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Abstract. Despite its simplicity, the naive Bayes learning scheme performs well on most classification tasks,
and is often significantly more accurate than more sophisticated methods. Although the probability estimates that
it produces can be inaccurate, it often assigns maximum probability to the correct class. This suggests that its good
performance might be restricted to situations where the output is categorical. It is therefore interesting to see how
it performs in domains where the predicted value is numeric, because in this case, predictions are more sensitive
to inaccurate probability estimates.

This paper shows how to apply the naive Bayes methodology to numeric prediction (i.e., regression) tasks by
modeling the probability distribution of the target value with kernel density estimators, and compares it to linear
regression, locally weighted linear regression, and a method that produces “model trees”—decision trees with
linear regression functions at the leaves. Although we exhibit an artificial dataset for which naive Bayes is the
method of choice, on real-world datasets it is almost uniformly worse than locally weighted linear regression and
model trees. The comparison with linear regression depends on the error measure: for one measure naive Bayes
performs similarly, while for another it is worse. We also show that standard naive Bayes applied to regression
problems by discretizing the target value performs similarly badly. We then present empirical evidence that isolates
naive Bayes’ independence assumption as the culprit for its poor performance in the regression setting. These
results indicate that the simplistic statistical assumption that naive Bayes makes is indeed more restrictive for
regression than for classification.
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1. Introduction

Naive Bayes relies on an assumption that is rarely valid in practical learning problems:
that the attributes used for deriving a prediction are independent of each other, given the
predicted value. As an example where this assumption is inappropriate, suppose that the
type of a fish is to be predicted from its length and weight. Given an individual fish of
a particular species, its weight obviously depends greatly on its length—and vice versa.
However, it has been shown that, for classification problems where the predicted value
is categorical, the independence assumption is less restrictive than might be expected.
For several practical classification tasks, naive Bayes produces significantly lower error
rates than more sophisticated learning schemes, such as ones that learn univariate decision
trees (Domingos & Pazzani, 1997).

Why does naive Bayes perform well even when the independence assumption is seriously
violated? Most likely it owes its good performance to the zero-one loss function used in
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classification (Domingos & Pazzani, 1997). This function defines the error as the number
of incorrect predictions. Unlike other loss functions, such as the squared error, it has the key
property that it does not penalize inaccurate probability estimates—so long as the greatest
probability is assigned to the correct class (Friedman, 1997). There is mounting evidence that
this is why naive Bayes’ classification performance remains high, despite the fact that inter-
attribute dependencies often cause it to produce incorrect probability estimates (Domingos
& Pazzani, 1997). This raises the question of whether it can be successfully applied to
non-categorical prediction problems, where the zero-one loss function is of no use. This
paper investigates the application of naive Bayes to problems where the predicted value is
not categorical but numeric.

Naive Bayes assigns a probability to every possible value in the target range. The re-
sulting distribution is then condensed into a single prediction. In categorical problems, the
optimal prediction under zero-one loss is the most likely value—the mode of the underlying
distribution. However, in numeric problems the optimal prediction is either the mean or the
median, depending on the loss function. These two statistics are far more sensitive to the
underlying distribution than the most likely value: they almost always change when the un-
derlying distribution changes, even by a small amount.1 Therefore, when used for numeric
prediction, naive Bayes is more sensitive to inaccurate probability estimates than when it is
used for classification. This paper explains how it can be used for regression, and exhibits
an artificial dataset where it is the method of choice. It then summarizes its performance
on a set of practical learning problems. It turns out that the remarkable accuracy of naive
Bayes for classification on standard benchmark datasets does not translate into the context
of regression.

The use of naive Bayes for classification has been investigated extensively. The algorithm
itself originated in the field of pattern recognition (Duda & Hart, 1973). Kasif et al. (1998)
relate it to an instance-based learning algorithm, and discuss its limitations. Its surprisingly
high accuracy—in comparison to more sophisticated learning methods—has frequently
been noted (Cestnik, 1990; Clark & Niblett, 1989; Langley, Iba, & Thompson, 1992).
Domingos and Pazzani (1997) performed a large-scale comparison of naive Bayes with
state-of-the-art algorithms for decision tree induction, instance-based learning, and rule
induction on standard benchmark datasets, and found it to be superior to each of the other
learning schemeseven on datasets with substantial attribute dependencies.

Despite this, several researchers have tried to improve naive Bayes by deleting redundant
attributes (Langley & Sage, 1994; John & Kohavi, 1997), or by extending it to incorporate
simple high-order dependencies (Kononenko, 1991; Langley, 1993; Pazzani, 1996; Sahami,
1996; Friedman, Geiger, & Goldszmidt, 1997). Domingos and Pazzani (1997) review these
approaches in some detail, and conclude that “. . .attempts to build on [naive Bayes’] success
by relaxing the independence assumption have had mixed results.”

