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Abstract. We show that % bound on the rate of drift of the distribution generating the examples is
sufficient for agnostic learning to relative accuracyvherec > 0 is a constant; this matches a known necessary
condition to within a constant factor. We establist@,—@%m sufficient condition for the realizable case, also
matching a known necessary condition to within a constant factor. We provide a relatively simple proof of a bound
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1. Introduction

Learning often takes place in a gradually changing environment. This phenomenon has been
studied theoretically by assuming that the function to be learned, the distribution generating
the examples, or both, change at most a certain amount between examples (see Helmbold
& Long, 1994; Bartlett, 1992; Bartlett & Helmbold, 1995; Barve & Long, 1997).

In this paper, we study the problem of learning functions from someXstt {0, 1}
(“concepts”) using two models of a drifting environment. In the first (Bartlett, 1992), it is
assumed that examplésy, y1), (X2, Y2), . . . are generated independently at random from
a sequence of joint distributions ovErx {0, 1}, and the only constraint is that consecutive
pairs of distributions have small total variation distance. If this distance is always at most
A, then the sequence of distributions is caltedjradual. For each the learning algorithm
must output a hypotheskig using only the first — 1 examples. For some concept cldss
and drift rateA, if, for any sequence oA-gradual joint distributions, for large enough
the probability thah; (x;) # y; is at most more than the minimum such probability from
amongf e F, then we say thafF is (¢, A)-trackable in the agnostic case

The second model oflearning in adrifting environment (Helmbold & Long, 1994; Bartlett,
1992; Bartlett & Helmbold, 1995) is obtained from the above by adding the requirement
that each distributior®, has somef; € F such that the probability that the pdix, y;)
drawn according td@ hasf;(x;) = y; is 1. Here, if, for large enough the probability that
h: (%) # Y is at mosk, we say thatF is (¢, A)-trackable in the realizable case
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In this paper, we show that there is a constant0 such that qﬁém bound onA is

sufficient forF to be(e, A)-trackable in the agnostic case, al% bound is sufficient

for the realizable case. This work continues an existing line of research (Helmbold & Long,
1994; Bartlett, 1992; Bartlett & Helmbold, 1995; and Barve & Long, 1997), and matches

known necessary conditions for both the agnostic (Barve & Long, 1997) and realizable
(Bartlett, 1992) cases to within a constant factor, closing log-factor gaps. Note that both
models allow for variation both in the target and in the marginal distribution on the domain

elements; some previous work addressed these two types of changes separately.

The agnostic drift analysis uses a technique called Chaining from Empirical Process
Theory (see Pollard, 1984, 1990). We defer a high-level description of this technique until
later in the paper when appropriate context is available.

Inthe realizable case, asin (Helmbold & Long, 1994; Bartlett, 1992; Bartlett & Helmbold,
1995), we consider an algorithm based on the one-inclusion graph algorithm (Haussler,
Littlestone & Warmuth, 1994), which was originally designed for learning concepts in a
fixed environment. To determir&Xxy,) from some sample

(le yl)v et (melv ymfl)»

the original algorithm constructs a graph whose vertices are
{(f(x0), ..., fxm)) © f € F}

and has edges between pairs of vertices that differ in only one component (the “one-
inclusion graph”y. The edges of the graph are then directed, and these orientations are used
to determineh(xy,). The analysis involves relating the probability of a mistake for some
targetf tothe maximum (ovexy, . .., Xn) of the outdegree for the vertex associated vfith

Since any one-inclusion graph f@t can be shown to be sparse relative to VC @i, the

edges can be directed so that the out-degree of any vertex is at most VEdjhtaussler,
Littlestone & Warmuth, 1994). In (Helmbold & Long, 1994; Bartlett & Helmbold, 1995),
the vertex set was expanded to include element8,df}™ that are within some Hamming
distance of elements df f (x1), ..., f(Xm)): f € F}; these graphs also can be shown

to be sparse. The main new idea in this paper’s realizable drift analysis is to show, for
eachF, how to directall the edges of then-dimensional hypercube so that the outdegree

of each vertex is bounded appropriately in terms of its distance to the closest element of
{(f(X1), ..., f(xXm)): f € F} as well as the VC-dimension df.

