a propositionp are
randomly redistributed between the clauses, many flaws are introduced (for each antecedent
wrongly placed), but still, the same set of components influences the truth ofp in the flawed
theory.

Thus, we consider here three flawed versions of the chess endgame theory:

1. the theory considered above with four localized flaws (Chess-1),
2. a theory with distributed flaws, created by repeatedly merging and randomly splitting

the antecedent sets of clauses in the theory (Chess-2, figure 7), and
3. a randomly generated theory with the same primitives as the correct theory (Chess-3,

figure 7).

We performed a set of trials, each using a different 40-example training set and 200-example
testing set. In each trial, for each theory we evaluated the accuracy on the test set of (a) the
original flawed theory, (b) the softened theory using a threshold evaluated from the training
set, and (c) the theory rehardened based on the training set. We averaged the results of 5
random trials; results are shown in Table 1.

Table 1 shows the initial accuracies and the results of using softening and partial rehard-
ening on the three test theories. Note that just using classification accuracy tells us nothing
about the relative merits of the theories; in fact, the random Chess-3 is better than Chess-2
with distributed flaws. Nevertheless, we see that the accuracy of the random theory using
SoftClassify, even with rehardening, is little better than its raw accuracy—and, more sig-
nificantly, little better than simply classifying all examples as negative—indicating clearly
that the theory is essentially useless for distinguishing between positive and negative ex-
amples, and thus should be discarded. On the other hand, both Chess-1 and Chess-2 show
significant improvement in accuracy usingSoftClassifywith rehardening. These theories

Table 1. Accuracies for different interpretation methods for chess theories with different types of flaws. The last
line shows the fraction of the total example set classified by each theory as positive. Chess-1 has localized flaws,
Chess-2 has distributed flaws, and Chess-3 is random.

Chess-1 Chess-2 Chess-3

Theory itself 77% 35% 65%

Softening 77% 87% 68%

Rehardening 89% 94% 72%
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Figure 7. Chess-2: Chess theory with distributed flaws. Chess-3: Random ‘chess’ theory.
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are distinguishable, however, by the respective differences in the gap between softening and
rehardening. Rehardening adds less to the effect of softening in Chess-2, which suggests
that its flaws are non-localized, while rehardening improves Chess-1 quite noticeably over
softening, which suggests that Chess-1’s flaws are localized. Such information could be
useful for deciding how to handle each one of the three theories. We should probably revise
the theory with localized flaws, interpret the theory with distributed flaws probabilistically,
and throw out the random theory. Indeed, C4.5 performs significantly better (81%) than
Chess-3 even with rehardening, whereas both Chess-1 and Chess-2 show improvement
over C4.5 with rehardening (for a small training set).

More generally, these results suggest how we might decide the proper way to use a given
theory based on a training set. First check if the theory contains any useful information,
i.e., that positive examples are ‘proved to a greater degree’ than negative examples. Specif-
ically, we need to check that the accuracy obtained by the softened theory is significantly
better than the accuracy expected from optimally partitioning a random ordering of pos-
itive and negative examples. (Roughly speaking, this expected accuracy slightly exceeds
max(Pos,Neg), where Pos and Neg are the respective percentages of positive and negative
examples in our training set. Thus, for example, for the chess theory 66% of our training
examples are negative and the softened random theory correctly classes 68%. This is easily
achieved by choosing a threshold near 1.0, i.e., by classing almost all examples as negative.)
If this is the case, the theory should be revised just when it contains localized errors, i.e.,
when rehardening obtains significantly better classification on training data than softening
does. This could be done, given a small training set, by evaluating the expected accuracy
of softening and rehardening by cross-validation. If softening increases accuracy greatly,
perhaps the theory should be used as is. However, if softening does little but rehardening
helps, the theory should probably be revised. If neither softening nor rehardening helps,
the theory should be discarded and pure inductive techniques should be applied. In the next
section we will see, though, that such a method is not completely reliable in general: re-
hardening often helps significantly for theories with non-localized flaws, while not helping
at all for some theories with localized flaws.