Naive Bayes has previously been applied to the related problem of time series prediction
by Kononenko (1998), using a regression-by-discretization approach. More specifically, he
discretized the numeric target value using an “ad hoc” approach (Kononenko, 1998), and
applied standard naive Bayes for classification to the discretized data. During prediction,
the sum of the means of each of the pseudo-classes was output, weighted according to
the class probabilities assigned by naive Bayes. According to Kononenko (1998), naive
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Bayes “. . .performed comparably to well known methods for time series prediction and
sometimes even slightly better.” This paper shows that it does not perform as well in the
related context of regression. To our knowledge, an extensive evaluation of naive Bayes for
regression has not been published previously in the literature on machine learning, pattern
recognition, or statistics.

This paper is organized as follows. In the next section we describe a method for apply-
ing naive Bayes directly to regression problems, without discretizing the target value. In
Section 3 we exhibit an artificial dataset for which the independence assumption is true, and
show that, on this dataset, naive Bayes performs better than two state-of-the-art methods
for regression: locally weighted linear regression and model trees. In Section 4 we then
turn to practical datasets to compare the predictive performance of naive Bayes to those of
linear regression, locally weighted linear regression, and model trees. Section 5 investigates
how well our method performs compared to standard naive Bayes, both in the case of clas-
sification, and in the case of regression. In Section 6 we present results of an experiment
investigating how the independence assumption influences the performance of naive Bayes
for regression. Section 7 discusses the results and draws some conclusions.

2. Naive Bayes for regression

We address the problem of predicting a numeric target valueY, given an exampleE. E
consists ofm attributesX1, X2, . . . , Xm. Each attribute is either numeric, in which case it
is treated as a real number, or nominal, in which case it is a set of unordered values.

If the probability density functionp(Y | E) of the target value were known for all pos-
sible examplesE, we could chooseY to minimize the expected prediction error. However,
p(Y | E) is usually not known, and has to be estimated from data. Naive Bayes achieves this
by applying Bayes’ theorem and assuming independence of the attributesX1, X2, . . . , Xm

given the target valueY. Bayes’ theorem states that

p(Y | E) = p(E,Y)∫
p(E,Y) dY

= p(E |Y)p(Y)∫
p(E |Y)p(Y) dY

, (1)

where the likelihoodp(E |Y) is the probability density function (pdf) of the exampleE for
a given target valueY, and the priorp(Y) is the pdf of the target value before any examples
have been seen. Naive Bayes makes the key assumption that the attributes are independent
given the target value, and so Eq. (1) can be written

p(Y | E) = p(X1 |Y)p(X2 |Y) · · · p(Xm |Y)p(Y)∫
p(X1 |Y)p(X2 |Y) · · · p(Xm |Y)p(Y) dY

. (2)

Instead of estimating the pdfp(E |Y), the individual pdfsp(Xi |Y) can now be estimated
separately. This dimensionality reduction makes the learning problem much easier. Because
the amount of data needed to obtain an accurate estimate increases with the dimensionality
of the problem,p(Xi |Y) can be estimated more reliably thanp(E |Y). However, a question
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remains: how harmful is the independence assumption when it is not valid for the learning
problem at hand? The empirical results presented in Section 4 shed some light on this issue.

The following sections discuss howp(Xi |Y) and p(Y) can be estimated from a set of
training examples. Forp(Xi |Y) there are two cases to consider: the case where attribute
Xi is numeric, and the case where it is nominal.

2.1. Handling numeric attributes

We first discuss the estimation ofp(X |Y) for numeric attributesX, where we assume
that they are normalized by their range, as determined using the training data. In this case,
p(X |Y) is a pdf involving two numeric variables. Because

p(X |Y) = p(X,Y)∫
p(X,Y) d X

, (3)

the conditional probabilityp(X |Y) can be estimated by computing an approximation to
the joint probabilityp(X,Y). In principle, any estimator for two-dimensional pdfs can be
used to modelp(X,Y), for example, mixture models (Ghahramani & Jordan, 1994). We
have chosen the kernel density estimator

p̂(X = x,Y = y) = 1

nhXhY

n∑
i=1

K

(
x − xi

hX

)
K

(
y− yi

hY

)
, (4)

wherexi is the attribute value,yi the target value of training examplei , K (.) is a given
kernel function, andhX andhY are the kernel widths forX andY. If either xi or yi is
missing, the example is not included in the calculation. It can be shown that this estimate
converges to the true pdf if the kernel function obeys certain smoothness properties and the
kernel widths are chosen appropriately (Silverman, 1986).

