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Abstract. We show that a cε3

VC dim(F ) bound on the rate of drift of the distribution generating the examples is
sufficient for agnostic learning to relative accuracyε, wherec > 0 is a constant; this matches a known necessary
condition to within a constant factor. We establish acε2

VC dim(F ) sufficient condition for the realizable case, also
matching a known necessary condition to within a constant factor. We provide a relatively simple proof of a bound
of O( 1

ε2 (VC dim(F )+ log 1
δ
)) on the sample complexity of agnostic learning in a fixed environment.
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1. Introduction

Learning often takes place in a gradually changing environment. This phenomenon has been
studied theoretically by assuming that the function to be learned, the distribution generating
the examples, or both, change at most a certain amount between examples (see Helmbold
& Long, 1994; Bartlett, 1992; Bartlett & Helmbold, 1995; Barve & Long, 1997).1

In this paper, we study the problem of learning functions from some setX to {0, 1}
(“concepts”) using two models of a drifting environment. In the first (Bartlett, 1992), it is
assumed that examples(x1, y1), (x2, y2), . . . are generated independently at random from
a sequence of joint distributions overX×{0, 1}, and the only constraint is that consecutive
pairs of distributions have small total variation distance. If this distance is always at most
1, then the sequence of distributions is called1-gradual. For eacht , the learning algorithm
must output a hypothesisht using only the firstt − 1 examples. For some concept classF
and drift rate1, if, for any sequence of1-gradual joint distributions, for large enought ,
the probability thatht (xt ) 6= yt is at mostε more than the minimum such probability from
among f ∈ F , then we say thatF is (ε,1)-trackable in the agnostic case.

The second model of learning in a drifting environment (Helmbold & Long, 1994; Bartlett,
1992; Bartlett & Helmbold, 1995) is obtained from the above by adding the requirement
that each distributionPt has someft ∈ F such that the probability that the pair(xt , yt )

drawn according toPt has ft (xt ) = yt is 1. Here, if, for large enought , the probability that
ht (xt ) 6= yt is at mostε, we say thatF is (ε,1)-trackable in the realizable case.
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In this paper, we show that there is a constantc> 0 such that a cε3

VC dim(F ) bound on1 is

sufficient forF to be(ε,1)-trackable in the agnostic case, and acε2

VC dim(F ) bound is sufficient
for the realizable case. This work continues an existing line of research (Helmbold & Long,
1994; Bartlett, 1992; Bartlett & Helmbold, 1995; and Barve & Long, 1997), and matches
known necessary conditions for both the agnostic (Barve & Long, 1997) and realizable
(Bartlett, 1992) cases to within a constant factor, closing log-factor gaps. Note that both
models allow for variation both in the target and in the marginal distribution on the domain
elements; some previous work addressed these two types of changes separately.

The agnostic drift analysis uses a technique called Chaining from Empirical Process
Theory (see Pollard, 1984, 1990). We defer a high-level description of this technique until
later in the paper when appropriate context is available.

In the realizable case, as in (Helmbold & Long, 1994; Bartlett, 1992; Bartlett & Helmbold,
1995), we consider an algorithm based on the one-inclusion graph algorithm (Haussler,
Littlestone & Warmuth, 1994), which was originally designed for learning concepts in a
fixed environment. To determineh(xm) from some sample

(x1, y1), . . . , (xm−1, ym−1),

the original algorithm constructs a graph whose vertices are

{( f (x1), . . . , f (xm)) : f ∈ F}

and has edges between pairs of vertices that differ in only one component (the “one-
inclusion graph”).2 The edges of the graph are then directed, and these orientations are used
to determineh(xm). The analysis involves relating the probability of a mistake for some
target f to the maximum (overx1, . . . , xm) of the outdegree for the vertex associated withf .
Since any one-inclusion graph forF can be shown to be sparse relative to VC dim(F ), the
edges can be directed so that the out-degree of any vertex is at most VC dim(F ) (Haussler,
Littlestone & Warmuth, 1994). In (Helmbold & Long, 1994; Bartlett & Helmbold, 1995),
the vertex set was expanded to include elements of{0, 1}m that are within some Hamming
distance of elements of{( f (x1), . . . , f (xm)) : f ∈ F}; these graphs also can be shown
to be sparse. The main new idea in this paper’s realizable drift analysis is to show, for
eachF , how to directall the edges of them-dimensional hypercube so that the outdegree
of each vertex is bounded appropriately in terms of its distance to the closest element of
{( f (x1), . . . , f (xm)) : f ∈ F} as well as the VC-dimension ofF .

1.1. Agnostic learning in a fixed environment

In the standard agnostic learning model (Haussler, 1992; Kearns et al., 1994), random
examples

(x1, y1), . . . , (xm, ym)
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are drawn from an arbitrary joint distributionP, and the learner’s goal is to output a function
h such that probability thath(x) 6= y for another pair(x, y) drawn according toP is nearly
as small as that of the best function inF .