1.1. Agnostic learning in a fixed environment

In the standard agnostic learning model (Haussler, 1992; Kearns et al., 1994), random
examples

(le yl)s L) (Xma Ym)
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are drawn from an arbitrary joint distributid®, and the learner’s goal is to output a function
h such that probability thdt(x) # y for another paifx, y) drawn according t® is nearly
as small as that of the best function/n

We give a proof that, in a fixed environment, for any concept cfass

(0] (iz (VC dim(F) + log }>>
€ 1)

examples are sufficient for an algorithm to, with probability-35, output a hypothesis
whose error is at most worse than the best iF. This bound, which also follows from
previous work of Talagrand (1994), improves on the bound of

@] (iz (VC dim(F) Iog} + log 1>>
€ € 1)

that follows from Vapnik and Chervonenkis’ results (see Haussler, 1992), and matches
Simon’s general lower bound (Simon, 1996) to within a constant factor for each concept
classF. Our constants are greater than Talagrand’s, but our proof is simpler and more
elementary.

2. Preliminaries

Fix a countable seX. Denote the reals bir, and the natural numbers by

An examplés an element oK x {0, 1}, and asampleis a finite sequence of examples.
A learning algorithmtakes a sample as input, and outpuleypothesiswhich is a function
from X to {0, 1}. We will also consider randomized learning algorithms, which can be
modelled as deterministic functions of another random input along with the sample.

For a real-valued functiog defined onZ, andz € Z™, define

. 1
B0 = > 9@)
i=1

The VC-dimension of a sé&& C {0, 1}™ is the length of the longest sequengg. . ., iqg
of indices such tha{(g;,, ..., gi,):9 € G} = {0, 1}4. The VC-dimension of a s&f of
functions fromX to {0, 1} is the maximum, ovem € N, X € X™, of the VC-dimension of

{(9(X1), ..., 9(Xm)): g € G}
The metricdry on probability distributions is defined by

drv(P, Q) = 25éJIDIP(E) — Q(B)I.

Say a sequenc®y, P,, ... of probability distributions isA-gradual if for eacht € N,
drv(Pi, Py1) < A.

Foralearning algorithnd, we say thata sampig,, y1), ..., (Xm, Ym) @nd randomization
r cause a mistake for K A, given(xs, ¥1), ..., Xm—1, Ym—1) @ndr, outputs a hypothesis
h for whichh(Xm) # Ym.
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Recall that the Hamming distance, which we will denoteohys defined byp(zz, w) =
> i lvi—wil.Form e N,F < {0, 1}™, v € {0, 1}™, definep (v, F) = min{p(v, f): f € F}.
For eachk € {0, ..., m}, definep(F) = {v € {0, 1})™: p(v, F) = k}.

Both analyses will use Fubini's Theorem.

Lemma 1 (see Royden, 1963).Choose countable sets &nd %, a function f: Z; x
Z, — [0, 1] and probability distributions B over Z; and D, over Z. Then

/ f(z1, 22) d(D1 x D2)(z1, 22) = f
Zl><22

VA)

</ f(z1, 22) dD2(22)>d D1(z1)

Z;

= / ( f(z1, 22) dD1(21)>d D2(22).
z \Jz,

We will also use the standard Hoeffding bound.

Lemma 2 (see Pollard, 1984). Let V1, ..., Yy, be independent random variables taking
values in[ag, by], ..., [am, bm] respectively. Then

3. Agnostic learning
In this section, we consider agnostic learning in both fixed and drifting environments. We
begin with a fixed environment.

3.1. Fixed environment

Choose a clasg of functions fromX to {0, 1}. For a probability distributiof? on X x {0, 1}
and a functiorh from X to {0, 1}, the error oth with respect toP, denoted byerp (h), is
P{(x, y):h(x) # y}. A learning algorithmA is said to(e, §)-agnostically learr# from m
examples if for all distribution® on X x {0, 1},

Pm{i: erp(A@)) > € + inf erp(f)} <.
feF

To set the context, we briefly review the work that our analysis builds on (Vapnik &
Chervonenkis, 1971; Pollard, 1984; Blumer et al., 1989; Haussler, 1992).

For eachf € F, defineL : X x {0,1} — {0,1} by L{(X,y) = | f(X) — y|. Define
Lr = {L¢: f e F}. The following reduces the learning problem to that of obtaining
uniformly good estimates of the errors of possible hypothesis (i.e. expectations of elements
of L]:)
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Lemma 3 (Haussler, 1992). Choosee, § > 0, m € N. If for all distributions P on

X x {0, 1},
€ <5
€
5=

thenF is (e, §)-agnostically learnable from m examples.