A common choice forK (.) is the Gaussian kernelK(t) = (2π)−1/2e−t2/2, and this is what
we use in our experiments. Ideally, the kernel widthshX andhY should be chosen so that
the difference between the estimated pdfp̂(X,Y) and the true pdfp(X,Y) is minimized.
One way of measuring this difference is the expected cross-entropy between the two pdfs,
an unbiased estimate of which can be obtained by leave-one-out cross-validation (Smyth,
Gray, & Fayyad, 1995):

CVCE = −1

n

n∑
j=1

log

(
1

(n− 1)hXhY

n∑
i=1,i 6= j

K

(
xj − xi

hX

)
K

(
yj − yi

hY

))
(5)

Then,hX andhY are set tohX = cX/
√

n andhY = cY/
√

n, wherecX andcY are chosen
to minimize the estimated cross-entropy. In our experiments, we use a grid search for
(cX, cY) ∈ [0.4, 0.8] × [0.4, 0.8] with a grid width of 0.1. We have tried other parameter
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settings for the search and found little difference in the result. Because∫
p̂(X,Y) d X = 1

nhY

n∑
i=1

K

(
y− yi

hY

)
, (6)

we have all the terms needed to compute an estimatep̂(X |Y) of p(X |Y) for a numeric
attributeX.

2.2. Handling nominal attributes

Now consider the case wherep(X |Y)has to be estimated for a nominal attributeX with a set
of unordered valuesv1, v2, . . . , vo. Rather than estimatingp(X |Y) directly, we transform
the problem into one of estimatingp(Y | X), the pdf of a numeric variable given a nominal
one, andp(X), the prior probability of a nominal attribute value. This transformation is
effected by applying Bayes’ theorem:

p(X = vk |Y = y) = p(X = vk)p(Y = y | X = vk)∑o
k=1 p(X = vk)p(Y = y | X = vk)

(7)

Both p(Y | X) andp(X) can be estimated easily. For the former, we use the one-dimensional
counterpart of the kernel density estimator from above:

p̂(Y = y | X = vk) = 1

nkhk

nk∑
i=1

K

(
y− yi

hk

)
, (8)

where the sum is over allnk examples with attribute valueX = vk. This type of estimator
was also used by John and Langley (1995) to estimate the density of numeric attributes
in naive Bayes for categorical prediction. For the latter, an estimate ofp(X) is obtained
simply by computing the proportion of examples with attribute valuevk:

p̂(X = vk) = nk∑o
l=1 nl

(9)

Again, the cross-validation procedure can be used to choosehk = ck/
√

nk for eachvk so
that the estimated cross-entropy is minimized. Here we use a grid search forck ∈ [0.4, 0.8]
with a grid width of 0.1. This gives all the terms necessary to compute an estimatep̂(X |Y)
of p(X |Y) for a nominal attributeX.

2.3. Estimating the prior

The procedure for estimating the priorp(Y) is the same as forp(Y | X) (Eq. (8)). The
only difference is that, instead of including only examples with a particular attribute value,
all n examples are used. The kernel width is chosen using the previously described cross-
validation procedure.
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2.4. Prediction

The optimal predictiont (e) for an examplee with respect to the posterior probability
p(Y | E = e) depends on the loss function. We consider two loss functions: the squared
error and the absolute error. In either case, the predicted value should minimize the expected
loss. It is easy to show that the expected squared error

E[(t (e)− y)2)] =
∫

p(Y = y | E = e)(t (e)− y)2 dy (10)

is minimized if the expected value ofy (that is, its mean) is predicted:

tSE(e) =
∫

p(Y = y | E = e)y dy. (11)

An estimatet̂SE(e) of this quantity can be obtained from̂p(Y = y, E = e). Let G be a
set of equally spaced grid points in the domain ofy. Supposeymin is the minimum and
ymax the maximum value fory in the training data, and leth = (ymax− ymin)/(d − 1) for
some number of grid pointsd. Then we useG = {. . . , ymin − 2h, ymin − h, ymin, ymin +
h, . . . , ymax− h, ymax, ymax+ h, ymax+ 2h, . . .}. Note that one can stop evaluating points
to the left ofymin and to the right ofymax as soon aŝp(Y = y, E = e) becomes negligible.
In our experiments,d is set to 50 and attributesXi for which p̂(Xi |Y = y) is negligible
for all values inG are excluded from the computation ofp̂(Y = y, E = e). Then,

t̂SE(e) =
∑

y∈G p̂(Y = y, E = e)y∑
y∈G p̂(Y = y, E = e)

. (12)

The sum in the denominator approximates the integral in the denominator of Eq. (2).
If, on the other hand, the expected absolute error

E[|t (e)− y|] =
∫

p(Y = y | E = e)|t (e)− y| dy (13)

is to be minimized, this is achieved by settingtAE(e) so that∫ tAE(e)

−∞
p(Y = y | E = e) dy= 0.5. (14)