5.3. Rehardening flawed student-loan theories

We now take a closer look at some rehardened flawed theories in order to compare the set of
flawed components with the set of components left soft. We will see that although these two
sets are generally similar, they are not always identical. Obviously, those flaws that do not
adversely affect the classification of any training examples are not left soft. Additionally,
it turns out, surprisingly, that there are subtle ways in which hardening flawed components
while leaving related components soft actually leads to better results than leaving the flawed
components themselves soft. In order to illustrate this and related phenomena, we consider
three arbitrarily chosen flawed versions of the student-loan theory (shown in figure 8),
used for determining whether a student must pay back a student loan (Pazzani & Brunk,
1991).

We performed five independent trials for each theory, using disjoint 100-example training
and test sets. We compare the flawed theories with the sets of hardened components, as well
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Figure 8. The correct student-loan theory.

as examining the accuracies of the initial theory, the theory with softening, with rehardening,
and with just the flawed components left soft (simulating ideal rehardening).

Although the set of rehardened components for each flawed theory varies with the given
training examples, in each case there was one rehardened theory which appeared in a
majority of the independent trials (and it is to these rehardened theories that we refer
below). The flawed theories are compared with the results of rehardening in Tables 2 and 3.

In theory SL I, flaw 1 does not let through any negative examples and in fact lets through
some positive ones incorrectly blocked by flaw 3. Therefore it is not left soft. Flaws 2
and 4 are captured directly. This is an easy theory for softening to handle since the flaws
are additions rather than deletions. The rehardened theory perfectly classifies all the test
examples.

In Theory SL II, flaws 3, 4, and 5 are captured directly. Flaw 2 does not let through
any negative examples. Only the deleted clause is not directly compensated for. As a result
the rehardened theory is only 94% accurate. As can be seen in Table 3, even if precisely
the flawed components are left soft (i.e., if the antecedentdeferment, which is rendered
overly specific by the deletion of clause 7, is also left soft), the rehardened accuracy does
not exceed 94%.

Theory SL III is the most interesting of the three flawed theories considered here. The
effect of the added clause (flaw 2) is diminished both by its being softened and by its parent
(clause 6) being softened. Softening¬fire-department-enlist in the softened added
clause boosts the relative effect of the other antecedent,never-left, which was deleted
from clause 8 (flaw 3). Softening clause 2 further diminishes the influence of clause 6 which
lets through negative examples (as a result of flaw 3). Finally, softening the antecedent
continuous in clause 2 diminishes the influence of softening the clause itself. Flaw 4
does not let through any negative examples and is not left soft. As seen in Table 3, this
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Table 2. Rehardening results for three flawed student-loan theories. The table shows which flaws were introduced
into the correct theory (figure 8) and which components were left soft by rehardening. Each component whose
softening compensates for a particular flaw is placed near that flaw in the table.

Theory Flaws Soft components

SL I 1. Addmilitary-deferment :- –

filed-for-bankruptcy,

¬disabled
2. In clause 8 add antecedent: *financial-deferment in clause 8

financial-deferment

3. In clause 12 add antecedents: –

military-deferment,

student-deferment

4. In clause 14 add antecedent: *continuous in clauses 2 and 14

continuous

SL II 1. Delete clause 7 –

2. Adddeferment :- –

¬filed-for-bankruptcy,
financial-deferment,

student-deferment

disability-deferment

3. In clause 1 add antecedent: *enrolled-eleven in clause 1

enrolled-eleven
4. In clause 10 add antecedent: *continuous in clause 10

continuous

5. In clause 14 add antecedent: *continuous in clause 14

continuous

– * continuous in clause 2

SL III 1. Delete clause 5 –

2. Addpeace-corps-deferment :- * peace-corps-deferment :-

¬fire-department-enlist, ¬fire-department-enlist,
never-left never-left

* ¬fire-department-enlist in

added clause

* Clause 6

3. In clause 8 delete antecedent * Clause 2

never-left

* continuous in clause 2

4. Addmilitary-deferment :- –

disabled,

¬student-deferment,
foreign-legion-enlist
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Table 3. Results of softening and rehardening for three flawed student-loan theories. Shown are the initial
accuracy of the flawed theory, as well as the accuracies obtained by softening, by rehardening, and by hardening
all components except for those actually flawed.