We give a proof that, in a fixed environment, for any concept classF ,

O

(
1

ε2

(
VC dim(F )+ log

1

δ

))
examples are sufficient for an algorithm to, with probability 1− δ, output a hypothesis
whose error is at mostε worse than the best inF . This bound, which also follows from
previous work of Talagrand (1994), improves on the bound of

O

(
1

ε2

(
VC dim(F ) log

1

ε
+ log

1

δ

))
that follows from Vapnik and Chervonenkis’ results (see Haussler, 1992), and matches
Simon’s general lower bound (Simon, 1996) to within a constant factor for each concept
classF . Our constants are greater than Talagrand’s, but our proof is simpler and more
elementary.

2. Preliminaries

Fix a countable setX. Denote the reals byR, and the natural numbers byN.
An exampleis an element ofX × {0, 1}, and asampleis a finite sequence of examples.

A learning algorithmtakes a sample as input, and outputs ahypothesis, which is a function
from X to {0, 1}. We will also consider randomized learning algorithms, which can be
modelled as deterministic functions of another random input along with the sample.

For a real-valued functiong defined onZ, andEz ∈ Zm, define

ÊEz(g) = 1

m

m∑
i=1

g(zi ).

The VC-dimension of a setG ⊆ {0, 1}m is the length of the longest sequencei1, . . . , i d

of indices such that{(gi1, . . . , gid): g ∈ G} = {0, 1}d. The VC-dimension of a setG of
functions fromX to {0, 1} is the maximum, overm ∈ N, Ex ∈ Xm, of the VC-dimension of
{(g(x1), . . . , g(xm)): g ∈ G}.

The metricdT V on probability distributions is defined by

dT V(P, Q) = 2 sup
E
|P(E)− Q(E)|.

Say a sequenceP1, P2, . . . of probability distributions is1-gradual if for eacht ∈ N,
dT V(Pt , Pt+1) ≤ 1.

For a learning algorithmA, we say that a sample(x1, y1), . . . , (xm, ym)and randomization
r cause a mistake for Aif A, given(x1, y1), . . . , (xm−1, ym−1) andr , outputs a hypothesis
h for which h(xm) 6= ym.
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Recall that the Hamming distance, which we will denote byρ, is defined byρ(Ev, Ew) =∑
i |vi−wi |. Form ∈ N, F ⊆ {0, 1}m, Ev ∈ {0, 1}m, defineρ(Ev, F) = min{ρ(Ev, Ef ): Ef ∈ F}.

For eachk ∈ {0, . . . ,m}, defineρk(F) = {Ev ∈ {0, 1}m: ρ(Ev, F) = k}.
Both analyses will use Fubini’s Theorem.

Lemma 1 (see Royden, 1963).Choose countable sets Z1 and Z2, a function f : Z1 ×
Z2→ [0, 1] and probability distributions D1 over Z1 and D2 over Z2. Then∫

Z1×Z2

f (z1, z2) d(D1× D2)(z1, z2) =
∫

Z1

(∫
Z2

f (z1, z2) d D2(z2)

)
d D1(z1)

=
∫

Z2

(∫
Z1

f (z1, z2) d D1(z1)

)
d D2(z2).

We will also use the standard Hoeffding bound.

Lemma 2 (see Pollard, 1984). Let Y1, . . . ,Ym be independent random variables taking
values in[a1, b1], . . . , [am, bm] respectively. Then

Pr

(∣∣∣∣∣
(

m∑
i=1

Yi

)
−
(

m∑
i=1

E(Yi )

)∣∣∣∣∣ > η

)
≤ 2 exp

(
−2η2∑m

i=1(bi − ai )2

)
.

3. Agnostic learning

In this section, we consider agnostic learning in both fixed and drifting environments. We
begin with a fixed environment.

3.1. Fixed environment

Choose a classF of functions fromX to {0, 1}. For a probability distributionP onX×{0, 1}
and a functionh from X to {0, 1}, the error ofh with respect toP, denoted byerP(h), is
P{(x, y) : h(x) 6= y}. A learning algorithmA is said to(ε, δ)-agnostically learnF from m
examples if for all distributionsP on X × {0, 1},

Pm
{
Ez : erP(A(Ez)) > ε + inf

f ∈F
erP( f )

}
≤ δ.

To set the context, we briefly review the work that our analysis builds on (Vapnik &
Chervonenkis, 1971; Pollard, 1984; Blumer et al., 1989; Haussler, 1992).

For eachf ∈ F , defineL f : X × {0, 1} → {0, 1} by L f (x, y) = | f (x) − y|. Define
LF = {L f : f ∈ F}. The following reduces the learning problem to that of obtaining
uniformly good estimates of the errors of possible hypothesis (i.e. expectations of elements
of LF ).
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Lemma 3 (Haussler, 1992). Chooseε, δ > 0, m ∈ N. If for all distributions P on
X × {0, 1},

Pm

{
Ez : ∃g ∈ LF ,

∣∣∣∣∣ÊEz(g)−
∫

X×{0,1}
g(u) d P(u)

∣∣∣∣∣ > ε

2

}
≤ δ

thenF is (ε, δ)-agnostically learnable from m examples.

The following will also be useful.

Lemma 4 (see Blumer et al., 1989). VC dim(LF ) ≤ VC dim(F ).

So now we can concentrate on determining distribution-free bounds, in terms on the
VC-dimension, on the number of examples required to obtain uniformly good estimates of
the expectations of random variables in some set. Choose some countable3 set Z (in the
learning application,Z will be X× {0, 1}) and some setG of functions fromZ to {0, 1} (in
the learning application,G will be LF ).