In this case, the optimum predictiontAE(e) is the median (Lehmann, 1983). Again, an
estimatêtAE(e) can be obtained usinĝp(Y= y, E= e) by finding the smallesty′ for which∑

y∈G,y<y′ p̂(Y = y, E = e)∑
y∈G p̂(Y = y, E = e)

> 0.5, (15)

and settingtAE(e) = y′. For estimatingtAE we used = 100 grid points.
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3. Experiments with an artificial dataset

As previously noted, naive Bayes can be an excellent alternative to more sophisticated
methods for categorical learning. This section exhibits an artificial dataset for which this
is also the case in the regression setting. We compare naive Bayes to two state-of-the-art
methods for numeric prediction: locally weighted linear regression, and model trees.

Locally weighted linear regression (LWR) is a combination of instance-based learn-
ing and linear regression (Atkeson, Moore, & Schaal, 1997). Instead of performing a lin-
ear regression on the full, unweighted dataset, it performs a weighted linear regression,
weighting the training instances according to their distance to the test instance at hand. In
other words, it performs a local linear regression by giving those training instances higher
weight that are close to the test instance. This means that a linear regression has to be
done for each new test instance, which makes the method computationally quite expensive.
However, it also makes it highly flexible, and enables it to approximate non-linear target
functions.

There are many different ways of implementing the weighting scheme for locally weighted
linear regression (Atkeson, Moore, & Schaal, 1997). A common approach, which we also
employ here, is to weight the training instances according to a triangular kernel centered at
the test instance, setting the kernel width to the distance of the test instance’skth nearest
neighbour. The best value fork is determined using ten-fold cross-validation of the root
mean squared error on the training data, for ten values ofk ranging from one to the number
of training instances.

For performing the linear regression, we use an implementation that eliminates re-
dundant attributes by deleting, at each step, the attribute with the smallest contribution
to the prediction. To decide when to stop deleting attributes, Akaike’s information cri-
terion is employed (Akaike, 1973). Nominal attributes withn values are converted into
n− 1 binary attributes using the algorithm described by Wang and Witten (1997). Missing
values are globally replaced by the mode (for nominal attributes), or the mean (for numeric
attributes)—derived from the training data before the linear regression is performed.2

The second state-of-the-art method is a model-tree predictor. Model trees are the coun-
terpart of decision trees for regression tasks. They have the same structure as decision
trees, with one difference: they employ a linear regression function at each leaf node to
make a prediction. For our experiments we use the model tree inducer M5′ (Wang &
Witten, 1997), a re-implementation of Quinlan’s M5 (Quinlan, 1992). An interesting fact
is that M5′ in general produces more accurate predictions than a state-of-the-art deci-
sion tree learner when applied tocategoricalprediction tasks (Frank et al., 1998). In our
implementation, missing values are globally replaced before a model tree is built. M5′

and LWR use the same methods for performing linear regression and treating nominal
attributes.

Naive Bayes assumes that the attribute values are statistically independent given a partic-
ular target value. In terms of a regression problem this can be interpreted as each attribute
being a function of the target value plus some noise:

x1 = f1(y)+ ε, x2 = f2(y)+ ε, . . . (16)
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Figure 1. Spiral dataset.

How does naive Bayes fare if a dataset satisfies the independence assumption? We
investigated this question using artificial data. More specifically, we constructed a dataset
describing a diminishing spiral in three dimensions. This spiral (using 1000 randomly gen-
erated data points) is depicted in figure 1. The featuresx1 andx2 were generated from the
target valuey according to the following equations:

x1 = y ∗ sin(y)+ N(0, 1) x2 = y ∗ cos(y)+ N(0, 1), (17)

whereN(0, 1) denotes normally distributed noise with zero mean and unit variance. Note,
thaty is not a function of either of the two attributesx1 andx2 alone. However, it is—modulo
noise—a function of(x1, x2).

We evaluated how well naive Bayes predictsy for different training set sizes. Figure 2
shows the resulting learning curve, and, for comparison, the learning curve using LWR and
unsmoothed M5′ model trees. Unsmoothed model trees perform better in this domain than
smoothed ones. Each point on the curve was generated by choosing 20 random training
datasets and evaluating the resulting models on the 1000 independently generated examples
shown in figure 1. The error bars are 99% confidence intervals.

Figure 2 shows that naive Bayes performs significantly better than M5′ on the spiral
dataset, and slightly better than LWR. This demonstrates that naive Bayes can be preferable
to other state-of-the-art methods for regression if the independence assumption is satisfied—
a situation that might occur in practice if, for example, the attributes are readings from
sensors that all measure the same target quantity, but do so in different ways. Measuring
the distance of an object using ultrasonic waves on the one hand, and infrared radiation on
the other hand is an example of this situation: the measurements of the two corresponding
sensors are almost independent given a particular distance.
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Figure 2. Learning curves for spiral dataset.

