
Machine Learning, 40, 111–137, 2000
c© 2000 Kluwer Academic Publishers. Printed in The Netherlands.

Stochastic Grammatical Inference of Text
Database Structure

MATTHEW YOUNG-LAI mdyounglai@neumann.uwaterloo.ca
FRANK WM. TOMPA
Computer Science Department, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1

Editor: Raymond Mooney

Abstract. For a document collection in which structural elements are identified with markup, it is often necessary
to construct a grammar retrospectively that constrains element nesting and ordering. This has been addressed by
others as an application of grammatical inference. We describe an approach based onstochasticgrammatical
inference which scales more naturally to large data sets and produces models with richer semantics. We adopt an
algorithm that produces stochastic finite automata and describe modifications that enable better interactive control
of results. Our experimental evaluation uses four document collections with varying structure.

Keywords: stochastic grammatical inference, text database structure

1. Introduction

1.1. Text structure

For electronically stored text, there are well known advantages to identifying structural ele-
ments (e.g., chapters, titles, paragraphs, footnotes) withdescriptive markup(André, Furuta,
& Quint, 1989; Berg, 1989; Coombs, Renear, & DeRose, 1987). Most commonly, markup
is in the form of labeled tags interleaved with the text as in the following example:

<quotation>
<reference>The Art of War: Chapter 3 paragraph 18</reference>
<sentence>
If you know the enemy and know yourself, you need not fear the
result of a hundred battles. </sentence>
<sentence>
If you know yourself but not the enemy, for every victory gained
you will also suffer a defeat. </sentence>
<sentence>
If you know neither the enemy nor yourself, you will succumb in
every battle. </sentence>
</quotation>

Documents marked up in this way can be updated and interpreted much more robustly
than if the structural elements are identified with codes specific to a particular system or

112 M. YOUNG-LAI AND F.W. TOMPA

typesetting style. The markup can also be used to support operations such as searches that
require words or phrases to occur within particular elements.

Further advantages can be gained by using a formal grammar to specify how and where
elements can be used. The above example, for instance, conforms to the following grammar
represented as a regular expression:

quotation→ reference sentence+.

This specifies that a quotation must contain a reference followed by one or more sentences.
Any other use of the elements, e.g. nesting a sentence in a reference or preceding a reference
by a sentence, is disallowed. Thus the main benefit of having a grammar is that new or
modified documents can be automatically verified for compliance with the specification.
Other benefits include support for queries with structural conditions and optimization of
physical database layout. Another important purpose of a grammar is to provide users with
a general understanding of the text’s organization. Overall, a grammar for a text database
serves much the same purpose as a schema for a traditional database: it gives an overall
description of how the data is organized (Gonnet and Tompa, 1987).

The most widely used standard for text element markup and grammar specification is
SGML (Standard Generalized Markup Language) (ISO, 1986), and more recently, XML
(Bray, Paoli, & Sperberg-McQueen, 1998). HTML represents a specific application of
SGML, i.e., it uses a single grammar and set of elements (although the grammar is not very
restrictive).

1.2. Automated document recognition

Unfortunately, many electronic documents exist with elements and grammar only implicitly
defined, typically through layout or typesetting conventions. For example, on the World
Wide Web, data is laid out according to conventions that must be inferred to use it as easily
as if it were organized in a database (Suciu, 1997). There is therefore a pressing need to
convert the structural information in such documents to a more explicit form in order to
gain the full benefits of their online availability. Completely manual conversion would be
too time consuming for any collection larger than a few kilobytes. Therefore, automated
or interactive methods are needed for two distinct sub-problems: element recognition and
grammar generation.

If the document is represented by procedural or presentational markup, the first sub-
problem is to recognize and mark up individual structural elements based on layout or
typesetting clues. To do this, it is necessary to know or infer the original conventions used
to map element types to their layout. We do not address this task here, but there are several
existing approaches, based on interactive systems (Fankhauser & Xu, 1993; Kilpel¨ainen
et al., 1990), on learning systems (Muslea, Minton, & Knoblock, 1998), and on manual trial
and error construction of finite state transducers (Clark, 1991; Kazman, 1986).

The second sub-problem is to extract implicit structural rules from a collection of docu-
ments and model them with a grammar. This requires that a plausible model of the original
intentions of the authors be reconstructed by extrapolating from available examples in some
appropriate way. This can be considered an application ofgrammatical inference—the

GRAMMAR INFERENCE FOR TEXT 113

general problem that deals with constructing grammars consistent with training data (Vidal,
1994).

Note that the two problems may depend on each other. Element recognition often requires
that ambiguities be resolved by considering how elements are used in context. However,
recognition usually considers these usage rules in isolation and identifies only the ones
that are really needed to recognize an element. A grammar can be considered a single
representation of all usage rules, including the ones that are not relevant to recognition
(which may be the majority). Thus, even if certain components of the grammar need to
be determined manually in the recognition phase, grammar inference is still useful for
automatically combining these components and filling in the ones that were not needed for
recognition.

The grammar inference problem is especially applicable to XML, an increasingly impor-
tant variant of SGML in which rich tagging is allowed without requiring a DTD (grammar).
In this case, there is no recognition subproblem and grammar generation comprises the
entire recognition problem.

The benefits of attaching a grammar to documents can be seen from the recent expe-
rience with the database system Lore (McHugh et al., 1997). Lore manages semistruc-
tured data, where relationships among elements are unconstrained. In place of schemas,
“DataGuides” are automatically generated to capture in a concise form the relationships
that occur (Goldman & Widom, 1997). These are then used for traditional schema roles
such as query optimization and aiding in query formulation.

1.3. The data

We describe our approach to this problem using the computerized version of theOxford
English Dictionary(OED) (Simpson & Weiner, 1989). This is a large document with com-
plex structure (Oxford University Press, 1998), containing over sixty types of elements that
are heavily nested in over two million element instances. Figure 1 lists some of the most
common elements as they appear in a typical entry. See the guide by Berg (1993) for a
complete explanation of the structural elements used in the OED.