Pmiir 3g € Lr. |Ez(9) —/ g(u) dP(u)
X x{0,1}

The following will also be useful.
Lemma 4 (see Blumer et al., 1989). VCdim(Lf) < VCdim(F).

So now we can concentrate on determining distribution-free bounds, in terms on the
VC-dimension, on the number of examples required to obtain uniformly good estimates of
the expectations of random variables in some set. Choose some cotisetide(in the
learning applicationZ will be X x {0, 1}) and some s&f of functions fromZ to {0, 1} (in
the learning applicatiorg will be L £).

The first lemma bounds the probability that any estimate is inaccurate in terms of the
probability that two samples yield substantially different estimates.

Lemma 5 (Vapnik & Chervonenkis, 1971). Choose; > 0and me N for which m> 2/5?
and some probability distribution P on Z. Then

|

< 2p2m{(z, ) :3g €. |Ex9) - Ea(@)] > %}

nm}
> — .
2

The next lemma is an example of the “permutation trick”: note that sedtirg —1 has
the effect of exchanging andu;.

Pm{iz dg € G,

Ex(0) - /Z g(u) dP(U)

= 2P2m[(2, U):3gegd,

> 9@@) — g(u)
i=1

Lemma 6 (Vapnik & Chervonenkis, 1971; Pollard, 1984). Choose; > 0,m € N and
some probability distribution P on Z. Then if U is the uniform distribution{ei, 1}™,

> nm}

> oi(g(z) — g(u))

i=1

PZ’“{(z U):3g€g,

> 0@) — g(u)
i=1

< sup U{&:Elgeg,

z,lezm

. nm}.
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The previous lemma allows us to fix some sequencenmelzments ofZ, and restrict
our attention to the behaviors of elementsjadn those in elements.
The following lemma is an immediate consequence of Lemma 2.

Lemma 7. Choose me N and G C {0, 1}°™. Then if U is the uniform distribution over
{=11m,

U{&:ElgeG,

m
Y 0i(G — Gmii)| > nm} <2/Gle"™2,
i=1

By combining Lemmas 3, 4, 5, 6, and 7, and applying a bound@nin terms of
VCdim(G) (Sauer, 1972; Shelah, 1972; Vapnik & Chervonenkis, 1971) in Lemma 7, one
gets a bound of

o (iz (VC dim(F) Iog} + log }>>
€ € )

on the sample complexity of agnostically learnifigHaussler, 1992).
Our argument will take advantage of the following refinement of a slight generalization
of Lemma 7, which also follows directly from Lemma 2.

Lemma8. Choose mk € N, and suppose that £ R™ has the property thateaché H

has)""  h? < k. Then if U is the uniform distribution ovér1, 1}™,

m

Zoihi

UIU :dh e H,
i=1

> nm} < 2|H|e "M/

The idea of Lemma 8 is that if all of the elementstbfare small, then the variances of the
random terms; h; tend to be small, which means that its less likely that any sum of them
will stray far from 0 (its expectation).

The following lemma is the heart of our analysis.

Lemma9. Choose; > 0,and de N. Choose an integer m %‘f’” and G C {0, 1)2™
for whichVC dim(G) = d. Then if U is the uniform distribution ove¢r-1, 1}™, for any
n >0,

U{&:ngG,

1 m
m > 0i(g — gmii)| > Ti} < 4.419gm/A0,
i=1

The proof is a chaining argument. See Pollard’s books (Pollard, 1984, 1990) for others
and for further references. The idea is as follows. First, we form a seq@&pce., G,
of approximations t@. The approximations get successively finer u@tjl= G. Next, we
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G

‘ .
Cr’3 = G

Figure 1 A schematic representation of tf&g's andH;’s from the proof of Lemma 9 in the case= 4. The
Gj’s, which form increasingly accurate approximationtare represented by increasingly dense rows of nodes.
For eachj > 0, an edge is added between the node representing each elen@@ntnotl that representing the
closest element dBj_;. If you think of this edge as representing the difference between the two, therHgach
(for j > 0) consists of thgth layer of edges.

consider the setbl;, Hy, ..., Hy, where eactH; consists of the adjustments that need to
be made td5;_; to get the improved approximatid®;. In particular,H; consists of the
differences between each elemenGgfand the closest element Gf;_;. (See figure 1.) If
we defineHg = Gy, then each element & is the sum of an element ¢fy, an element of
Hj, and so on up to an element Bf,. So, loosely speaking, if things are OK for each of
the H;’s, then they're OK forG. We will apply Lemma 8 to analyze each of thig’s.