4. Experiments with practical datasets

This section compares naive Bayes for regression to linear regression (LR), locally weighted
linear regression (LWR), and M5′ on practical benchmark datasets. To speed up the LWR
algorithm, the kernel width is set to the distance of the furthest neighbor, which we have
found to give comparable results in general. Results are presented for both loss functions
discussed in Section 2: the root mean squared error and the mean absolute error. Thirty-two
datasets are used. The only selection criterion was their size: we did not choose any large
datasets because of the time complexity of naive Bayes for regression and locally weighted
regression.

The datasets and their properties are listed in Table 1, sorted by increasing size.3 Twenty
of them were used by Kilpatrick and Cameron-Jones (1998),4 seven are from the StatLib
repository (StatLib, 1999), and the remaining five were collected by Simonoff (1996).5 The
pwLineardataset is the only artificial dataset in this set. Two of the datasets—hungarian
andcleveland—are classification problems disguised as regression problems: the class is
treated as an integer variable.

4.1. Results for the relative root mean squared error

Table 2 summarizes the relative root mean squared error of all methods investigated. This
measure is the root mean squared error normalized by the root mean squared error of the
sample mean ofY, and expressed as a percentage. The sample mean is computed from
the training data. Thus, a method that performs worse than the mean has a relative root
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Table 1. Datasets used for the experiments.

Missing Numeric Nominal
Dataset Instances values (%) attributes attributes

Schlvotea 38 0.4 4 1

Boltsb 40 0.0 7 0

Vineyarda 52 0.0 3 0

Elusagea 55 0.0 1 1

Pollutionb 60 0.0 15 0

Mbagradea 61 0.0 1 1

Sleepb 62 2.4 7 0

Auto93c 93 0.7 16 6

Baskballa 96 0.0 4 0

Cloudb 108 0.0 4 2

Fruitflyc 125 0.0 2 2

EchoMonthsc 130 7.5 6 3

Veteranb 137 0.0 3 4

Fishcatchc 158 6.9 5 2

AutoPricec 159 0.0 15 0

Servoc 167 0.0 0 4

Lowbwtc 189 0.0 2 7

Pharynxc 195 0.1 1 9

PwLinearc 200 0.0 10 0

AutoHorsec 205 1.1 17 8

cpuc 209 0.0 6 1

Bodyfatc 252 0.0 14 0

BreastTumorc 286 0.3 1 8

Hungarianc 294 19.0 6 7

Cholesterolc 303 0.1 6 7

Clevelandc 303 0.1 6 7

AutoMpgc 398 0.2 4 3

pbcc 418 15.6 10 8

Housingc 506 0.0 12 1

Metac 528 4.3 19 2

Sensoryb 576 0.0 0 11

Strikeb 625 0.0 5 1

a(Simonoff, 1996).
b(StatLib, 1999).
c(Kilpatrick & Cameron-Jones, 1998).
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Table 2. Experimental results: relative root mean squared error, and standard deviation.

Dataset Naive Bayes LR LWR M5′

Schlvote 95.92± 7.2 114.23± 3.6• 118.81± 6.6• 94.00±10.2

Bolts 36.27± 2.8 38.62± 1.5• 30.50± 2.3◦ 21.79± 3.1◦
Vineyard 66.97± 5.1 72.16± 5.6• 64.41± 3.8 72.11± 5.4•
Elusage 52.78± 3.2 53.15± 3.5 55.44± 3.5• 50.48± 3.3

Pollution 83.97± 4.6 71.51± 3.2◦ 71.09± 4.3◦ 73.98± 5.3◦
Mbagrade 92.35± 3.7 87.15± 4.0◦ 88.10± 4.2◦ 89.23± 5.0◦
Sleep 80.79± 5.4 88.96±13.7 77.32± 2.9 71.72± 4.1◦
Auto93 61.76± 5.5 59.46± 6.1 65.76± 4.3 54.65± 4.2◦
Baskball 86.53± 2.6 79.84± 1.6◦ 81.78± 1.6◦ 79.84± 1.6◦
Cloud 52.09± 2.2 38.19± 2.3◦ 41.09± 2.4◦ 38.36± 2.5◦
Fruitfly 116.42± 2.1 100.49± 0.8◦ 106.98± 1.8◦ 100.00± 0.0◦
EchoMonths 78.53± 1.5 68.25± 1.4◦ 68.04± 1.1◦ 71.01± 0.7◦
Veteran 86.32± 3.1 94.02± 3.3• 97.77± 4.1• 90.53± 2.6•
Fishcatch 31.20± 2.2 27.25± 0.8◦ 22.45± 1.1◦ 16.23± 0.6◦
AutoPrice 41.56± 1.2 48.37± 2.3• 40.69± 2.2 39.82± 2.5