The first lemma bounds the probability that any estimate is inaccurate in terms of the
probability that two samples yield substantially different estimates.

Lemma 5 (Vapnik & Chervonenkis, 1971). Chooseη>0and m∈N for which m≥ 2/η2

and some probability distribution P on Z. Then

Pm

{
Ez : ∃g ∈ G,

∣∣∣∣∣ÊEz(g)−
∫

Z
g(u) d P(u)

∣∣∣∣∣ > η

}

≤ 2P2m

{
(Ez, Eu) : ∃g ∈ G, ∣∣ÊEz(g)− ÊEu(g)

∣∣ > η

2

}

= 2P2m

{
(Ez, Eu) : ∃g ∈ G,

∣∣∣∣∣ m∑
i=1

g(zi )− g(ui )

∣∣∣∣∣ > ηm

2

}
.

The next lemma is an example of the “permutation trick”: note that settingσi = −1 has
the effect of exchangingzi andui .

Lemma 6 (Vapnik & Chervonenkis, 1971; Pollard, 1984). Chooseη > 0, m ∈ N and
some probability distribution P on Z. Then if U is the uniform distribution on{−1, 1}m,

P2m

{
(Ez, Eu) : ∃g ∈ G,

∣∣∣∣∣ m∑
i=1

g(zi )− g(ui )

∣∣∣∣∣ > ηm

}

≤ sup
Ez,Eu∈Zm

U

{
Eσ : ∃g ∈ G,

∣∣∣∣∣ m∑
i=1

σi (g(zi )− g(ui ))

∣∣∣∣∣ > ηm

}
.
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The previous lemma allows us to fix some sequence of 2m elements ofZ, and restrict
our attention to the behaviors of elements ofG on those 2m elements.

The following lemma is an immediate consequence of Lemma 2.

Lemma 7. Choose m∈ N and G⊆ {0, 1}2m. Then if U is the uniform distribution over
{−1, 1}m,

U

{
Eσ : ∃g ∈ G,

∣∣∣∣∣ m∑
i=1

σi (gi − gm+i )

∣∣∣∣∣ > ηm

}
≤ 2|G|e−η2m/2.

By combining Lemmas 3, 4, 5, 6, and 7, and applying a bound on|G| in terms of
VC dim(G) (Sauer, 1972; Shelah, 1972; Vapnik & Chervonenkis, 1971) in Lemma 7, one
gets a bound of

O

(
1

ε2

(
VC dim(F ) log

1

ε
+ log

1

δ

))
on the sample complexity of agnostically learningF (Haussler, 1992).

Our argument will take advantage of the following refinement of a slight generalization
of Lemma 7, which also follows directly from Lemma 2.

Lemma 8. Choose m, k ∈ N, and suppose that H⊆ Rm has the property that each h∈ H
has

∑m
i=1 h2

i ≤ k. Then if U is the uniform distribution over{−1, 1}m,

U

{
σ : ∃h ∈ H,

∣∣∣∣∣ m∑
i=1

σi hi

∣∣∣∣∣ > ηm

}
≤ 2|H |e−η2m2/2k.

The idea of Lemma 8 is that if all of the elements ofH are small, then the variances of the
random termsσi hi tend to be small, which means that its less likely that any sum of them
will stray far from 0 (its expectation).

The following lemma is the heart of our analysis.

Lemma 9. Chooseη > 0, and d∈ N. Choose an integer m≥ 278(d+1)
η2 and G⊆ {0, 1}2m

for which VC dim(G) = d. Then if U is the uniform distribution over{−1, 1}m, for any
η > 0,

U

{
Eσ : ∃g ∈ G,

∣∣∣∣∣ 1

m

m∑
i=1

σi (gi − gm+i )

∣∣∣∣∣ > η

}
≤ 4 · 41de−η

2m/400.

The proof is a chaining argument. See Pollard’s books (Pollard, 1984, 1990) for others
and for further references. The idea is as follows. First, we form a sequenceG0, . . . ,Gn

of approximations toG. The approximations get successively finer untilGn=G. Next, we
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Figure 1. A schematic representation of theG j ’s andHj ’s from the proof of Lemma 9 in the casem = 4. The
G j ’s, which form increasingly accurate approximations toG, are represented by increasingly dense rows of nodes.
For eachj > 0, an edge is added between the node representing each element ofG j and that representing the
closest element ofG j−1. If you think of this edge as representing the difference between the two, then eachHj

(for j > 0) consists of thej th layer of edges.

consider the setsH1, H2, . . . , Hn, where eachHj consists of the adjustments that need to
be made toG j−1 to get the improved approximationG j . In particular,Hj consists of the
differences between each element ofG j and the closest element ofG j−1. (See figure 1.) If
we defineH0 = G0, then each element ofG is the sum of an element ofH0, an element of
H1, and so on up to an element ofHn. So, loosely speaking, if things are OK for each of
the Hj ’s, then they’re OK forG. We will apply Lemma 8 to analyze each of theHj ’s.

For relatively largej , Hj consists of those adjustments needed to make an already fine
approximation finer. Thus, the elements ofHj are small, and we can use the fact that
Lemma 8 provides a better bound in this case. Whenj is small, since|Hj | ≤ |G j |, andG j

is a relatively coarse approximation toG, Hj does not have many elements, which provides
partial compensation for the fact that its elements might be large.