For relatively largej, H; consists of those adjustments needed to make an already fine
approximation finer. Thus, the elements ldf are small, and we can use the fact that
Lemma 8 provides a better bound in this case. Whasmall, sincgH;| < |G;[, andG;
is a relatively coarse approximation® H; does not have many elements, which provides
partial compensation for the fact that its elements might be large.

We will use the following result due to Haussler, which bounds the number of significantly
different elements of a s& in terms of its VC-dimension. This can be used to bound the
size of an approximation t& (Kolmogorov & Tihomirov, 1961).

Lemma 10 (Haussler, 1995). For allm € N, for all k < m, if each pair g h of elements
of G C {0, 1}™ hasp(g, h) > k, then

41m\ VCdm©)
G| < (T) .

Proof (of Lemma 9): Letn = 1+ [log, m|. ConstructGy, ..., G, as follows. LetGg
consist of an arbitrary single element®f and for eachj € {1, ..., n}, constructG; by
initializing itto Gj_1, and as long as there iglae G for whichp(g, Gj) > m/2}, choosing
such ang and adding it tdG;. Note thatGo € G; € --- € G, = G. For eaclg € G and
j €10, ..., n} choose an element;(g) of G; such thatp(g, ¥j(g)) is minimized. Note
thatp(g, ¥j(g9)) < m/2!, since otherwisg would have been added @ . Let Hy = Go,
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and for eachj € {1,...,n}, defineH; to be{g — v¥;-1(9) : g € G;}. Note that since for
allg € G, p(g, ¥j-1(9)) < m/2171, for eachh € Hj, 2 hi| < my2i-t,
By induction, for eackk € {0, ..., n} for eachg € Gy, there exist

hgﬁo € Ho, ey hg,k € Hk
suchthag = le(:o hg ;. Thus, foreacly € G = Gy, there exishgg € Ho, ..., hgn € Hn

suchthag = )|_yhg ;. Let
> }

- 14
p= U{o :3g e G, EZUi(gi — Om+i)
i=1

Then, expressing as) |_,hg j, we get

p=U{8:EIgeG,

- Zai Z(hg,J)i — (Ng I myi
m & e

>n}.
>n},
>n}.

For eachj € {0, ..., n}, letn; = (n/7)/(j +1)/2. ThenZT:O n; <n, and therefore

.

Rearranging the sums yields

n

> % > oi((hg i — (g Dmi)
i=1

j=0

p:Ui&:ElgeG,

and applying the triangle inequality, we get

n
ng{&:EIgeG,Z

j=0

1 m
= ;Ui ((hgj)i — (hg Dm+i)

pr{&:ElgeG,Elj €{0,...,n},

1 m
- ;m ((hg. )i — (Mg Im+i)

>'7j}-

which implies

n
ngU{&:EIgeG,

j=0

1 m
p= ;Ui ((hgj)i — (hg Dm+i)
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>77j}~

Choosej € {0,...,n}. For eachh e Hj, Y?™ |hi| < m/2i-1. Thus, sinceh
{_17 0’ 1}2m’

Since eaclg ; € Hj, we have

n
ngU[&:Elhe H;,

j=0

1 m
m s I( 1 erI)

m

D o (hi = hiny)® = 4/ 2 I — gl = 24 + 12 1 — By | = 1))

i=1
2m
<2 |hil
i=1
m

< —.
= 2]_2

Applying Lemma 8, we have

n 2
—(n;m)
p= E 2|Hj| eXp(ﬁ).

j=0

Substituting the value of;, we get
- —n?(j + 1)m>

2|Hj| exp( 200

p=
j=0

By construction, each pair of elements ® have Hamming distance more thay2!.
Applying Lemma 10, we get

IHj| < |Gj| < (41.2))VCAm©&) < (41. 21)d

sinceG;j C G. Therefore

. n°(j + Hm
<2 exp| (In41 n2d - ———
p< ;O p(( +jin2 200
2. 41de—772m/400
~ 1 _ 2dg-n2m/400
< 4. 41de—r]2m/400’
sincem > %"j”. O

Putting together Lemmas 3, 4, 5, 6, and 9, and solvingrfowe get a new proof of the
following result due to Talagrand.
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Theorem 1 (Talagrand, 1994). There is a constant c such that for any cl&sef functions
from X to{0, 1}, for anye, § > 0O, there is an algorithm A thate, §)-agnostically learns
F from at most$ (VC dim(F) + In 1) examples.