Servo 70.40± 2.1 55.26± 1.4◦ 38.81± 1.0◦ 37.92± 3.3◦
Lowbwt 62.13± 1.0 61.49± 0.7 62.66± 1.1 62.00± 1.0

Pharynx 74.25± 1.6 75.54± 1.5• 78.49± 2.0• 71.56± 1.4◦
PwLinear 51.58± 0.7 50.51± 0.8 40.65± 0.5◦ 32.28± 0.4◦
AutoHorse 37.92± 1.9 29.55± 1.5◦ 24.81± 2.7◦ 33.32± 2.0◦
cpu 33.56± 3.3 43.35± 3.4• 22.03± 2.8◦ 21.23± 2.4◦
Bodyfat 25.88± 0.7 12.38± 0.7◦ 11.88± 0.8◦ 11.15± 1.0◦
BreastTumor 100.96± 1.2 97.43± 1.2◦ 103.05± 1.2• 97.29± 0.6◦
Hungarian 71.28± 2.0 68.64± 0.6◦ 68.60± 0.9◦ 73.79± 1.5•
Cholesterol 101.73± 1.2 99.78± 1.7◦ 103.89± 1.7• 101.62± 2.1

Cleveland 74.45± 1.5 70.45± 0.7◦ 71.42± 1.1◦ 71.03± 1.0◦
AutoMpg 41.85± 0.7 37.98± 0.5◦ 33.28± 0.4◦ 35.67± 0.8◦
pbc 86.30± 0.9 80.32± 0.6◦ 81.38± 0.8◦ 80.83± 1.5◦
Housing 60.04± 1.6 52.68± 1.0◦ 39.94± 0.8◦ 39.84± 1.6◦
Meta 160.49±17.4 202.18± 11.8• 160.29±10.4 150.68± 32.2

Sensory 92.22± 0.9 92.68± 0.5 84.87± 0.5◦ 87.84± 1.4◦
Strike 160.30±12.1 85.24± 1.9◦ 85.27± 2.1◦ 84.61± 1.9◦

mean squared error of more than 100 percent. Because the root mean squared error was
to be minimized, the results for naive Bayes were generated by predictingt̂SE according to
Eq. (12). The figures in Table 2 are averages over ten ten-fold cross-validation runs, and
standard deviations of the ten are also shown. The same folds were used for each scheme.
Results are marked with a “◦” if they show significant improvement over the corresponding
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Table 3. Results of pairedt-tests (p= 0.01) on relative root mean squared error results: number indicates how
often method in column significantly outperforms method in row.

Naive Bayes LR LWR M5′

Naive Bayes — 18 20 23

LR 8 — 13 15

LWR 6 10 — 15

M5′ 3 4 6 —

result for naive Bayes, and a “•” if they show significant degradation. Throughout, we speak
of results being “significantly different” if the difference is statistically significant at the
1% level according to a paired two-sidedt-test, each pair of data points consisting of the
estimates obtained in one ten-fold cross-validation run for the two learning schemes being
compared.

Table 3 summarizes how the different methods compare with each other. Each entry indi-
cates the number of datasets for which the method associated with its column is significantly
more accurate than the method associated with its row.

Observe from Table 3 that linear regression outperforms naive Bayes on eighteen datasets
(first row, second column), whereas naive Bayes outperforms linear regression on only eight
(second row, first column). M5′ dominates even more strongly: it outperforms naive Bayes
on twenty-three datasets, and is significantly worse on only three (hungarian, vineyard, and
veteran). As mentioned earlier,hungarianis actually a classification problem disguised as
a regression problem. The finding for LWR is very similar: it outperforms naive Bayes on
twenty datasets, and is significantly worse on only six.

These results, and the remaining figures in Table 3, indicate that M5′ and LWR are the
methods of choice on datasets of this type, if it is the root mean squared error that is to be
minimized. Linear regression is third. However, compared to naive Bayes and LWR, linear
regression and M5′ have the advantage that they produce comprehensible output and are
less expensive computationally.

4.2. Results for the mean absolute error

We now compare the methods with respect to their mean absolute error. As discussed in
Section 2, using naive Bayes to predict the mediant̂AE according to Eq. (15) should perform
better than using it to predict the meant̂SE, at least if the estimated pdfp̂(Y, E) is sufficiently
close to the true pdf. In our experiments we observed that this is not the case: the mean
performs significantly better than the median on fifteen datasets, and significantly worse on
only seven. This indicates that the mean is more tolerant to inaccurate estimates that occur
because of inter-attribute dependencies. For the results presented here, we therefore use the
mean instead of the median.