SL I SL II SL III

Initial 75% 74% 75%

Softened 98% 86% 87%

Rehardened 100% 94% 94%

Flaws soft 100% 94% 90%

results in a more accurate rehardened theory (94%) than the one in which precisely the
flawed components are left soft (90%).

6. Experimental results

6.1. Theory accuracy

After the anecdotal results of the previous section, we turn now to several systematic
experiments. We synthetically generated five different random propositional theories. The
number of distinct propositions in the theories ranged from 15 to 21, and the number of
clauses in the theories ranged from 14 to 22, with an average of 2.5 antecedents per clause.
For each theory, 20 flawed theories were generated, 10 with five local flaws each and 10
with five distributed flaws each, as follows:

Local: The flaw generator chooses a theory component at random and inserts into it a
random flaw (adding a clause with 2–4 random antecedents for a proposition, deleting
an antecedent, or either adding a random antecedent for a clause or deleting the clause
with equal probability).

Distributed: The flaw generator chooses a proposition at random and replaces two ran-
dom clauses for the proposition by a new clauseC with the union of the two clauses’
antecedents, and then splitsC randomly into two new clauses by randomly assigning
antecedent literals to one (or both) of the new clauses.

These two types of flaws allow us to experimentally evaluate our explanation of the differ-
ence between the promoter and chess endgame theories described above.

For each of the five correct theories, 100 examples were randomly generated and divided
into two equal sets. Nested subsets of various sizes were selected from one of the sets as
training examples for each corresponding flawed theory and the results were tested against
all the examples in the other set. The roles of the two sets were then switched, so that for
each flawed theory and each number of training examples two data points were generated.
These were then averaged.

In the accompanying scatter plots we plot the initial accuracy of each of the fifty locally-
flawed theories and each of the fifty distributed-flawed theories against the softened accuracy
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Figure 9. Scatter plots for experiments on synthetic theories with local flaws, using 20 and 40 training examples.

and against the hardened accuracy. We show results here for 20 and for 40 training examples
in figures 9 and 10; average results are given in Table 4.

As is evident from the plots, softening is astonishingly effective even using only 20
training examples. It almost never does any harm. When rehardening is used to focus
softening, every single one of the 100 flawed theories is improved when only 40 training
examples are used. Even when only twenty training examples are used, only two out of one
hundred rehardened theories classify less accurately than the original theories (and these
only by a tiny margin).

We tested for statistical significance of the improvement of (a) softening over the original
theory, and (b) rehardening over softening, by performing t-tests on the paired data. In
seven of eight cases the accuracy improvement proved to be significant withp < 0.002.



MAXIMIZING THEORY ACCURACY 143

Figure 10. Scatter plots for experiments on synthetic theories with distributed flaws, using 20 and 40 training
examples.

Only for the case of distributed flaws with 20 training examples was rehardening accuracy
indistinguishable from softening accuracy. This accords with our hypothesis about the
lessened effect of rehardening for theories with distributed flaws.

Nevertheless, it is interesting to note that contrary to our expectations, the difference in
effectiveness of softening versus rehardening for local versus distributed flaws, although
detectable in Table 4, is not very large. Softening works well for both and rehardening
generally slightly improves both (with a greater improvement for locally flawed theories).
A small difference can be seen, however, in figure 11, which plots accuracy after rehardening
as a function of accuracy after softening.
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Table 4. Average results for experiments on synthetic theories with local and distributed flaws. Shown are the
average original accuracies of the theories, with accuracies after softening and rehardening, with 20 and 40 training
examples.

20 Training 40 Training

Flaw type Original Softening Rehardening Softening Rehardening

Local 68.4% 84.2% 87.0% 84.9% 89.7%

Distributed 69.0% 84.2% 84.9% 85.2% 88.1%

Figure 11. Scatter plots for experiments on synthetic theories with local distributed flaws, using 20 training
examples, comparing rehardening to softening accuracy.