3.2. Drifting environment

For a classF of functions fromX to {0, 1}, we say a learning algorithrA agnostically
(e, A)-tracksF if for all A-gradual sequencdd, P, ... of distributions oveiX x {0, 1},
there is armg such that for alin > mg, the probability that a sample drawn according to
]_[[“=l P; and A’s randomization cause a mistake faris at moste + infscr Pn{(X, y) :
f(X) # y}. If there is a prediction strategy that agnostically A)-tracksF then we say
F is (e, A)-trackable in the agnostic case

For our analysis of agnostic learning in a drifting environment, we will replace Lemmas 5
and 6 with the following.

Lemma 11 (Barve & Long, 1997). Choose a countable set, Znd a seg of functions
from Z to{0, 1}. Choosex > 0 and0 < « < «a. Choose me N such that m> 4/a?.
Choose distributions DDy, ..., Dnon Z suchthatforeach<i < m, drv(D;j, D) < «.
If U is the uniform distribution ovefl, —1}M,

(HDi>{2eZm:Elgeg,

i=1
Ly i (U z
E;"'(g( i) —0(z))

<2 sup U{&:Elgeg,

(Z,U)ezmxzZm

Ex(0) - /Z g(v) dD(w)

> (a —/()/2} .

Putting together Lemmas 11 and 9, we get the following.
Lemma 12. Choose a countable set Z, and a sebf functions from Z tq0, 1}. Let

d = VCdim(G). Choosex > 0and0 < « < «. Choose distributions DDy, ..., Dy 0n
Z such that foreach <i <m, dry(D;, D) < «.Ifm > (1112d + 1)) /((a — k)?) then

d
(HDi>{2eZm:Elgeg, >a}
i=1

< 8. 41def(0tfl()2m/1600.
Next, we record a slight variant of a well-known lemma for converting tail bounds to
expectation bounds.

Ex(0) - /Z g(v) dD(w)

Lemma 13. For any|[0, 1]-valued random variable Yif ¢ :[0, 1] — [0, 1] is such that
forall 8, Pr(Y > B) < ¢(B),thenforall0 =ay <a; < ---a < a1 = 1, E(Y) <
Yl op(@)a 1.
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Proof: The distribution orY that maximizes its expectation subjecVioPr(Y > a;) <

¢(a) assignsp(ak) probability on 1p(ax_1) — ¢ (ax) probability onak, and so on, until all

the probability has been distributed. This can be verified by induction moving from right to
left, using a perturbation argument for the induction step. O

Theorem 2. There is a constant ¢- 0 such that for any sef of functions from X to

{0, 1}, foranye > 0,if A < ﬁ;m thenF is (e, A)-trackable in the agnostic case.

Proof: Chooses < 1, andA < w.

Letm = |e/(16A)]. For eachf € F, defineL; : X x {0,1} — {0,1} by L¢(X,y) =
| f (X) — y|. Consider the algorithnA which, given(xy, y1), ..., (X¢_1, Yt—1), returns a
hypothesish € F that minimizeszit;tl_rn Lh(x,Vi). LetLr ={L¢ : f € F}. Recall that
VCdim(Lg) < VCdim(F) (Lemma 4).

Choose aA-gradual sequencky, P., ... of probability distributions, an arbitrary, e
F (to compareh with), andt > m. Applying Lemma 1 as in (Haussler, Littlestone &
Warmuth, 1994), the probability thak,, yi1), ..., (%, Yt) drawn according tq'[it=1 R
causes a mistake fak is equal to the expectation, with respect to the firstl examples,
of P{(X, Yt) : h(Xt) # ¥} (recall thath is a function of the first — 1 examples).

Chooses > 6Am. Since for alli < m, drv(P_j, P.) < Am, applying Lemma 12 with
a=p/2,Z=Xx{0,1}, andG = L £, and doing some simple calculations, we get

JF
2

SinceY TL . Ln(xi, ¥i) < Y2 L%, y), forallg > 6Am,

t—1

1
P0G Y0 - FO0 # W= — D L, %)

i=t—m
2
. d _ﬂ m
< 8-471 exp(l4400>.