The OED has been converted from its original printed form, through an intermediate
keyed form with typesetting information, to a computerized form with explicitly tagged
structural elements (Kazman, 1986). The text is broken up into over two hundred ninety
thousand top level elements (dictionary entries). The grammar inference problem can be
considered as one of finding a complete grammar to describe these top level entries, or it
can be broken into many subproblems of finding grammars for lower level elements such
as quotation paragraphs or etymologies.

As a choice of data, the OED is a good representative of the general problem of inferring
grammars for text structure. It is at least as complex as any text in two ways: the amount
of structure information is extremely high, and the usage of structural elements is quite
variable.

The large amount of structure information is evidenced by the number of different types
of tags, and also by the high density of tagging as compared to most text (Raymond, 1993).
There are over sixty types of tags, and the density of tagging is such that, even with all

114 M. YOUNG-LAI AND F.W. TOMPA

Figure 1. Common elements from the OED with their corresponding tags in the order they appear in a typical
dictionary entry. (This is reproduced from Berg (1989) and represents a human-generated high level description
of the data.) Indentation denotes containment. Therefore, the headword group, variant form list, etymology, and
senses are top level elements of an entry; their children are indented one step further; etc. Note that more than one
sense element can occur at the top level.

element names abbreviated to three or fewer characters, the amount of tagging is comparable
to the amount of text.

In most text, restrictions on element usage tend to vary between one extreme where any
element can occur anywhere (e.g. italics in HTML), to the other where elements always occur
in exactly the same way (e.g. a newspaper article which always contains a title, followed

GRAMMAR INFERENCE FOR TEXT 115

by a byline, followed by a body). Neither of these extremes is interesting for grammar
inference. Element usage in the OED, however, is constrained, yet quite variable. This is
mainly a consequence of the circumstances of its original publication. The compilation
spanned 44 years, and filled over 15,000 pages. There were seven different chief editors
over the lifetime of the project, most of which was completed before 1933—well before
the possibility of computer support. The structure of the OED is remarkably consistent,
but variable enough to be appropriate for the problem: it can test the method but is regular
enough to make description by a grammar appropriate.

1.4. Text structure and grammatical inference

We now demonstrate the use of marked up text from the OED as training data for a gram-
matical inference process. Consider the structure of the two short OED entries shown in
figure 2. These can be represented by the derivation trees, shown in figure 3, where the
nodes are labeled with their corresponding tag names. A corresponding grammar represen-
tation is shown in figure 4. Each production has a left hand side corresponding to a non-leaf
node, and a right hand side formed from its immediate children. The number of times a

Figure 2. Two marked up dictionary entries.

116 M. YOUNG-LAI AND F.W. TOMPA

Figure 3. The two parse trees.

production occurs in the data is indicated by a preceding frequency. A non-terminal and all
of its strings (right hand sides of its productions) can now be considered a training set for a
single sub-problem. Note that if we generalize each such production to a regular expression
then we have an overall grammar that is context free (Lalonde, 1977). This is the standard
choice for modeling text structure.

Three existing grammatical inference approaches for text operate by specifying rules that
are used to rewrite and combine strings in the training set (Chen, 1991; Fankhauser & Xu,
1993; Shafer, 1995). The following rule, for example, generalizes a grammar by expanding
the language that it accepts:

• abnc→ ab+c if n is greater than or equal to a given value

Applied to the first entry in figure 2 withn= 2 this givesE -> HG LB su ET S4+, for
example. Other rules have no effect on the language, but simplify a grammar by combining
productions:

• abc∧ ac→ ab?c
• ab+c∧ ac→ ab∗c.

GRAMMAR INFERENCE FOR TEXT 117

Figure 4. The de facto grammar with production frequencies.

Applied to the twoHG productions in figure 2, for example, the first rule givesHG -> HL
b PS?.

Work by Ahonen (1996) and Ahonen, Mannila, and Nikunen (1994a, 1994b) uses a more
classical grammatical inference approach of generating a language belonging to a character-
izable subclass of the regular languages. Specifically, they use(k−h) contextual languages,
an extension that they propose tok-contextual languages.

In contrast to previous approaches to grammar construction for text structure, we use
the frequency information from the training set to generate a stochastic grammar. The non-
stochastic approaches mentioned above are inappropriate for larger document collections
with complex structure. This is because there is no way to deal with the inevitable er-
rors and pathological exceptions in such cases without considering frequency information.
Stochastic grammars are also better suited for understanding and exploration since they
express additional semantics and provide a natural way of distinguishing the more sig-
nificant components of the grammar. The thesis by Ahonen (1996) does partially address
such concerns. For example, when applying her method to a Finnish dictionary of similar
complexity to the OED, she first removed all but the most frequent cases from the training
set. She also proposes some ad-hoc methods for separating the final result into high and
low frequency components (after having generated the result with a method that does not
consider frequency information).

We assert that it is better to use an inference method that considers frequency information
from the beginning. The stochastic grammatical inference algorithm that we have chosen to
adopt for this application was proposed by Carrasco and Oncina (1994b). Our modifications
are motivated by shortcomings in the ability to tune the algorithm and by our wish to use

118 M. YOUNG-LAI AND F.W. TOMPA

it interactively for exploration rather than as a black box to produce a single, final result.
Note that understanding techniques are needed to support effective interaction. The primary
technique used for examples in this paper is visualizing automata as bubble diagrams. All
bubble diagrams were generated by the graph visualization programda Vinciwhich performs
node placement and edge crossover minimization (Fr¨ohlich & Werner, 1995).

The remainder of the paper is as follows: Section 2 describes the underlying algo-
rithm, Section 3 explains our modifications, Section 4 evaluates the method, and Section 5
concludes.

2. Algorithm

Here we provide an overview of the algorithm by Carrasco and Oncina (1994b). Of the
many possible stochastic grammatical inference algorithms, the particular one used here
was chosen for several reasons. First of all, it is similar to the method of Ahonen et al. in
that it uses a finite automaton state merging paradigm. Since that work represents the most
in-depth examination of grammar inference for text structure to date, it is reasonable to use
a similar approach. In fact, many of their results that go beyond just the application of the
algorithm (such as rewriting the automaton into a grammar consisting of productions) can be
adapted to the outputs of our algorithm. The second reason for choosing this algorithm was
that the basic generalization operation of merging states is guided by a justifiable statistical
test rather than an arbitrary heuristic. Note that the Bayesian model merging approach of
Stolcke and Omohundro (1994) or a probability estimation approach based on the forward-
backward algorithm (Huang, Ariki, & Jack, 1990; Lari & Young, 1990) are other candidates
satisfying this particular characteristic.