We will use the following result due to Haussler, which bounds the number of significantly
different elements of a setG in terms of its VC-dimension. This can be used to bound the
size of an approximation toG (Kolmogorov & Tihomirov, 1961).

Lemma 10 (Haussler, 1995). For all m ∈ N, for all k ≤ m, if each pair g, h of elements
of G⊆ {0, 1}m hasρ(g, h) > k, then

|G| ≤
(

41m

k

)VC dim(G)

.

Proof (of Lemma 9): Let n = 1+ blog2 mc. ConstructG0, . . . ,Gn as follows. LetG0

consist of an arbitrary single element ofG, and for eachj ∈ {1, . . . ,n}, constructG j by
initializing it to G j−1, and as long as there is ag ∈ G for whichρ(g,G j ) > m/2 j , choosing
such ang and adding it toG j . Note thatG0 ⊆ G1 ⊆ · · · ⊆ Gn = G. For eachg ∈ G and
j ∈ {0, . . . ,n} choose an elementψ j (g) of G j such thatρ(g, ψ j (g)) is minimized. Note
thatρ(g, ψ j (g)) ≤ m/2 j , since otherwiseg would have been added toG j . Let H0 = G0,
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and for eachj ∈ {1, . . . ,n}, defineHj to be{g− ψ j−1(g) : g ∈ G j }. Note that since for
all g ∈ G, ρ(g, ψ j−1(g)) ≤ m/2 j−1, for eachh ∈ Hj ,

∑2m
i=1 |hi | ≤ m/2 j−1.

By induction, for eachk ∈ {0, . . . ,n} for eachg ∈ Gk, there exist

hg,0 ∈ H0, . . . , hg,k ∈ Hk

such thatg =∑k
j=0 hg, j . Thus, for eachg ∈ G = Gn, there existhg,0 ∈ H0, . . . , hg,n ∈ Hn

such thatg =∑n
j=0 hg, j . Let

p = U

{
Eσ : ∃g ∈ G,

∣∣∣∣∣ 1

m

m∑
i=1

σi (gi − gm+i )

∣∣∣∣∣ > η

}
.

Then, expressingg as
∑n

j=0 hg, j , we get

p = U

{
Eσ : ∃g ∈ G,

∣∣∣∣∣ 1

m

m∑
i=1

σi

(
n∑

j=0

(hg, j )i − (hg, j )m+i

)∣∣∣∣∣ > η

}
.

Rearranging the sums yields

p = U

{
Eσ : ∃g ∈ G,

∣∣∣∣∣ n∑
j=0

1

m

m∑
i=1

σi ((hg, j )i − (hg, j )m+i )

∣∣∣∣∣ > η

}
,

and applying the triangle inequality, we get

p ≤ U

{
Eσ : ∃g ∈ G,

n∑
j=0

∣∣∣∣∣ 1

m

m∑
i=1

σi ((hg, j )i − (hg, j )m+i )

∣∣∣∣∣ > η

}
.

For eachj ∈ {0, . . . ,n}, let η j = (η/7)
√
( j + 1)/2 j . Then

∑n
j=0 η j ≤ η, and therefore

p ≤ U

{
Eσ : ∃g ∈ G, ∃ j ∈ {0, . . . ,n},

∣∣∣∣∣ 1

m

m∑
i=1

σi ((hg, j )i − (hg, j )m+i )

∣∣∣∣∣ > η j

}
,

which implies

p ≤
n∑

j=0

U

{
Eσ : ∃g ∈ G,

∣∣∣∣∣ 1

m

m∑
i=1

σi ((hg, j )i − (hg, j )m+i )

∣∣∣∣∣ > η j

}
.
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Since eachhg, j ∈ Hj , we have

p ≤
n∑

j=0

U

{
Eσ : ∃h ∈ Hj ,

∣∣∣∣∣ 1

m

m∑
i=1

σi (hi − hm+i )

∣∣∣∣∣ > η j

}
.

Choose j ∈ {0, . . . ,n}. For eachh ∈ Hj ,
∑2m

i=1 |hi | ≤ m/2 j−1. Thus, sinceh ∈
{−1, 0, 1}2m,

m∑
i=1

(hi − hm+i )
2 = 4|{i : |hi − hm+i | = 2}| + |{i : |hi − hm+i | = 1}|

≤ 2
2m∑
i=1

|hi |

≤ m

2 j−2
.

Applying Lemma 8, we have

p ≤
n∑

j=0

2|Hj | exp

(
−(η j m)2

2 m
2 j−2

)
.

Substituting the value ofη j , we get

p ≤
n∑

j=0

2|Hj | exp

(−η2( j + 1)m

400

)
.

By construction, each pair of elements ofG j have Hamming distance more thanm/2 j .
Applying Lemma 10, we get

|Hj | ≤ |G j | ≤ (41 · 2 j )VC dim(Gj) ≤ (41 · 2 j )d

sinceG j ⊆ G. Therefore

p ≤ 2
∞∑
j=0

exp

(
(ln 41+ j ln 2)d − η

2( j + 1)m

400

)

= 2 · 41de−η
2m/400

1− 2de−η2m/400

≤ 4 · 41de−η
2m/400,

sincem≥ 278(d+1)
η2 . 2

Putting together Lemmas 3, 4, 5, 6, and 9, and solving form, we get a new proof of the
following result due to Talagrand.
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Theorem 1 (Talagrand, 1994). There is a constant c such that for any classF of functions
from X to{0, 1}, for anyε, δ > 0, there is an algorithm A that(ε, δ)-agnostically learns
F from at mostc

ε2 (VC dim(F )+ ln 1
δ
) examples.