6.2. Finding single flaws

As we saw above, on theories with multiple flaws rehardening often works more effectively
by leaving soft theory components other than those which are actually flawed. In the case
of theories with single flaws, we would hope that rehardening would be able to isolate the
flaws precisely. To the extent that rehardening is successful at isolating flaws in this way
it could be effectively used in conjunction with other theory revision algorithms which
repair isolated flaws. Accordingly we ran the following experiment to test the ability of
rehardening to isolate individual theory flaws.

We generated 10 small random theories (between 5 and 10 clauses each). For each theory
we generated 10 flawed versions, each with a single random flaw (as above for local flaws).
For each correct theory, we also generated 10 random training sets of 20 examples each,
for use in rehardening the flawed theories. We rehardened each flawed theory using each
training set for that theory, giving us 1000 data points. After rehardening each flawed theory
on a training set, we evaluated which component(s) were soft, as compared with the actual
location of the theory flaw.
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Figure 12. Results of 1000 trials on single-error theories. See text for explanation.

The possible outcomes of each trial are:

Exact the flawed component is the only one left soft,
Oversoft the flawed component is one of several left soft,
Undersoft no components are left soft,
Nearby the flawed component is not left soft but an ancestor/descendant is (and possibly

other components as well), or
Failed the flawed component is not left soft but some entirely different component(s) are.

Figure 12 shows the results of the experiment. As is shown, the flaw was left soft in over
55% of all trials, and in 69% of all trials either the flaw or one of its ancestors or descendants
was left soft. On average, 1.28 components were left soft in each theory. In only 70 cases
(7%) were only components unrelated to the flaw left soft. Out of the 470 cases in which
exactly one component was left soft, in 381 cases (81%), the single soft component was
the flawed component. It should be noted that of the 239 cases in which no component was
left soft, 100 were unavoidable since in them the flawed theory was perfect on the training
set (as expected, since the training only contained 20 random examples).

7. Conclusions

We have introduced the notion of “degree of provedness”, which we believe is funda-
mental for distilling reliable information from unreliable theories. In particular, we have
found that softening is an extremely effective method of theory reinterpretation. It increases
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classification accuracy for almost all flawed theories even when only a handful of training
examples are available. Moreover, softening adds no computational expense to ordinary
logical methods of classification using theories. Hence, whenever the reliability of a given
propositional theory is in doubt and sufficient information for choosing a threshold (e.g., a
small number of examples) is available, it is recommended that the theory be interpreted
softly.

We have shown formally why rehardening unflawed components of the theory should
typically improve soft classification. We have shown empirically that rehardening based on
small training sets does in fact improve on softening (sometimes performing even better than
rehardening the actual flawed components). However, it is not necessarily the case that the
improvement in classification accuracy obtainable by rehardening always justifies its com-
putational expense. Methods for improving the efficiency and efficacy of the rehardening
process remain to be explored.

Both softening and rehardening are crude methods which reinterpret theories but do not
revise them. Thus their potential for increasing accuracy is limited, especially where theory
components have been deleted. The strength of these methods lies primarily in their not
requiring large amounts of training examples. When training examples abound, inductive
methods may prove superior to these methods.

We have suggested ways in which rehardening can be used as a meta-algorithm for theory
revision by determining whether a flawed theory contains useful information, whether its
flaws are localized or distributed throughout the theory, and where localized flaws are
located. This information can be used to decide whether a theory is a candidate for revision
and whether it should be patched or reinterpreted. However, our results do not bear out that
the relative effectiveness of softening versus rehardening can reliably distinguish theories
with localized flaws from those with the type of distributed flaws that we considered here.
We believe that the weakness of these results is an artifact of our method for generating
distributed flaws. The precise definition of distributed flaws and methods for generating
them are an important topic for future research.