2.1. ALERGIA

The algorithmALERGIA by Carrasco and Oncina (1994b) is itself an adaptation of a non-
stochastic method by Oncina and Garc´ıa (1992).

The algorithm produces stochastic finite automata (SFAs). These grammar constructs
can be informally explained as finite automata that have probabilities associated with their
transitions. The probability assigned to a string is, therefore, the product of the probabilities
of all transitions followed in accepting it. Note that every state also has an associated
termination probability, and that this is included in the product. Any state with a non-zero
termination probability can be considered a final state. See the book by Fu (1982) for a
more formal and complete description of SFAs and their properties.

The inference paradigm used byALERGIA is a common one: first build a de facto model
that accepts exactly the language of the training set; then generalize. Generalization for finite
automata is done by merging states. This is similar to the state merging operation used in
the algorithm for minimizing a non-stochastic finite automaton (Hopcroft & Ullman, 1979).
The difference is that merges that change the accepted language are allowed.

Consider, as an example, the productions forET from the training data of figure 4. These
can be represented by the prefix tree in figure 5. The primitive operation of merging two

GRAMMAR INFERENCE FOR TEXT 119

Figure 5. A de facto SFA (prefix tree) for the ET element. States are labeled ID[N,T] where ID is the state
identifier, N is the incoming frequency, and T is the termination frequency. Transitions are labeled S[F], where
S is the symbol, and F is the transition frequency. Final states with non-zero termination frequencies are marked
with double rings.

Figure 6. Figure 4 with states 2, 4 and 5 merged.

states replaces them with a single state, labeled by convention with the smaller of the two
state identifiers. All incoming and outgoing transitions are combined and the frequencies
associated with any transitions they have in common are added, as are the incoming and
termination frequencies. Figure 6 demonstrates the effect of merging states 2 and 4, then 2
and 5.

Note that if two states have outgoing transitions with the same symbol but different
destinations, these two destinations are also merged to avoid indeterminism. Thus, merging
two non-leaf states can recursively require merging of long strings of their descendants.

An algorithm based on this paradigm must define two things: how to test whether two
given states should be merged, and the order in which pairs of states are tested.

In ALERGIA, two states are merged if they satisfy the following equivalence critera: for
every symbol in the alphabet, the associated transitionprobabilities from the states are
equal; the terminationprobabilitiesfor the states are equal; and the destination states of the
two transitions for each symbol are equivalent according to a recursive application of the
same criteria.

Whether two transitions’probabilitiesare equal is decided with a statistical test of the
observedfrequencies. Let the null hypothesisHo be that they are equal and the alternative
Ha be that they differ. Letn1, n2 be the number of strings that arrive at the states andf1, f2

be the number of strings that follow the transitions in question (or terminate). Then, using

120 M. YOUNG-LAI AND F.W. TOMPA

the Hoeffding bound (Hoeffding, 1963) on binomial distributions, thep-value is less than
a chosen significance levelα if the test statistic∣∣∣∣ f1

n1
− f2

n2

∣∣∣∣
is greater than the expression√

1

2
log

2

2α

(
1√
n1
+ 1√

n2

)
.

In this case, reject the null hypothesis and assume the two probabilities are different, other-
wise assume they are the same. This test ensures that the chosenα represents a bound on the
probability of incorrectly rejecting the null hypothesis (i.e. incorrectly leaving two equiv-
alent nodes separate). Thus, reducingα makes merges more likely and results in smaller
models.

The order in which pairs of nodes are compared is defined as follows: nodes are numbered
in a breadth-first order with all nodes at a given depth ordered lexically based on the string
prefixes used to reach the node. Figure 5 is an example. Pairs of nodes(qi ,qj) are tested by
varying j from 1 to the number of nodes, andi from 0 to j−1. For the non-stochastic version
of the algorithm, this ordering is necessary to prove identification in the limit (Oncina &
Garcı́a, 1992). Its significance in the stochastic version is unclear.

Note that the worst case time complexity of the algorithm isO(n3). This occurs for
an input where no merges take place, thus requiring that alln(n− 1)/2 pairs of nodes be
compared, and furthermore, where the average recursive comparison continues toO(n)
depth. In practise, the expected running time is likely to be much less than this. Carrasco
and Oncina report that, experimentally, the time increases linearly with the number of
strings in the training set, as artificially generated by a fixed size model. We have observed
a quadratic increase with the size of model. However, since this size is normally chosen,
through parameter adjustment, to be small enough for understanding, running time has not
been a problem in our experience.

3. Modifications

In this section we present our modifications to the algorithm, using the PQP (pseudo-
quotation paragraph) element from the OED as an example. Of the 145,289 instances of
that element in the entire dictionary, there are 90 unique arrangements for subelements; thus
there are 90 unique strings that appear as right sides of productions in the de facto grammar.
Those are shown in figure 7 along with their occurrence frequencies. The four elements that
occur in a PQP are the EQ (earliest quotation), Q (quotation), SQ (subsidiary quotation),
and LQ (latest quotation). The usage of the elements (which is known from the dictionary
but can also be deduced from the examples) is as follows: SQ can occur any number of
times and in any position; Q can occur any number of times; EQ can occur at most once
and must occur before the first Q; LQ can occur at most once and must occur after the last

GRAMMAR INFERENCE FOR TEXT 121

Figure 7. The PQP example strings.

Q. This data is very simple and intended only to illustrate the modified learning algorithm.
We give more complex examples in Section 4.2.