Table 4 summarizes the relative mean absolute error of the four methods. This is their
mean absolute error divided by the mean absolute error of the sample mean. Again, Table 5
summarizes the results of the significance tests.
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Table 4. Experimental results: relative mean absolute error, and standard deviation.

Dataset Naive Bayes LR LWR M5′

Schlvote 90.13± 7.0 112.43± 4.3• 114.23± 7.1• 89.78± 7.4

Bolts 32.27± 2.8 36.29± 1.7• 26.02± 1.7◦ 18.84± 3.4◦
Vineyard 64.44± 4.3 70.85± 4.6• 63.80± 2.9 70.55± 4.2•
Elusage 50.66± 2.8 49.45± 2.9 52.67± 2.8• 48.53± 3.7

Pollution 84.29± 4.0 68.50± 3.7◦ 67.99± 3.8◦ 72.07± 5.4◦
Mbagrade 93.92± 3.7 86.40± 3.8◦ 85.33± 4.2◦ 88.43± 4.8◦
Sleep 85.59± 7.1 87.94± 8.9 77.93± 4.1◦ 74.07± 4.3◦
Auto93 57.81± 4.0 57.65± 6.2 63.31± 3.7• 51.86± 3.9◦
Baskball 85.16± 2.8 78.88± 1.7◦ 80.85± 1.8◦ 78.88± 1.7◦
Cloud 45.43± 2.0 34.86± 1.7◦ 37.07± 1.8◦ 35.06± 1.8◦
Fruitfly 116.11± 1.9 100.37± 0.8◦ 107.36± 1.6◦ 100.00± 0.0◦
EchoMonths 72.34± 1.5 65.42± 1.5◦ 64.30± 1.2◦ 67.95± 0.7◦
Veteran 76.80± 1.8 89.68± 1.9• 91.00± 2.7• 86.54± 1.4•
Fishcatch 22.19± 1.3 23.73± 0.6• 20.19± 0.7◦ 13.49± 0.4◦
AutoPrice 37.43± 0.7 42.74± 1.7• 35.37± 1.4◦ 33.30± 1.6◦
Servo 51.61± 0.8 54.83± 0.9• 34.22± 0.6◦ 27.64± 1.7◦
Lowbwt 61.38± 0.8 62.47± 0.5• 62.29± 1.2 63.22± 1.0•
Pharynx 68.62± 1.2 71.00± 1.8• 73.59± 1.7• 67.32± 1.1◦
PwLinear 50.51± 0.8 50.53± 1.0 40.25± 0.7◦ 32.05± 0.5◦
AutoHorse 28.33± 1.2 24.71± 0.9◦ 17.39± 1.2◦ 29.10± 1.2

cpu 28.11± 2.1 42.67± 1.6• 18.62± 1.4◦ 15.74± 1.3◦
Bodyfat 21.21± 0.3 7.53± 0.2◦ 6.65± 0.2◦ 5.47± 0.4◦
BreastTumor 104.26± 0.9 99.29± 1.6◦ 106.25± 1.4• 99.91± 0.6◦
Hungarian 38.08± 0.6 54.47± 0.4• 51.80± 0.5• 57.53± 1.3•
Cholesterol 99.67± 1.0 99.52± 1.6 102.72± 1.2• 101.50± 1.7

Cleveland 58.33± 1.1 64.89± 0.5• 64.54± 0.9• 64.81± 1.0•
AutoMpg 36.95± 0.6 34.68± 0.4◦ 28.85± 0.3◦ 31.16± 0.6◦
pbc 80.15± 0.8 78.72± 0.5◦ 79.88± 0.6 78.28± 1.3◦
Housing 56.18± 0.8 51.29± 0.6◦ 39.23± 0.6◦ 37.89± 1.2◦
Meta 78.44± 3.7 146.42± 4.5• 104.90± 3.6• 79.00± 8.5

Sensory 93.33± 0.9 93.92± 0.6 86.10± 0.5◦ 88.78± 1.7◦
Strike 91.45± 2.3 74.08± 1.2◦ 69.88± 0.9◦ 71.22± 1.1◦

Compared to the relative root mean squared error results, Table 5 shows a slightly different
picture. Here, naive Bayes performs as well as linear regression: it is significantly more
accurate on thirteen datasets, and significantly less accurate on thirteen. This is not as
surprising as it might seem. Because the linear regression function is derived by minimizing
the root mean squared error on the training data, it fits extreme values in the dataset as closely
as possible. However, the mean absolute error is relatively insensitive to extreme deviations
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Table 5. Results of pairedt-tests(p = 0.01) on relative mean absolute error results: number indicates how often
method in column significantly outperforms method in row.

Naive Bayes LR LWR M5′

Naive Bayes — 13 19 22

LR 13 — 17 16

LWR 10 9 — 19

M5′ 5 5 8 —

of the predicted value from the true one. This implies that naive Bayes does not fit extreme
values (and outliers) very well, but does a reasonable job on the rest of the data.