One issue that remains open is the interaction between various parameters. In our soft-
ening experiments we always setε = 0.1 and the theories we used had between 25 and 150
components and between 5 and 20 flaws. For these parameters we found 20 to 30 training
examples to be sufficient for softening and 30 to 40 sufficient for rehardening. The rela-
tionship betweenε, theory size, the number and type of flaws, and the number of examples
required for varying accuracy levels merits further investigation.

Appendix A: SoftClassify and revision distance

In this appendix we formalize the intuition that the more components that get rehardened,
the better we expectSoftClassifywith rehardening to classify, as discussed in Section 4.4.

Definition 1. A theory0′ is asubtheoryof 0 (notated0′ ⊂ 0), if 0′ can be obtained by
deleting zero or more components from0. Thedistancebetween a theory0 and a subtheory
0′, dist(0, 0′), is the number of components that are deleted from0 to obtain0′.
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Definition 2. Let H be a subset of the components of0.

Theproof distanceof an exampleE in a theory0 is defined asDPH (0, E) = mini dist(0,
0i ) such thatH ⊂ 0i ⊂ 0 and0i (E) = 1. If no such0i exists,DPH (0, E) = ∞.

The refutation distanceof an exampleE in a theory0 is defined asDRH (0, E) =
mini dist(0, 0i )such thatH ⊂ 0i ⊂ 0 and0i (E) = 0. If no such0i exists,DRH (0, E) =
∞.

Therevision distanceof an exampleE in a theory0 is defined asDH (0, E) = DPH (0, E)−
DRH (0, E).

The proof distance of a proved example is zero, since it is proved in the theory as given;
the refutation distance of an unproved example is similarly zero, since it is not proved
in the theory as given. Hence, a positive revision distance gives the number of deletions
of components not inH needed to make an unproved example proved, whereas a negative
distance gives the number needed to make a proved example unproved (no example has
revision distance zero). For example, in a theory without negation, the former deletions are
of antecedents, while the latter are of clauses.

The relationship betweenuH
ε and revision distance can be neatly formulated in the follow-

ing theorem for the case oftree-structuredtheories, where each non-primitive proposition
appears (possibly negated) as an antecedent of no more than one clause.

Theorem 1. Given a tree-structured theory0 with root r, a set H of components of0,
and examples E1 and E2 for 0, such that DH (0, E1) > DH (0, E2), then for all sufficiently
smallε, we have that uHε (E1, r, 0) < uH

ε (E2, r, 0).

This theorem states that, in the limit, sorting according touH
ε is consistent with sorting

according to revision distance. Note that this theorem makes no distributional assumptions,
and does not make any direct claims as to the effect of softening or rehardening on the
accuracy of the theory.

DefinePH
ε (0i )

1= (1− ε)(N−d)εd, whereN is the number of components in0 not in H ,
andd = dist(0, 0i ). For heuristic purposes, it is useful to think ofε as the independent
probability of deleting any component not inH from 0. From this point of view,PH

ε (0i )

is simply the probability of the subtheory0i . Similarly, for sets of componentsS, R ⊂ 0,
whereS, R, and H are pairwise disjoint, we can denote the probability of the class of
subtheories which includes all components inSand deletes all components inR as

PH
ε (inc(S), del(R)) =

∑
H∪S⊂0i⊂0\R

PH
ε (0i ) = (1− ε)|S|ε|R| .

Finally, define ExpPH
ε

[u(E, r, 0)] = ∑
H⊂0i⊂0 PH

ε (0i )u(E, r, 0i ), the expected value of
u(E, r, 0) over all subtheories that includeH . The theorem then follows from the following
lemma.

Lemma 1. Given a tree-structured theory0 with root r, a set H of components of0, and
0≤ ε ≤ 1, we have that for any example E, uH

ε (E, r, 0) = ExpPH
ε

[u(E, r, 0)].
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Proof: We prove the lemma by demonstrating inductively the slightly stronger claim:

– For every componentk in 0, uH
ε (E, k, 0) = ExpPH

ε
[u(E, k, 0)].