3.1. Separation of low frequency components

The original algorithm assumes that every node has a frequency high enough to be statisti-
cally compared. This is not typically valid. Nodes with too low a frequency always default
to the null hypothesis of equivalence, resulting in inappropriate merges. The characteristic

122 M. YOUNG-LAI AND F.W. TOMPA

Figure 8. A result from the unmodified algorithm with transitions characteristic of inappropriate low frequency
merges. Note that termination and transition frequenciesfi are shown converted to percentages representingfi /ni

in this and subsequent figures to simplify comparisons.

result is that many low frequency nodes merge with either the root or another low index node
(since the comparisons are made in order of index). This gives a structure with many inappro-
priate transitions pointing back to these low index nodes. Figure 8 shows an example result
for the PQP data where transitions occur from several parts of the model to nodes 0 and 1.

Note that this form of inappropriate merging is not a problem that can be remedied just
by tuning the single parameterα. As is usual in hypothesis tests,α is a bound on the
probability of a false reject of the null hypothesis (i.e. failing to merge two nodes that are
in fact equivalent). The complementary boundβ on the probability of a false accept is
unconstrained by the test ofALERGIA, and can be arbitrarily high for very low frequencies.

The problem can be seen as closely related to the small disjuncts problem discussed by
Holte, Acker, and Porter (1989) for rule based classification algorithms: essentially, rules
covering only a few cases of the training data perform relatively badly since they have
inadequate statistical support. Holte et al. give three general approaches for improving the
situation: 1) use exact significance tests in the learning algorithm, 2) test both significance
and error rate of every disjunct in evaluating a result, and 3) whenever possible, use errors of
omission instead of default classifications. Note that since our training set includes positive
examples only, the second point does not apply. The first point, however corresponds to one
of our modifications, and the third agrees with our own conclusions.

Experiments with several different treatments for low frequency nodes led us to the
conclusion that no single approach would always produce an appropriate result (certainly
not the original action of the algorithm—automatically merging on the first comparison).

GRAMMAR INFERENCE FOR TEXT 123

This is understandable given that the frequencies in question are statistically insignificant.
Therefore, we chose to first incorporate a significance test into the algorithm to separate out
the low frequency nodes automatically, and then later decide on alternative treatments for
these nodes (discussed in Section 3.4).

The following test is the standard one for checking equivalence of two binomial propor-
tions while considering significance (see Desu (1990), for example). Assume as before that
p1, p2 represent the unknown, true probabilities and thatf1/n1, f2/n2 serve as the esti-
mates. Sample sizes are required to satisfy the following relationship withα andβ (which
bound the probabilities of a false reject or a false accept of the null hypothesis):

1

n1
+ 1

n2
<

{
2ε∗

zα/2+ zβ

}2

wherezx denotes thet value at which the cumulative probability of a standard normal
distribution is equal to 1− x; and,

ε∗ = arc sin
√

0.50+ ε/2− arc sin
√

0.50− ε/2.

The valueε is an additional parameter required to boundβ (representing the minimum true
difference betweenp1 andp2). The null hypothesis is rejected iff

zα/2 >

∣∣2 arc sin
√

f1/n1− 2 arc sin
√

f2/n2

∣∣
√

1/n1+ 1/n2
.

We incorporate this test into the algorithm in the following way. Associate a boolean flag
with each node, initially false; and, set the flag to true the first time a node is involved in
a comparison with another node that satisfies the required relationship betweenα, β, and
sample sizes. Nodes that still have false flags when the algorithm terminates are classified
as low frequency components. An example result with the PQP data is shown in figure 9.
Low frequency nodes in the graph are depicted as rectangles.

3.2. Control over the level of generalization

An important interactive operation is control over the level of generalization (how much
the finite language represented by the training set is expanded). One possible approach is to
varyα andβ. Reducingα increases generalization: it restricts the possibility of incorrectly
leaving nodes separate, and therefore makes merges more likely. Increasingβ also increases
generalization: it increases the allowable possibility of incorrectly merging nodes. Note that
these two are not completely equivalent sinceα andβ areboundson the probabilities of
their respective errors.

Unfortunately, it is not appropriate to control generalization in this way sinceα andβ
directly determine which components of the data are treated as too low frequency to be
significant (i.e. the parts that will be merged by default using the original algorithm, or
classified as low frequency according to the test in Section 3.1). Therefore, unless we are
in a position to arbitrarily vary the amount of available data according to our choice of
parameters, another modification is needed.

124 M. YOUNG-LAI AND F.W. TOMPA

Figure 9. The PQP inference result withα = β = 0.025.

The goal is to allow independent control over the division into low and high frequency
components, and over the level of generalization. This is done by changing the hypothesis
for the statistical test. Rather than testing whether two observed proportions can plausibly
be equal, test whether they can plausibly differ by less than some parameterγ :

Ho : |p1− p2| ≤ γ
Ha : |p1− p2| > γ

The modified test is as follows: letπ1 be f1/n1, andπ2 be f2/n2. Then, if

|π1− 0.5| < |π2− 0.5|

GRAMMAR INFERENCE FOR TEXT 125

addγ · sign(π2− π1) to π1, otherwise addγ · sign(π1− π2) to π2. RejectHo iff∣∣2 arc sin
√
π1− 2 arc sin

√
π2

∣∣
√

1/n1+ 1/n2
> zα/2.

A larger value ofγ results in a null hypothesis that is easier to satisfy, therefore producing
more merges and an increase in generalization. As an example, consider the three results
in figures 10–12 with constantα andβ values, but varyingγ values (and low frequency
components clipped out for the moment). Higherγ values result in fewer nodes, larger
languages, and less precise probability predictions.

3.3. Choosing algorithm parameters

The modified algorithm has the following parameters:

• γ is the maximum difference in true proportions for which the algorithm should merge
two states.

Figure 10. The PQP inference result withα = β = 0.025, andγ = 0.0.

126 M. YOUNG-LAI AND F.W. TOMPA

Figure 11. The PQP inference result withα = β = 0.025, andγ = 0.025.

Figure 12. The PQP inference result withα = β = 0.025, andγ = 0.250.

• α is the probability bound on the chance of making a type I error (incorrectly concluding
that the two proportions differ by more thanγ).
• β is the probability bound on the chance of making a type II error (incorrectly concluding

that the two proportions differ by less thanγ) when the true difference in the proportions
is at leastγ + ε (ε being the fourth parameter).

We next describe the effects of changing these parameters and also explain that useful
interaction does not necessarily require separate control over all four.