Pr(af e F,

Pr(P{(X, V) : h(%) # ¥t} — P{(X, V) @ T(0) # Wi} > B)

2
. d _ﬂ m
< 8-41 eXp<14400>'

Applying Lemma 13 withp given by the the above bound whgrn= 6Am and 1 otherwise,
and witha; = 6Am, and for all relevant > 1,3 = \/ 14900in8+(na1d+ N2 ' \ye get
E(P{(X, Vo) - h(X) # %} — P{(x, yo) © fo (%) # weh)

A + Z \/1440(1In 8+ (In L:r?d +(0+1In2 o
i=1

IA

A

6AM + \/g;: V144006 + (i + 1)In2)2"

6AM + 34J.\/§.
m

IA
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Substituting the values ofi andA and approximating, we get

E(P{(Xt, Yo) - h(X) # ¥t} — P{(Xe, yo) & (%) # %)) <e.

As discussed above, this completes the proof. O

4. The realizable case

Say a probability distributiorP over X x {0, 1} is consistentwvith a function f from X
to {0, 1} if the probability that a paitx, y) drawn according td® has f (x) = yis 1. For
a setF of functions fromX to {0, 1}, say thatP is consistent withZ if it is consistent
with some member of . For a classF of functions fromX to {0, 1}, we say a learning
algorithmA (e, A)-tracksF inthe realizable caséfor all A-gradual sequencéy, Py, ...
of distributions overX x {0, 1} that are consistent witlt, there is armg such that for all
m > my, the probability thatxs, Y1), . . ., (Xm, Ym) drawn according tq];~, P and A’s
randomization cause a mistake fAris at moste. If there is a prediction strategy that
(e, A)-tracksF in the realizable case then we s&yis (¢, A)-trackable in the realizable
case.

Recall that themth hypercube, which we will denote b, is the undirected graph
whose vertex set if0, 1}™, and whose edges are allw such thato (v, w) = 1.

Theorem 3 (Haussler, Littlestone & Warmuth, 1994). For any me N, for any F C
{0, )™, if G is the subgraph of K induced by F the edges of G can be directed so that
the maximum outdegree of any node is at nvssdim(F).

Lemma 14 (Shelah, 1972; Sauer, 1972; Blumer et al., 1989)For me N, F C {0, 1}™,
|F| < (enyVCdim(F))VCdm®,

The proof of our next lemma is similar to that of a related result of Roy (1991).
Lemma 15. Forany me N, forany F C {0, 1}™, for any ke {1, ..., m},
VC dim(pk-1(F) U pk(F)) < 5(VCdim(F) + k).

Proof: Assume without loss of generality thdt| > 1. Letd = VC dim(px_1(F) U pk(F)).
Choose asét, ..., iq such that

{(Gys -+ Giy) © 9 € pk1(F) U pk(F)} = {0, 1}°.

Each element of{(gi,,...,d,):9€pk-1(F)} can be derived from an element of
{(fi,,..., fiy): f € F} and a subset & — 1 elements of1, ..., d}, and therefore

d
(G -0 Gia) - 9 € -2 (F)} < <k— 1>|{(fi1,-.-, fi): f e F}.
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Applying a similar observation with regard tQ(F), we get

{1, -5 Gig) 1 9 € pk—1(F) U p(F)}

d d .
((k—l) + (k)) H(fi,, ..., fip): f eF}

d+1
=< : )|{(fil,...,fid): feFy

d + 1 ed VCdim(F)
(") (Veamm)
by Lemma 14. Thus
d + 1 ed VCdim(F)
2d =< NPT
_< k )(VCdm(F))

_( k ) <VCdim(F)> '

Taking logs, we get

ed+ 1) - ed
din2 < kln< > >+VCd'm(F)'” (Wm(F))

Sinceforallx, » > 0, 1+Inx < Ax+In(1/1) (see Anthony, Biggs & Shawe-Taylor 1990),
we have that for alk > O,

din2 < Ax2d + 1) + (VCdim(F) + k) In(1/2).
Solving ford and substituting. = 1/10 completes the proof. O

Lemma 16. Choose me N and F C {0, 1}™. Then the edges ofiHcan be oriented so
that the outdegree of anye {0, 1}™ is at mostL5(VC dim(F) + p(V, F)).

Proof: Letd = VC dim(F). Assume without loss of generality th&t| > 1 (and therefore
d > 0).

Let Go be the subgraph dfl,, induced byF, and for eactk = 1, ..., m, let Gy be the
subgraph oHy, induced bypx (F) U pk—1(F). (See figure 2.) For eadh)let G, be a directed
graph obtained by directing the edges3ifso that the outdegree of each vertexGjis at
most §d + k).