3.2. Drifting environment

For a classF of functions fromX to {0, 1}, we say a learning algorithmA agnostically
(ε,1)-tracksF if for all 1-gradual sequencesP1, P2, . . . of distributions overX × {0, 1},
there is anm0 such that for allm ≥ m0, the probability that a sample drawn according to∏m

t=1 Pt and A’s randomization cause a mistake forA is at mostε + inf f ∈F Pm{(x, y) :
f (x) 6= y}. If there is a prediction strategy that agnostically(ε,1)-tracksF then we say
F is (ε,1)-trackable in the agnostic case.

For our analysis of agnostic learning in a drifting environment, we will replace Lemmas 5
and 6 with the following.

Lemma 11 (Barve & Long, 1997). Choose a countable set Z, and a setG of functions
from Z to{0, 1}. Chooseα > 0 and 0 ≤ κ < α. Choose m∈ N such that m≥ 4/α2.
Choose distributions D, D1, . . . , Dm on Z such that for each1≤ i ≤ m, dT V(Di , D) ≤ κ.
If U is the uniform distribution over{1,−1}m,(

m∏
i=1

Di

){
Ez ∈ Zm : ∃g ∈ G,

∣∣∣∣∣ÊEz(g)−
∫

Z
g(v) d D(v)

∣∣∣∣∣ > α

}

≤ 2 sup
(Ez,Eu)∈Zm×Zm

U

{
Eσ : ∃g ∈ G,

∣∣∣∣∣ 1

m

m∑
i=1

σi (g(ui )− g(zi ))

∣∣∣∣∣ > (α − κ)/2
}
.

Putting together Lemmas 11 and 9, we get the following.

Lemma 12. Choose a countable set Z, and a setG of functions from Z to{0, 1}. Let
d = VC dim(G). Chooseα > 0 and0 ≤ κ < α. Choose distributions D, D1, . . . , Dm on
Z such that for each1≤ i ≤ m, dT V(Di , D) ≤ κ. If m ≥ (1112(d + 1))/((α − κ)2) then(

d∏
i=1

Di

){
Ez ∈ Zm : ∃g ∈ G,

∣∣∣∣∣ÊEz(g)−
∫

Z
g(v) d D(v)

∣∣∣∣∣ > α

}
≤ 8 · 41de−(α−κ)

2m/1600.

Next, we record a slight variant of a well-known lemma for converting tail bounds to
expectation bounds.

Lemma 13. For any [0, 1]-valued random variable Y, if ϕ : [0, 1]→ [0, 1] is such that
for all β, Pr(Y > β) ≤ ϕ(β), then for all 0 = a0 ≤ a1 ≤ · · ·ak ≤ ak+1 = 1, E(Y) ≤∑k

i=0 ϕ(ai )ai+1.
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Proof: The distribution onY that maximizes its expectation subject to∀i,Pr(Y > ai ) ≤
ϕ(ai ) assignsϕ(ak) probability on 1,ϕ(ak−1)−ϕ(ak) probability onak, and so on, until all
the probability has been distributed. This can be verified by induction moving from right to
left, using a perturbation argument for the induction step. 2

Theorem 2. There is a constant c> 0 such that for any setF of functions from X to
{0, 1}, for anyε > 0, if 1 ≤ cε3

VC dim(F ) , thenF is (ε,1)-trackable in the agnostic case.

Proof: Chooseε ≤ 1, and1 ≤ ε3

5000000d .
Let m = bε/(161)c. For eachf ∈ F , defineL f : X × {0, 1} → {0, 1} by L f (x, y) =
| f (x) − y|. Consider the algorithmA which, given(x1, y1), . . . , (xt−1, yt−1), returns a
hypothesish ∈ F that minimizes

∑t−1
i=t−m Lh(xi , yi ). Let LF = {L f : f ∈ F}. Recall that

VC dim(LF ) ≤ VC dim(F ) (Lemma 4).
Choose a1-gradual sequenceP1, P2, . . . of probability distributions, an arbitraryf∗ ∈

F (to compareh with), and t > m. Applying Lemma 1 as in (Haussler, Littlestone &
Warmuth, 1994), the probability that(x1, y1), . . . , (xt , yt ) drawn according to

∏t
i=1 Pi

causes a mistake forA is equal to the expectation, with respect to the firstt − 1 examples,
of Pt {(xt , yt ) : h(xt ) 6= yt } (recall thath is a function of the firstt − 1 examples).

Chooseβ ≥ 61m. Since for alli ≤ m, dT V(Pt−i , Pt ) ≤ 1m, applying Lemma 12 with
α = β/2, Z = X × {0, 1}, andG = LF , and doing some simple calculations, we get

Pr

(
∃ f ∈ F,

∣∣∣∣∣Pt {(xt , yt ) : f (xt ) 6= yt } − 1

m

t−1∑
i=t−m

L f (xi , yi )

∣∣∣∣∣ > β

2

)

≤ 8 · 41d exp

(−β2m

14400

)
.