GRAMMAR INFERENCE FOR TEXT 127

Choosingγ controls the amount of generalization. Setting it to 0 results in very few states
being merged; setting it to 1 always results in an output with a single state (effectively a
0-context average of the frequency of occurrence of every symbol).

Changes toα andβ also affect the level of generalization. Their main effect of interest,
however, is that they define the cutoff between high and low frequency components. Increas-
ing either one decreases the number of nodes classified as low frequency. For simplified
interaction, it is possible to always have both equal and adjust them together as a single
parameter. This does not seriously reduce the useful level of control over the algorithm’s
behavior.

Theε parameter determines the difference to which theβ probability applies. This must
be specified somewhere but is not an especially useful value over which to have control. It
should therefore be fixed, or tied in some way to the size of the input and the value ofγ

(we choose to fix it).
Overall then, it can be seen that control is only really needed over two major aspects of

the inference process. Choosing a combined value forα andβ sets the cutoff point between
the significant data and the low frequency components. Choosingγ controls the amount of
generalization.

As an example of parameter adjustment, consider the inference result from figure 9.
Examination reveals two possible changes. The first is based on the observation that nodes
1 and 3 are very similar: they both accept an LQ or SQ or any number of Q’s, and their
transition and termination probabilities all differ by less than ten percent. Unless these slight
differences are deemed significant enough to represent in the model, it is better to merge
the two nodes. This can be done by increasingγ to 0.1, thus allowing nodes to test equal if
their true probabilities differ by up to ten percent.

The second adjustment affects nodes 4, 12 and 21. These express the fact that strings
starting with an SQ are much more likely to end with more than two Q’s. This rule only
applies, however, to about five hundred of the over one hundred forty five thousand PQPs
in the dictionary. If we choose to simplify the model at the expense of a small amount of
inaccuracy for these cases, we can reduceα andβ to reclassify these nodes as low frequency.
Bisection search of values ofα andβ between 0 and 0.025 reveals that this is accomplished
with α = β = 0.005. The result after application of the two adjustments described above
is shown in figure 13.

3.4. What to do with the low frequency components

There are three possible ways of treating low frequency components: assume the most spe-
cific possible model by leaving the components separate (this is the same as leavingβ fixed
and allowingα to grow arbitrarily high); merge all the low frequency components into a
single garbage state (an approach adopted in Ron, Singer, and Tishby (1995)); or, merge
low frequency nodes into other parts of the automaton. Many methods can be invented for
the last approach. We have observed that, in general, a single method does not produce
appropriate results for all components of a given model. We therefore propose atentative
mergingstrategy. First an ordered list of heuristics is defined. Then all low frequency com-
ponents are merged into positions in the model determined by the first heuristic in the list. If

128 M. YOUNG-LAI AND F.W. TOMPA

Figure 13. The PQP inference result withα = β = 0.005 andγ = 0.10.

the user identifies a problem with a particular resultingtentative transitionthen the subtree
can be re-merged into a position determined by the next heuristic in the list.

Heuristics can be designed based on various grammatical inference or learning ap-
proaches. Note that the problem of choosing a place to merge a low frequency component
differs from the general problem of stochastic grammatical inference in two ways: 1) the
rest of the high frequency model is available as a source of information, and 2) the frequency
information has been classified as insignificant. The second point implies that, if we choose
to consider frequency information, we may have to use special techniques to compensate.
These could include a Laplace approximation of the probability or a Bayesian approach
using a prior probability. Evidence measures developed for recent work in DFA (rather than
SFA) learning might also be applicable (Lang, Pearlmutter, & Price, 1999).

GRAMMAR INFERENCE FOR TEXT 129

Figure 14. Figure 13 with low frequency components merged into other parts of the graph.

We mention two heuristics that do not use frequency information but that we have found
to work well. Both guarantee that the model is still able to parse all strings in the training
set. The first is to merge every low frequency node with its immediate parent. The result is
that any terminals occurring in a low frequency subtree are allowed to occur any number of
times and in any order starting at the nearest high-frequency ancestor. The second heuristic
is to locate a position in the high frequency model from which an entire low-frequency
subtree can be parsed. This subtree can then be merged into the rest of the model by
replacing it with a single transition to the identified position. If more than one possible
position exists, these can be stepped through before proceeding to the next heuristic in the
list.

As an example of the application of the second heuristic reconsider figure 13. Merging
every low frequency tree in that graph into the first (lowest index) node that can parse it gives
the result in figure 14. Tentative transitions in that diagram are marked with dashed lines.
The tentative transition from node 1 to 0 on input of SQ creates a cycle that allows more
than one EQ to occur. This violates proper usage of that element as outlined in Section 3.
Re-pointing the transition to node 1, an alternate destination that parses the low frequency
subtree, gives an acceptable result for the PQP element.

4. Evaluation

In this section we compare the modified algorithm (henceforth referred to asMOD-ALERGIA)
with ALERGIA. First, using data drawn from four different texts, we compare performance
with automatic searches. Then we use two specific examples to illustrate some other points
of comparison.

4.1. Batch experiments

We describe experiments demonstrating that, even with an automatic search procedure and
simple default treatment of low frequency components,MOD-ALERGIA can be used to find

130 M. YOUNG-LAI AND F.W. TOMPA

probabilistically better models. The following four texts are used:

• OED—theOxford English Dictionary(Simpson & Weiner, 1989). This is over 500 Mb
and exhibits complex, sometimes irregular, structure.
• CPS—a pharmaceutical database which is an electronic version of a publication that

describes all drugs available in Canada (Krogh, 1995). This is 18 Mb and exhibits a mix
of simple and complex structure.
• OALD—the Oxford Advanced Learner’s Dictionary(Hornby & Cowie, 1992). This is

17 Mb and exhibits complex structure that is more regular than the OED having been
designed from the beginning for computerization.
• HOWTO—the SGML versions of HOWTO documents for the Linux operating system.

This is 10 Mb and exhibits relatively simple structure.