By the triangle inequality, ifv, w is an edge inHy, then|o(¥, F) — p(w, F)| < 1.
Therefore, each edge ¢, is in G for at least on&k. Form a directed grapk/, by
directing the edges dfl, by choosing the direction for each edge from the gréptwith
the leask such that the undirected edge isGi.
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Figure 2 Form = 4 and some&~ C {0, 1}™, the m-dimensional hypercube has been diagrammed Wittt
the bottom, those vertices at a Hamming distance 1 from some eleméninathe row above, and so on. The
subgraph$y, ..., G4 from the proof of Lemma 16 are as shown.

Choose a verte# € {0, 1}™. Assume without loss of generality thatv, F) < m. Then
v appears irG, exactly wherk € {p(v, F), p(v, F) 4+ 1}. Hence the outdegree 6fin H/,
is at most

5d+p@, F)) +5d+p@, F) +1) <15d + p(v, F)),
completing the proof. O

For each sef of possible targets, the tracking algorith#). used to prove Theorem 4
will apply a subalgorithmAr to a subsequence consisting of the most recent examples. We
begin by describing and analyzimg.

Algorithm Az will make use of an arbitrary order 0. For eachiF, we will describe the
hypothesis output byAz on input(xy, y1), ..., Xm-1, Ym—1) by describing a process for
generatindh(x,) for each possibley,. Algorithm Az first sortsxy, ..., Xm (letay, ..., an
be the resulting reordering &f, . .., Xq; letbq, ..., by be the corresponding reordering of
Vi, ..., ¥Ym-1, O, whereQd serves to hold the position correspondingtp and leti * be the
position ofx, inay, ..., am). Next, itsetd= = {(f(a1), ..., f(am)) : f € F}, and creates
adirected graplil/, by orienting the edges df,, so that the outdegree of each veridx at
most 15VC dim(F) + o (V, F)) as in Lemma 16. Finally, it setsx,) = 1 if and only if the
edge er/n betweer(bl, ..., bi+_1,0, bi*+1, ey bm) and(bl, RN o TSR bi*+1, ey bm)
is oriented towardby, ..., bj«_1, 1, bj«y1, ..., bm).

Lemma 17 (Bartlett, 1992). For any probability distributions P and Qlrv (P x Q, Q x
P) < drv(P, Q).



COMPLEXITY OF LEARNING 351

Lemma 18. Choose me N, a setF of functions from X td0, 1}, and a A-gradual
sequence ..., Py of probability distributions on Xx {0, 1} that are consistent witlF.
The probability undeli_[{“=1 P; that (X1, Y1), ..., (Xm, Ym) Causes a mistake for /A is at
most

15vCdim(F o

% +6Am+Pr3i, j, X = Xj).
Proof: Define x ((X1, Y1), . . ., (Xm, Ym)) to indicate whethe(xy, y1), ..., (Xm, Ym) causes
a mistake forAr andxy, ..., Xy are distinct. Clearly,

Pr(mistake < E(x) + Pr(not distincy,
so we will boundE(y).
letZ = X x{0,1}. Forz ¢ Z",j e {1,..., m}, defineg(Z, j) to be the result of

exchanging; andzy,. By the triangle inequality, foratle {1, ..., m},drv(Pj, Pn) < Am.
Choosej € {1, ..., m— 1}. Repeatedly applying Fubini's Theorem (Lemma 1),

/x(i) d(]"[ R)(i)
t=1

= /([X(z) d(Pj X Pm)(Zj,Zm)>d< 1_[ Pt)(Zl,...,Zj_1,2j+1,...,Zm_1).

te{j,m}

Applying Lemma 17 and the definition df\/,

- 3 - - A
[x(Z)d<]_[ R)(Z) s/(/x(Z)d(me Pj)(zj,zm)+7m)
t=1

d( l—[ Pt)(zla"'azj—la Zj+la"'7zm—l)
)

te{j,m
- m _Am
Z/X(q)(z’l))d<g Pt>(2)+7,

again, because of Fubini’s Theorem. Thus

. m . A 1 m o m ~
fx(z) d(]‘[ H)(Z) < Tm +/ (52x(¢(z, 1))) d(]"[ Pt>(z>. €Y
t=1 j=1 t=1