Since
∑t−1

i=t−m Lh(xi , yi ) ≤
∑t−1

i=t−m L f∗(xi , yi ), for all β > 61m,

Pr(Pt {(xt , yt ) : h(xt ) 6= yt } − Pt {(xt , yt ) : f∗(xt ) 6= yt } > β)

≤ 8 · 41d exp

(−β2m

14400

)
.

Applying Lemma 13 withϕ given by the the above bound whenβ ≥ 61m and 1 otherwise,

and witha1 = 61m, and for all relevanti > 1, ai =
√

14400(ln 8+(ln 41)d+i ln 2)
m , we get

E(Pt {(xt , yt ) : h(xt ) 6= yt } − Pt {(xt , yt ) : f∗(xt ) 6= yt })

≤ 61m+
∞∑

i=1

√
14400(ln 8+ (ln 41)d + (i + 1) ln 2)

m
2−i

≤ 61m+
√

d

m

∞∑
i=1

√
14400(6+ (i + 1) ln 2)2−i

≤ 61m+ 341

√
d

m
.
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Substituting the values ofm and1 and approximating, we get

E(Pt {(xt , yt ) : h(xt ) 6= yt } − Pt {(xt , yt ) : f∗(xt ) 6= yt }) ≤ ε.

As discussed above, this completes the proof. 2

4. The realizable case

Say a probability distributionP over X × {0, 1} is consistentwith a function f from X
to {0, 1} if the probability that a pair(x, y) drawn according toP has f (x) = y is 1. For
a setF of functions fromX to {0, 1}, say thatP is consistent withF if it is consistent
with some member ofF . For a classF of functions fromX to {0, 1}, we say a learning
algorithmA (ε,1)-tracksF in the realizable caseif for all 1-gradual sequencesP1, P2, . . .

of distributions overX × {0, 1} that are consistent withF , there is anm0 such that for all
m ≥ m0, the probability that(x1, y1), . . . , (xm, ym) drawn according to

∏m
t=1 Pt and A’s

randomization cause a mistake forA is at mostε. If there is a prediction strategy that
(ε,1)-tracksF in the realizable case then we sayF is (ε,1)-trackable in the realizable
case.

Recall that themth hypercube, which we will denote byHm, is the undirected graph
whose vertex set is{0, 1}m, and whose edges are allEv, Ew such thatρ(Ev, Ew) = 1.

Theorem 3 (Haussler, Littlestone & Warmuth, 1994). For any m∈ N, for any F ⊆
{0, 1}m, if G is the subgraph of Hm induced by F, the edges of G can be directed so that
the maximum outdegree of any node is at mostVC dim(F).

Lemma 14 (Shelah, 1972; Sauer, 1972; Blumer et al., 1989).For m∈N, F⊆{0, 1}m,
|F | ≤ (em/VC dim(F))VC dim(F).

The proof of our next lemma is similar to that of a related result of Roy (1991).

Lemma 15. For any m∈ N, for any F⊆ {0, 1}m, for any k∈ {1, . . . ,m},

VC dim(ρk−1(F) ∪ ρk(F)) ≤ 5(VC dim(F)+ k).

Proof: Assume without loss of generality that|F | > 1. Letd = VC dim(ρk−1(F)∪ρk(F)).
Choose a seti1, . . . , i d such that

{(gi1, . . . , gid) : g ∈ ρk−1(F) ∪ ρk(F)} = {0, 1}d.

Each element of{(gi1, . . . , gid) : g∈ ρk−1(F)} can be derived from an element of
{( fi1, . . . , fid) : f ∈ F} and a subset ofk− 1 elements of{1, . . . ,d}, and therefore

|{(gi1, . . . , gid) : g ∈ ρk−1(F)}| ≤
(

d

k− 1

)
|{( fi1, . . . , fid) : f ∈ F}|.
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Applying a similar observation with regard toρk(F), we get

|{(gi1, . . . , gid) : g ∈ ρk−1(F) ∪ ρk(F)}|

≤
((

d

k− 1

)
+
(

d

k

))
|{( fi1, . . . , fid) : f ∈ F}|

=
(

d + 1

k

)
|{( fi1, . . . , fid) : f ∈ F}|

≤
(

d + 1

k

)(
ed

VC dim(F)

)VC dim(F)

by Lemma 14. Thus

2d ≤
(

d + 1

k

)(
ed

VC dim(F)

)VC dim(F)

≤
(

e(d + 1)

k

)k ( ed

VC dim(F)

)VC dim(F)

.

Taking logs, we get

d ln 2≤ k ln

(
e(d + 1)

k

)
+ VC dim(F) ln

(
ed

VC dim(F)

)
.

Since for allx, λ > 0, 1+ ln x ≤ λx+ ln(1/λ) (see Anthony, Biggs & Shawe-Taylor 1990),
we have that for allλ > 0,

d ln 2≤ λ(2d + 1)+ (VC dim(F)+ k) ln(1/λ).