It is not worth performing inference on terminal structural elements and non-terminals with
very little sub-structure. As an arbitrary cutoff, we discard those that give de facto automata
with fewer than 10 states. This leaves 24 elements in OED, 24 in CPS, 23 in OALD, and
14 in HOWTO for a total of 85 data sets. The procedure for each data set is as follows:

1. Randomly split the strings into equal size training, validation, and test sets.
2. Using the training set to generate the de facto automaton, and calculating goodness

against the validation set (the metrics are detailed below), search the space of parameters
in two ways:

(A) Let x be the number of states of the de facto automaton for the training set. Using
ALERGIA, test x different α values evenly spaced over the unit interval. (This is
enough to find most of the possible models.)

(B) UsingMOD-ALERGIA and merging low frequency components with their immediate
parents, testx/2 parameter values withβ = 1, γ = 0, andα evenly spaced over the
unit interval (which behaves the same asALERGIA). Test the remaining (at most)
x/2 parameter values withα=β andγ varied as follows:

max= ⌊√x/2
⌋

for γ = 0.0 to 1.0 step 1.0/max

for α = 0.0 to 1.0 step 1.0/max

run MOD-ALERGIA

3. Evaluate the best model found by each method using the test set.

We perform the above procedure using two different metrics. The first is found by totaling
the probability of all strings that are assigned zero probability by the model. We call this the
error since it corresponds to the probability of rejecting a valid string if the SFA is stripped
of its probabilities and used as a DFA.

The second metric is cross entropy (also calledKullback-Liebler divergence) which
quantifies the probabilistic fit of one model to another. This measure has previously been

GRAMMAR INFERENCE FOR TEXT 131

used to evaluate stochastic grammatical inference methods (S´anchez & Bened´ı, 1994).
Given two probabilistic language models,M1 andM2, the cross entropy is defined as:

H(M1,M2) =
∑
∀x∈L

PM1(x) · log
PM1(x)

PM2(x)
.

wherePM1(x) is the probability in the set andPM2(x) is the probability assigned by the
model. We calculate this withL first equal to the validation set and later the test set. To
avoid assigning zero probabilities to strings not recognized by the model, we smooth the
distribution in the following way:

• Add a “dead” state that has transitions returning to itself for all symbols in the alphabet.
Give all these transitions equal probability.
• For each state, add an outgoing transition to the dead state for every symbol in the alphabet

not already present on an outgoing transition. Set the probability of these transitions to
a small constantpdead.
• For each state, if the termination probability is 0, change it topdead.
• Normalize every state so that the sum of the termination probability and all outgoing

probabilities is 1.0.

A single, constant value forpdeadwas used for all 85 data sets. It was chosen empirically
so that all absent strings (i.e. strings that were zero probability before smoothing) were
assigned smaller probabilities after smoothing than all non-absent strings.

On a SUN supersparc, the runs averaged 11 minutes for each of the 85 elements. The
average error forALERGIA over all 85 elements was 0.028; forMOD-ALERGIA it was 0.024.
When considering elements individually, the average improvement was 64.6 percent. At
test that the mean improvement was greater than 0 gave ap-value of 8e-17. Similarly, using
cross entropy, the average value forALERGIA was 7.1, the average forMOD-ALERGIA was
5.1, the average individual improvement was 18.1 percent, and thep-value was 8e-8.

There are some characterizable performance differences between the 85 data sets. For
example, if we sort them according to the average node frequency in the de facto automaton
(which is the same as the sum of all string lengths in the training set divided by the number
of states in the de facto automaton), and then break them into three equal size sets, we get
the result in Table 1. This shows that the modified algorithm does relatively better for data
sets with lower frequencies. This is partly because the performance ofALERGIA is worse in
these cases, and partly because the modifications inMOD-ALERGIA are targeted to deal with
low frequency cases.

Overall, these experiments clearly show that the extra parameter dimensions available to
MOD-ALERGIA provide the ability to find better models with realistic computing effort. The
given simple search procedure does significantly better on average, and in fact, the only
cases where theMOD-ALERGIA search did worse were ones where it had obviously over-fitted
the validation set. With a search procedure designed to avoid over-fitting,MOD-ALERGIA

could be used exclusively on a new data set with the expectation of always doing as well or
better thanALERGIA.

132 M. YOUNG-LAI AND F.W. TOMPA

Table 1. Error and cross entropy comparison for different average node frequencies. Part (a) is error; part (b) is
cross entropy. The first column gives the range of average node frequencies. The second column is the average
metric value over all 85 elements forALERGIA; the third column forMOD-ALERGIA. Column four is the mean
individual improvement. Column five is thep-value for at test that the mean improvement is greater than 0.

Avg. node freq. ALERGIA MOD-ALERGIA % improve (p-value)

(a) Average error

0–19 0.031 0.024 72.4 (3e-9)

19–101 0.035 0.032 62.8 (1e-7)

101+ 0.018 0.018 59.0 (8e-7)

(b) Average cross entropy

0–19 12.9 7.25 24.1 (1e-2)

19–101 5.07 4.90 16.5 (6e-5)

101+ 3.07 3.06 14.2 (7e-4)

4.2. Particular examples

This section gives two examples that demonstrate some other advantages of the stochastic
inference approach in general, and of the modified algorithm in particular.

For the first example we use the Entry element from the OED and create an over-
generalized model to compare with the prototypical entry presented in figure 1.ALERGIA

cannot produce any models for this element in the size range of 2 to 13 nodes (even using a
bisection search for values ofα that narrows the search interval all the way down to adjacent
numbers in a double precision floating point representation). In contrast, theMOD-ALERGIA

search described in the previous section generates a model for every size in this interval.
(Note that theMOD-ALERGIA search also generated about 70 percent more different sized
models overall.) After inspection of a few of the smaller models for Entry, we found the
seven node graph shown in figure 15 to be most similar to the prototypical entry. This
model highlights several interesting characteristics. One of the paths (HG VL ET S4*) does
correspond to the prototypical entry, but note some of the semantics that are not present in
the non-stochastic description:

• The variant form list (VL) is optional and is actually omitted more often than not.
• The etymology (ET) can also be omitted, skipping directly to the senses. Most often this

does not happen.
• An element not mentioned in figure 1, the status (ST), frequently precedes the headword

group (HG) and its presence significantly increases the chance that the ET and VL will
be bypassed. If they are not bypassed, however, a label (LB) element is normally inserted
between them and the HG.
• Any number of LBs can also occur in an entry without an ST. Usually, however, not many

occur (the loop probability is only 0.262).