Fix an arbitraryZ = ((X, Y1), ..., Xm, Ym)) € (X x {0, 1H™. If Xq,..., Xm are not
distinct, then the definition of implies that% ernzl x (@@, j)) = 0. Assumexy, ..., Xm
are distinct. Lety, ..., ayn bexy, ..., Xy in sorted order, and let, . . ., vy be the corre-

sponding reordering of thg’s. Let

F={(f(a),..., f(am)) : T € F}.
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Since algorithmAg sorts the sample, the directed grahh constructed by algorithrA
using any reordering of the’s is the same. Choosiee {1, ..., m}. Let |’ be the position
of xj whenxy, ..., Xm is sorted. The(Z, j) causes a mistake fokr if and only if the
edge inH/, betweeny and the vertex obtained by negating ftith bit of v is oriented away
from v. (This is becausé represents the correct labellings, adgd predicts according to
the direction of the named edge.) Thﬁ:ﬁ”=l x(@(Z, j)) < outdegreé).

For eacht € {1, ..., m} choosef; € F such that?, is consistent withf;. Then

p(W, F) < |{t: fi(x) # fm(X)}I.
Thus,
outdegre&r) < 15(VC dim(F) + [{t : fi(X) # fm(X)}])

and therefore

m

Y x((Z ) < 15VCdim(F) + [{t : fi(x) # fmO}).

j=1
Since VCdin{F) < VCdim(F), plugging into (1), we have
- m - A 15vVCdim(F 15
/X(Z) d(ﬂ R)(Z) <=0+ % + ZE(t: £i00) # fnOO)).
(2
Since Py, is consistent withfy,,
Pn{(X, y) : fm(X) # y} =0. (3)

Foranyt € {1, ..., m}, sincedry (P, Pm) < Am, (3) implies
Am
P{(X, y) @ fi(X) # fn(X)} = P{(X, y) : fm(X) £y} < >

Thus

A 2
E({t 1 fux) # fm(x0)]) < Tm

Substituting into (2) completes the proof. ]

Theorem 4. There is a constant ¢ 0 such that for any sef of functions from X to
{0, 1}, for anye > O, if
A < ce?

~ VCdim(F)’

thenF is (e, A)-trackable in the realizable case.
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Proof: Letd = VCdim(F). Consider the algorithrd\- defined as follows. First, it sets
R={1,...,[1156@?/e*]}, and for each, it drawsr; uniformly at random fronR.

Given (X1, Y1), . - ., (Xm, ¥Ym), if m>33d/e, then A’. gives the lastn’ =[33d/¢] ele-
ments of((X1, r1), ¥1), ..., ((Xm, 'm), Ym) t0 Ax.

LetU be the uniform distribution oveR. For someA > 0, choose a\ -gradual sequence
P1, Py, ... of distributions oveiX. ThenP; x U, P, x U, .. . is alsoA-gradual. Also, if for
eachf € F,we define afunctiodr from X x Rto {0, 1} by fr(x, r) = f(x), then, straight
from the definitions, VC dir{fr : f € F}) = d. So applying Lemma 18, ih > 33d/¢, the
probability thatA’, makes a mistake is at mostd/an’ 4+ 6AM’ + (m)?/|R|. Substituting
the definitions ofm” and R and observing that 3fe < m' < 34d/e, if A < &5, this
probability is at most, completing the proof. O
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Notes

1. Recently, other constraints on the drift have been examined (e.g., Bartlett, Ben-David & Kulkarni, 1996; Freund
& Mansour, 1997). In this paper we restrict our attention to the simplest drift models, but direct application of
a slight variant of Lemma 12 of this paper leads to a small improvement in the analysis of (Freund & Mansour,
1997). Models of a changing environment that are more dissimilar to that studied here were considered in
(Littlestone & Warmuth, 1994; Kuh, Petsche & Rivest, 1990; Kuh, Petsche & Rivest, 1991; Blum & Chalasani,
1992; Freund & Ron, 1995; Herbster & Warmuth, 1995; Auer & Warmuth, 1995; Kuh, 1997; Tian & Kuh,
1997; Herbster & Warmuth, 1998).

2. Their statement of their algorithm is slightly different; we describe an equivalent algorithm to facilitate com-
parison with our modification.

3. We assume thaf is countable for convenience. Considerably weaker measurability assumptions suffice for
the results mentioned in this paper (Pollard, 1984; Haussler, 1992).

4. The behavior o\ for smallm is immaterial.
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