Base case:Let k be a leaf antecedent (k’s propositionp is specified byE). If k ∈ H ,
ExpPH

ε
[u(E, k, 0)] = u(E, k, 0) = uH

ε (E, k, 0). If k 6∈ H , the probability that a
random subtheoryH ⊂ 0′ ⊂ 0 containsk is 1− ε. If 0′ does not containk, then under
the NAND interpretation of the theory we can say thatu(E, k, 0′) = 1 (since a deleted
antecedent can be treated as always true and a deleted clause as always false). Therefore,
with probabilityε,u(E, k, 0′) = 1, and with probability 1−ε,u(E, k, 0′) = u(E, k, 0).
Therefore

ExpPH
ε

[u(E, k, 0)] = ε + (1− ε)u(E, k, 0) =
{
ε if k is false inE

1 if k is true inE

}
= uH

ε (E, k, 0)

Inductive step:Let k be some internal component of0 (an antecedent or a clause), with
children{ci }, denoting the descendants of componentk by desc(k). By assumption, for
eachci , uH

ε (E, ci , 0) = ExpPH
ε

[u(E, ci , 0)]. For S a set of descendants ofk (possi-
bly including k), let Si be those components inS which are descendants ofci . Since
0 is tree-structured,Si ∩ Sj = ∅, i 6= j . Let η = ε if k ∈ H , η = 0 otherwise.
Then:

uH
ε (E, k, 0) = 1− (1− η)

∏
i

uH
ε (E, ci , 0)

= 1− (1− η)
∏

i

∑
H⊂0 j⊂0

PH
ε (0 j )u(E, ci , 0 j )

= 1− (1− η)
∏

i

∑
Sj⊂desc(ci )

PH
ε (inc(Sj ), del(desc(ci )\Sj ))

× u(E, ci , (inc(Sj ), del(desc(ci )\Sj )))

= 1− (1− η)
∑

S⊂desc(k)

∏
i

PH
ε (inc(S∩ desc(ci )), del(desc(ci )\S))

× u(E, ci , (inc(S), del(desc(ci )\S)))

= 1−
∑

S⊂desc(k)

PH
ε (inc(S), del(desc(k)\S))

×
∏

i

u(E, ci , (inc(S), del(desc(ci )\S)))
= 1−

∑
H⊂0 j⊂0

PH
ε (0 j )

∏
i

u(E, ci , 0 j )

=
∑

H⊂0 j⊂0
PH
ε (0 j )[1−

∏
i

u(E, ci , 0 j )]

=
∑

H⊂0 j⊂0
PH
ε (0 j )u(E, k, 0 j )

= ExpPH
ε

[u(E, k, 0)]
2
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Proof of Theorem 1: First note that by Lemma 1:

uH
ε (E, r, 0) =

∑
H⊂0i⊂0

PH
ε (0i )u(E, r, 0i ) =

N∑
i=0

ε i (1− ε)N−i Ni (E),

whereN is the number of components in0 not in H andNi (E) is the number of theories
0′ such thatH ⊂ 0′ ⊂ 0, dist(0, 0′) = i , andu(E, r, 0′) = 1. We then have that

uH
ε (E, r, 0) =

N∑
i=DPH (0,E)

ε i (1− ε)N−i Ni (E),

by removing zero terms from the sum. In the limit, we can ignore higher-order terms in the
sum, and so

lim
ε→0

uH
ε (E, r, 0)

εDPH (0,E)(1− ε)N−DPH (0,E)NDPH (0,E)(E)
= 1,

Similarly we have that

lim
ε→0

1− uH
ε (E, r, 0)

εDRH (0,E)(1− ε)N−DRH (0,E) N̄DRH (0,E)(E)
= 1,

where N̄i (E) is the number of theories0′ such thatH ⊂ 0′ ⊂ 0, dist(0, 0′) = i , and
u(E, r, 0′) = 0.

We now divide the theorem into two cases:

1. DPH (0, E1)> DPH (0, E2); E1 is unproved in0 (if E2 is proved in0, DPH (0, E2)= 0).
2. DRH (0, E2)> DRH (0, E1); E2 is proved in0 (if E1 is unproved in0, DRH (0, E2)= 0).