Properties such as these can be extremely useful when it comes to exploring and under-
standing the data, even if they are disregarded for more standard grammar applications such

GRAMMAR INFERENCE FOR TEXT 133

Figure 15. An inference result for the Entry element from the OED.

as validating a document instance. Furthermore, the stochastic properties of the grammar
can be used to exercise editorial control when new entries are introduced into the dictio-
nary: patterns that rarely occur can first trigger a message to the operator to double-check
for correctness; if asserted to be what was intended they can be entered, yet flagged for
subsequent review and approval by higher-level editorial authorities.

In our second example we use the Monograph element from the CPS data to again
comment on the advantage of separating low frequency components (we have already done
this for the PQP example). Figure 16 shows the first three high frequency nodes of a model
for this data. Outgoing low frequency components are shown clipped. To get a final detailed
model, we need to expand and examine the subtrees of these low frequency components one
at a time. For each subtree we have the option of interactively stepping through positions
where it can merge (for instance the immediate parent, and all other nodes from which
it can be parsed), deciding to change the inference parameters to reclassify part of it as
high frequency, or deciding that it represents an error in the data. This type of interactive
correction is not possible with unmodifiedALERGIA.

134 M. YOUNG-LAI AND F.W. TOMPA

Figure 16. The first three nodes of the Monograph element from the CPS data. All clipped components indicated
with scissors are low frequency components.

5. Conclusions and future work

This study was concerned with the application of grammatical inference to text structure, a
subject that has been addressed before (Ahonen, 1996; Ahonen et al., 1994a,1994b; Chen,
1991; Fankhauser & Xu, 1993; Shafer, 1995). Grammar generation can be an important tool
for maintaining a document database system. It is useful for creating grammars for standard
text database purposes, but also allows a more flexible view. Rather than having a fixed
grammar that describes all possible forms of the data, the grammar is fluid and evolves.
Not only does the grammar change as new data is added, but many different forms of the
grammar can be generated at any time, an over-generalized high-level view or a description
for a subset of the data, for example. Thus we can generate grammars as much to summarize
and understand the organization of the text as to serve in traditional capacities like a schema.

Our approach adds two things to previous approaches: extension to stochastic grammati-
cal inference, and an algorithm with greater freedom for interactive tuning. The advantages
of changing to stochastic inference are as follows:

• Stochastic inference is more effective since it uses frequency information as part of the
inference process. This is true for any learning method.
• Stochastic models have richer semantics and are therefore easier to interpret and in-

teractively adjust. This was demonstrated with the Entry example in Section 4.2. Note
that stochastic models can easily be converted to non-stochastic ones by dropping the
probability information. Therefore, we are free to use the algorithm just as a more effec-
tive method for learning non-stochastic models.

GRAMMAR INFERENCE FOR TEXT 135

• A stochastic inference framework allows parameterization that can be used to produce
different models for a single data set. This flexibility can be used to search for a single
best model, or to explore several models at different generalization levels. Existing non-
stochastic approaches to this problem all work as black boxes producing a single, un-
tunable result.

The additional tunability of the modified algorithm was shown to be useful in two ways:
an experimental evaluation using four different texts, and two examples using specific
elements from those texts.

Possibilities exist for further improvement of the algorithm. For example, the state merg-
ing paradigm for learning finite automata has seen some development sinceALERGIA was
first published. In particular, a control strategy that compares and merges nodes in a non-
fixed order has been developed (Lang, Pearlmutter, & Price, 1999). This gives more freedom
to merge nodes in order of the evidence supporting the merges. Incorporating it into our
algorithm would be straightforward, especially in view of the fact that it is trivial to convert
the result of a statistical test to an evidence measure. Another improvement would be to de-
velop evidence measures to assist the user in choosing merge destinations for low frequency
components. Possible starting points were mentioned in Section 3.4.

Much future work exists integrating the method into a system to support traditional ap-
plications. For example, the semi-structured database system Lore (McHugh et al., 1997)
does generate schemas for use in query planning and optimization but performs no gener-
alization, effectively stopping at the prefix tree. The schemas are therefore not necessarily
compact nor understandable.

In addition to traditional applications, the stochastic part of the grammar also suggests
many novel applications. For example, a system could be constructed to assist authors
in the creation of documents by flagging excessively rare structures in the process of their
creation, or listing possible next elements of partially complete entries in order of their prob-
ability. Stochastic grammars could also be used as structural classifiers by characterizing
the authoring styles of two or more people who use the same tag set.

Acknowledgments

Financial assistance from the Natural Sciences and Engineering Research Council of Canada
through a postgraduate scholarship, the Information Technology Research Center (now,
Communications and Information Technology Ontario), and the University of Waterloo is
gratefully acknowledged. We would also like to thank the anonymous reviewers for their
detailed advice on improving the experimental evaluation.

References

Ahonen, H. (1996). Generating grammars for structured documents using grammatical inference methods. Ph.D.
Thesis, University of Helsinki, Department of Computer Science, Technical Report A-1996-4.

Ahonen, H., Mannila, H., & Nikunen, E. (1994a). Forming grammars for structured documents: An application
of grammatical inference. In Carrasco and Oncina (1994a), pp. 153–167.

136 M. YOUNG-LAI AND F.W. TOMPA

Ahonen, H., Mannila, H., & Nikunen, E. (1994b). Generating grammars for SGML tagged texts lacking DTD. In
M. Murata & H. Gallaire (Eds.),Proc. Workshop on Principles of Document Processing (PODP), Darmstadt.

André, J., Furuta, R., & Quint, V. (1989).Structured documents. The Cambridge Series on Electronic Publishing.
Cambridge University Press.

Berg, D. L. (1989). The research potential of the electronic OED2 database at the University of Waterloo: a guide
for scholars. Technical Report OED-89-02, UW Centre for the New Oxford English Dictionary, Waterloo,
Ontario. available athttp://www.chass.utoronto.ca:8080/cch/Berg/Berg-1 Contents.html.