Solving ford and substitutingλ = 1/10 completes the proof. 2

Lemma 16. Choose m∈ N and F ⊆ {0, 1}m. Then the edges of Hm can be oriented so
that the outdegree of anyEv ∈ {0, 1}m is at most15(VC dim(F)+ ρ(Ev,F)).

Proof: Let d = VC dim(F). Assume without loss of generality that|F | > 1 (and therefore
d > 0).

Let G0 be the subgraph ofHm induced byF , and for eachk = 1, . . . ,m, let Gk be the
subgraph ofHm induced byρk(F)∪ρk−1(F). (See figure 2.) For eachk, letG′k be a directed
graph obtained by directing the edges ofGk so that the outdegree of each vertex inG′k is at
most 5(d + k).

By the triangle inequality, ifEv, Ew is an edge inHm, then |ρ(Ev, F) − ρ( Ew, F)| ≤ 1.
Therefore, each edge ofHm is in Gk for at least onek. Form a directed graphH ′m by
directing the edges ofHm by choosing the direction for each edge from the graphG′k with
the leastk such that the undirected edge is inGk.
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Figure 2. For m = 4 and someF ⊆ {0, 1}m, them-dimensional hypercube has been diagrammed withF at
the bottom, those vertices at a Hamming distance 1 from some element ofF in the row above, and so on. The
subgraphsG0, . . . ,G4 from the proof of Lemma 16 are as shown.

Choose a vertexEv ∈ {0, 1}m. Assume without loss of generality thatρ(Ev, F) < m. Then
Ev appears inG′k exactly whenk ∈ {ρ(Ev, F), ρ(Ev, F)+ 1}. Hence the outdegree ofEv in H ′m
is at most

5(d + ρ(Ev, F))+ 5(d + ρ(Ev, F)+ 1) ≤ 15(d + ρ(Ev, F)),

completing the proof. 2

For each setF of possible targets, the tracking algorithmA′F used to prove Theorem 4
will apply a subalgorithmAF to a subsequence consisting of the most recent examples. We
begin by describing and analyzingAF .

Algorithm AF will make use of an arbitrary order onX. For eachF , we will describe the
hypothesish output byAF on input(x1, y1), . . . , (xm−1, ym−1) by describing a process for
generatingh(xm) for each possiblexm. Algorithm AF first sortsx1, . . . , xm (let a1, . . . ,am

be the resulting reordering ofx1, . . . , xm; let b1, . . . ,bm be the corresponding reordering of
y1, . . . , ym−1,2, where2 serves to hold the position corresponding toxm; and leti ∗ be the
position ofxm in a1, . . . ,am). Next, it setsF = {( f (a1), . . . , f (am)) : f ∈ F}, and creates
a directed graphH ′m by orienting the edges ofHm so that the outdegree of each vertexEv is at
most 15(VC dim(F)+ρ(Ev,F)) as in Lemma 16. Finally, it setsh(xm) = 1 if and only if the
edge inH ′m between(b1, . . . ,bi ∗−1, 0, bi ∗+1, . . . ,bm) and(b1, . . . ,bi ∗−1, 1, bi ∗+1, . . . ,bm)

is oriented toward(b1, . . . ,bi ∗−1, 1, bi ∗+1, . . . ,bm).

Lemma 17 (Bartlett, 1992). For any probability distributions P and Q, dT V(P×Q, Q×
P) ≤ dT V(P, Q).
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Lemma 18. Choose m∈ N, a setF of functions from X to{0, 1}, and a1-gradual
sequence P1, . . . , Pm of probability distributions on X× {0, 1} that are consistent withF .
The probability under

∏m
t=1 Pt that (x1, y1), . . . , (xm, ym) causes a mistake for AF , is at

most

15VC dim(F)

m
+ 61m+ Pr(∃i, j, xi = xj ).

Proof: Defineχ((x1, y1), . . . , (xm, ym)) to indicate whether(x1, y1), . . . , (xm, ym) causes
a mistake forAF andx1, . . . , xm are distinct. Clearly,

Pr(mistake) ≤ E(χ)+ Pr(not distinct),

so we will boundE(χ).
Let Z = X × {0, 1}. For Ez ∈ Zm, j ∈ {1, . . . ,m}, defineϕ(Ez, j ) to be the result of

exchangingzj andzm. By the triangle inequality, for allt ∈ {1, . . . ,m},dT V(Pj , Pm) ≤ 1m.
Choosej ∈ {1, . . . ,m− 1}. Repeatedly applying Fubini’s Theorem (Lemma 1),∫

χ(Ez) d

(
m∏

t=1

Pt

)
(Ez)

=
∫ (∫

χ(Ez) d(Pj × Pm)(zj , zm)

)
d

( ∏
t 6∈{ j,m}

Pt

)
(z1, . . . , zj−1, zj+1, . . . , zm−1).