Since, for any given example, either its proof distance or refutation distance is zero, if
DH (0, E1) > DH (0, E2), one of the two cases must obtain.

Case 1: Let examplesE1 andE2 be such thatDPH (E1) > DPH (E2). Consider the ratio

lim
ε→0

uH
ε (E1, r, 0)

uH
ε (E2, r, 0)

= lim
ε→0

εDPH (E1)(1− ε)N−DPH (E1)NDPH (E1)(E1)

εDPH (E2)(1− ε)N−DPH (E2)NDPH (E2)(E2)

SinceDPH (E1) > DPH (E2),

lim
ε→0

εDPH (E1)(1− ε)N−DPH (E1)NDPH (E1)(E1)

εDPH (E2)(1− ε)N−DPH (E2)NDPH (E2)(E2)
< 1,

and hence, for sufficiently smallε,

uH
ε (E1, r, 0) < uH

ε (E2, r, 0).
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Case 2: An argument isomorphic to the above holds for Case 2 in the theorem, by consid-
ering 1− uH

ε (E, r, 0) in place ofuH
ε (E, r, 0).

The theorem then follows. 2

Theorem 1 leads immediately to the following corollary, which states that usinguH
ε for

classification with a perfect theory cannot adversely affect classification accuracy.

Corollary 1 (Perfect theories). If 0 is a tree-structured theory with set of hardened com-
ponents H⊂ 0 (possibly empty),we have that for any set of examplesE and all sufficiently
smallε > 0, if 0 classifies all examples inE correctly, thenSoftAcc(0, E, uH

ε ) = 100%.

Proof: Suppose0 classifies all examples inE correctly. Consider two examples inE :
E1, proved in0 (and hence positive by assumption), andE2, not proved in0 (and hence
negative by assumption). We have thatDH (0, E1) > DH (0, E2), and hence by Theorem 1,
for sufficiently smallε, uH

ε (E1, r, 0) < uH
ε (E2, r, 0). Since this relation holds for any two

examples with differing classifications, there exists a thresholdθ on uH
ε which separates

positive and negative examples perfectly, i.e.,SoftAcc(0, E, uH
ε ) = 100%. 2

The next corollary is more interesting, in that it shows how using soft classification can
dramatically improve classification accuracy. Define0 to be apseudo-perfecttheory if0
would classify every example correctly but for the presence of a spurious clause for the root
proposition,r ←, which results in every example being classified as positive. The classi-
fications provided by0 provide no information at all regarding the correct classification
of the examples. However,0 does indeed contain much information regarding the correct
classification of examples.

Corollary 2 (Pseudo-perfect theories). If 0 is a pseudo-perfect tree-structured theory
with set of hardened components H⊂ 0 (possibly empty, but not including the spurious
clause), then for any set of examplesE and all sufficiently smallε > 0,SoftAcc(0, E, uH

ε ) =
100%.

Proof: We will show that any negative example for the concept incorrectly classified as
positive by0 has a lower revision distance than all examples correctly classified as positive
by 0; the corollary then follows by reasoning as above. Consider an arbitrary negative
exampleE1 and an arbitrary positive exampleE2. The proof distance ofE1 is clearly−1,
since removal of the single invalid ruler ← from 0 suffices to removeE1’s spurious
proof. Refutation ofE2, however, requires removing not only the spurious proof from the
invalid rule, but also at least one more proof from the correct portion of the theory. Hence
DH (0, E2) ≤ −2< DH (0, E1); the corollary the follows from Theorem 1. 2
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Notes

1. This merely confirms earlier results, such as those of Ortega (1995) that indicate that simple “numerical”
generalization strategies are very effective for this particular theory. It is surprising, though, that so simple
a scheme achieves as good or better results on this theory than many theory revision techniques (Towell &
Shavlik, 1993; Koppel, Feldman, & Segre, 1994a; Ourston & Mooney, 1994).

2. Theory revision results are those presented in Koppel, Feldman, & Segre (1994a).
3. Unfortunately, we do not have the original data from the revision system experiments, and so could not compute

the statistical significance of these results.
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