Berg, D. L. (1993).A guide to the Oxford English dictionary: The essential companion and user’s guide, Oxford
University Press, Oxford.

Bray, T., Paoli, J., & Sperberg-McQueen, C. M. (1998). Extensible markup language (XML) 1.0. w3c recommen-
dation.

Carrasco, R. & Oncina, J. (Eds.). (1994a). Lecture Notes in Computer Science, Vol. 862, Springer-Verlag.
Carrasco, R. C. & Oncina, J. (1994b). Learning stochastic regular grammars by means of a state merging method.

In Carrasco and Oncina (1994a), pp. 139–152.
Chen, J. (1991). Grammar generation and query processing for text databases. Research proposal, University of

Waterloo.
Clark, D. (1991). Finite state transduction tools. Technical Report OED-91-03, UW Centre for the New Oxford

English Dictionary and Text Research, Waterloo, Ontario.
Coombs, J. H., Renear, A. H., & DeRose, S. J. (1987). Markup systems and the future of scholarly text processing.

Communications of the ACM, 30(11), 933–947.
Desu, M. (1990).Sample size methodology. Boston: Academic Press.
Fankhauser, P. & Xu, Y. (1993).MarkItUp! an incremental approach to document structure recognition.Electronic

Publishing—Origin, Dissemination and Design, 6(4), 447–456.
Fröhlich, M. & Werner, M. (1995).da Vinci 1.4 User Manual. available fromdaVinci@informatik.uni-
bremen.de.

Fu, K. S. (1982).Syntactic pattern recognition and applications. Englewood Cliffs, N.J: Prentice-Hall.
Goldman, R. & Widom, J. (1997). DataGuides: Enabling query formulation and optimization in semistructured

databases. InProceedings of the Twenty-Third International Conference on Very Large Databases(pp. 436–445).
Athens, Greece.

Gonnet, G. & Tompa, F. W. (1987). Mind your grammar: a new approach to modelling text.Very Large Data
Bases (VLDB), 13, 339–346.

Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables.American Statistical Asso-
ciation Journal, 58, 13–30.

Holte, R. C., Acker, L. E., & Porter, B. W. (1989). Concept learning and the problem of small disjuncts, Sridharan,
N. (Ed.),Proceedings of the Eleventh International Joint Conference on Artificial Intelligence V. 1, Detroit,
Michigan.

Hopcroft, J. E. & Ullman, J. D. (1979).Introduction to automata theory, languages and computation. Reading,
Massachusetts: Addison-Wesley.

Hornby, A. S. & Cowie, A. P. (1992).Oxford advanced learner’s dictionary of current English 4th edn.Oxford:
Oxford University Press.

Huang, X., Ariki, Y., & Jack, M. (1990).Hidden markov models for speech recognition. Edinburgh University
Press.

ISO (1986). Information processing—text and office systems—standard generalized markup language (SGML).
Kazman, R. (1986). Structuring the text of theOxford English dictionarythrough finite state transduction. Technical

Report CS-86-20, University of Waterloo, Computer Science Department.
Kilpeläinen, P., Lind´en, G., Mannila, H., & Nikunen, E. (1990). A structured document database system. In

Furuta, R. (Ed.), InEP90—Proceedings of the International Conference on Electronic Publishing, Document
Manipulation & Typography, The Cambridge Series on Electronic Publishing. Cambridge University Press.

Krogh, C. M. (Ed.). (1995).Compendium of pharmaceuticals and specialties, 30th edn.Canadian Pharmaceutical
Association.

Lalonde, W. (1977). Regular right part grammars and their parsers.Communications of the ACM, 20(10), 731–
741.

Lang, K. J., Pearlmutter, B. A., & Price, R. A. (2000). Results of the Abbadingo one DFA learning competition
and a new evidence driven state merging algorithm To appear.

GRAMMAR INFERENCE FOR TEXT 137

Lari, K. & Young, S. (1990). The estimation of stochastic context-free grammars using the inside-outside algorithm.
Comp. Speech and Language, 4, 34–36.

McHugh, J., Abiteboul, S., Goldman, R., Quass, D., & Widom, J. (1997). Lore: a database management system
for semistructured data.SIGMOD Record, 26(3), 54–66.

Muslea, I., Minton, S., & Knoblock, C. (1998). Wrapper induction for semistructured, web-based information
sources. InProceedings of the Conference on Automatic Learning and Discovery (CONALD-98).

Oncina, J. & Garc´ıa, P. (1992). Inferring regular languages in polynomial updated time. In N. P. de la Blanca,
A. Sanfeliu, & E. Vidal (Eds.),Pattern Recognition and Image Analysis, pp. 49–61. World Scientific.

Oxford University Press (1998). Inside theOxford English Dictionary. http://www.oed.com.
Raymond, D. R. (1993). Visualizing text. In9th Annual Conference of the UW Centre for the New OED, Oxford,

England. available athttp://solo.uwaterloo.ca/~drraymon/papers/oed93.ps.
Ron, D., Singer, Y., & Tishby, N. (1995). On the learnability and usage of acyclic probabilistic automata. In

Computational Learning Theory, COLT 95(pp. 31–40).
Sánchez, J. A. & Bened´ı, J. M. (1994). Statistical inductive learning of regular formal languages. In Carrasco and

Oncina (1994a), pp. 130–138.
Shafer, K. (1995). Creating DTDs via the GB-engine and Fred. OCLC Fred web pagehttp://www.oclc.org/
fred.

Simpson, J. & Weiner, E. (Eds.). (1989).The Oxford English dictionary, 2nd edn. Oxford: Clarendon Press.
Stolcke, A. & Omohundro, S. (1994). Inducing probabilistic grammars by Bayesian model merging. In Carrasco

and Oncina (1994a), pp. 106–118.
Suciu, D. (Ed.). (1997). InProc. of the Workshop on Managment of Semi-structured Data (PODS/SIGMOD),

Tucson, Arizona. National Science Foundation. available athttp://www.research.att.com/~suciu/
workshop-papers.html.

Vidal, E. (1994). Grammatical inference: an introductory survey. In Carrasco and Oncina (1994a), pp. 1–4.

Received January 23, 1998
Accepted June 11, 1999
Final manuscript June 11, 1999