Applying Lemma 17 and the definition ofdT V,∫
χ(Ez) d

(
m∏

t=1

Pt

)
(Ez) ≤

∫ (∫
χ(Ez) d(Pm × Pj )(zj , zm)+ 1m

2

)

d

( ∏
t 6∈{ j,m}

Pt

)
(z1, . . . , zj−1, zj+1, . . . , zm−1)

=
∫
χ(ϕ(Ez, j )) d

(
m∏

t=1

Pt

)
(Ez)+ 1m

2
,

again, because of Fubini’s Theorem. Thus∫
χ(Ez) d

(
m∏

t=1

Pt

)
(Ez) ≤ 1m

2
+
∫ (

1

m

m∑
j=1

χ(ϕ(Ez, j ))

)
d

(
m∏

t=1

Pt

)
(Ez). (1)

Fix an arbitraryEz = ((x1, y1), . . . , (xm, ym)) ∈ (X × {0, 1})m. If x1, . . . , xm are not
distinct, then the definition ofχ implies that 1

m

∑m
j=1 χ(ϕ(Ez, j )) = 0. Assumex1, . . . , xm

are distinct. Leta1, . . . ,am bex1, . . . , xm in sorted order, and letv1, . . . , vm be the corre-
sponding reordering of theyi ’s. Let

F = {( f (a1), . . . , f (am)) : f ∈ F}.
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Since algorithmAF sorts the sample, the directed graphH ′m constructed by algorithmAF
using any reordering of thexi ’s is the same. Choosej ∈ {1, . . . ,m}. Let j ′ be the position
of xj whenx1, . . . , xm is sorted. Thenϕ(Ez, j ) causes a mistake forAF if and only if the
edge inH ′m betweenEv and the vertex obtained by negating thej ′th bit of Ev is oriented away
from Ev. (This is becauseEv represents the correct labellings, andAF predicts according to
the direction of the named edge.) Thus

∑m
j=1 χ(ϕ(Ez, j )) ≤ outdegree(Ev).

For eacht ∈ {1, . . . ,m} chooseft ∈ F such thatPt is consistent withft . Then

ρ(Ev, F) ≤ |{t : ft (xt ) 6= fm(xt )}|.

Thus,

outdegree(Ev) ≤ 15(VC dim(F)+ |{t : ft(xt) 6= fm(xt)}|)

and therefore
m∑

j=1

χ(ϕ(Ez, j )) ≤ 15(VC dim(F)+ |{t : ft(xt) 6= fm(xt)}|).

Since VC dim(F) ≤ VC dim(F), plugging into (1), we have∫
χ(Ez) d

(
m∏

t=1

Pt

)
(Ez) ≤ 1m

2
+ 15VC dim(F)

m
+ 15

m
E(|{t : ft (xt ) 6= fm(xt )}|).

(2)

SincePm is consistent withfm,

Pm{(x, y) : fm(x) 6= y} = 0. (3)

For anyt ∈ {1, . . . ,m}, sincedT V(Pt , Pm) ≤ 1m, (3) implies

Pt {(x, y) : ft (x) 6= fm(x)} = Pt {(x, y) : fm(x) 6= y} ≤ 1m

2
.

Thus

E(|{t : ft (xt ) 6= fm(xt )}|) ≤ 1m2

2
.

Substituting into (2) completes the proof. 2

Theorem 4. There is a constant c> 0 such that for any setF of functions from X to
{0, 1}, for anyε > 0, if

1 ≤ cε2

VC dim(F ) ,

thenF is (ε,1)-trackable in the realizable case.
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Proof: Let d = VC dim(F ). Consider the algorithmA′F defined as follows. First, it sets
R= {1, . . . , ⌈11560d2/ε3

⌉}, and for eacht , it drawsrt uniformly at random fromR.
Given (x1, y1), . . . , (xm, ym), if m> 33d/ε, then A′F gives the lastm′ = d33d/εe ele-

ments of((x1, r1), y1), . . . , ((xm, rm), ym) to AF .
LetU be the uniform distribution overR. For some1 ≥ 0, choose a1-gradual sequence

P1, P2, . . . of distributions overX. ThenP1×U, P2×U, . . . is also1-gradual. Also, if for
eachf ∈ F , we define a functionfR from X×R to {0, 1} by fR(x, r ) = f (x), then, straight
from the definitions, VC dim({fR : f ∈ F}) = d. So applying Lemma 18, ifm> 33d/ε, the
probability thatA′F makes a mistake is at most 15d/m′ + 61m′ + (m′)2/|R|. Substituting
the definitions ofm′ and R and observing that 33d/ε ≤ m′ ≤ 34d/ε, if 1 ≤ ε2

458d , this
probability is at mostε, completing the proof. 2
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Notes

1. Recently, other constraints on the drift have been examined (e.g., Bartlett, Ben-David & Kulkarni, 1996; Freund
& Mansour, 1997). In this paper we restrict our attention to the simplest drift models, but direct application of
a slight variant of Lemma 12 of this paper leads to a small improvement in the analysis of (Freund & Mansour,
1997). Models of a changing environment that are more dissimilar to that studied here were considered in
(Littlestone & Warmuth, 1994; Kuh, Petsche & Rivest, 1990; Kuh, Petsche & Rivest, 1991; Blum & Chalasani,
1992; Freund & Ron, 1995; Herbster & Warmuth, 1995; Auer & Warmuth, 1995; Kuh, 1997; Tian & Kuh,
1997; Herbster & Warmuth, 1998).

2. Their statement of their algorithm is slightly different; we describe an equivalent algorithm to facilitate com-
parison with our modification.

3. We assume thatZ is countable for convenience. Considerably weaker measurability assumptions suffice for
the results mentioned in this paper (Pollard, 1984; Haussler, 1992).

4. The behavior ofA′F for smallm is immaterial.
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