The win-loss situation between naive Bayes and LWR is almost unchanged: naive Bayes
scores ten significant wins, and LWR nineteen. As in the previous results, M5′ outperforms
naive Bayes by a wide margin: it performs significantly better on twenty-two datasets
and significantly worse on only five. Two of those five arehungarianandcleveland, the
two datasets that represent classification problems disguised as regression problems. These
results, and the other figures in Table 5, show that M5′ and LWR’s superior performance
is not restricted to the root mean squared error: they outperform the other methods with
respect to the mean absolute error too.

5. Comparison with standard naive Bayes

There remains the possibility that the disappointing performance of naive Bayes for regres-
sion on the numeric benchmark datasets is due to a fundamental flaw in our methodology for
deriving the naive Bayes models. To test this hypothesis, we compared it to standard naive
Bayes for classification applied to (a) a set of benchmarkclassificationproblems, and (b) the
numeric datasets from Section 4. For (a) we need a way to apply naive Bayes for regression
to classification problems, and for (b) a way to apply naive Bayes for classification to regres-
sion problems. Fortunately, there exist standard procedures for solving these two problems.
We first discuss point (a) in the next section, and then proceed to investigate point (b).

5.1. Classification problems

We used a standard technique for transforming a classification problem withn classes into
n regression problems. Each of then new datasets contains the same number of instances
as the original, with the class value set to 1 or 0 depending on whether that instance has
the appropriate class or not. In the next step, a naive Bayes model is trained on each of
these newregressiondatasets. For a specific instance, the output of one of these models
constitutes an approximation to the probability that this instance belongs to the associated
class. Because the model is to minimize the squared error of the probability estimates, we
let it predict the mean according to Eq. (12). In the testing process, an instance of unknown
class is processed by each of the naive Bayes models, the result being an approximation to
the probability that it belongs to that class. The class whose naive Bayes model gives the
highest value is chosen as the predicted class.
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Table 6. Experimental results: percentage of correct classifications, and standard deviation.

Naive Bayes Naive Bayes
Dataset Instances Classes C4.5 for regression for classification

Anneal 898 5 98.7± 0.3 98.1± 0.2• 95.6± 0.3•
Audiology 226 24 76.3± 1.4 71.8± 1.4• 70.7± 1.4•
Australian 690 2 85.5± 0.7 85.2± 0.3 85.9± 0.5

Autos 205 6 80.0± 2.5 71.9± 1.5• 64.5± 2.1•
Bbalance-scale 625 3 77.6± 0.9 91.3± 0.3◦ 71.8± 0.5•
Breast-cancer 286 2 73.2± 1.7 72.5± 0.6 72.6± 0.5

Breast-w 699 2 94.9± 0.4 96.7± 0.1◦ 97.1± 0.1◦
Glass 163 2 78.1± 1.8 78.3± 1.0 80.4± 1.5

Heart-c 303 2 76.7± 1.7 83.1± 0.8◦ 83.2± 0.6◦
Heart-h 294 2 79.8± 0.8 83.9± 0.9◦ 84.2± 0.3◦
Heart-statlog 270 2 78.3± 1.9 82.1± 0.4◦ 82.8± 0.7◦
Hepatitis 155 2 79.7± 1.2 85.0± 0.4◦ 83.7± 0.5◦
Horse-colic 368 2 85.4± 0.3 78.7± 0.6• 79.7± 0.6•
Ionosphere 351 2 89.4± 1.3 90.7± 0.4 89.2± 0.6

Iris 150 3 94.4± 0.6 96.0± 0.3◦ 92.9± 1.0•
Iabor 57 2 77.2± 4.1 92.3± 2.2◦ 89.0± 1.7◦
lymphography 148 4 75.8± 2.9 80.3± 0.8◦ 84.6± 1.3◦
Pima-indians 768 2 74.5± 1.4 75.3± 0.5 75.1± 0.6

Primary-tumor 339 21 41.8± 1.0 47.8± 0.9◦ 48.7± 1.3◦
Sonar 208 2 75.0± 3.0 76.5± 0.8 76.5± 1.3

Soybean 683 19 91.5± 0.6 92.5± 0.6◦ 92.7± 0.2◦
Vote 435 2 96.3± 0.6 90.2± 0.2• 90.2± 0.1•
Zoo 101 7 91.1± 1.2 91.5± 1.4 92.9± 1.6

Table 6 shows error rates for twenty-three UCI datasets (Blake, Keogh, & Merz, 1998)
that represent classification problems.6 As before, these error rates were estimated using
ten ten-fold cross-validation runs. As well as naive Bayes for regression, we also ran the
state-of-the-art decision tree learner C4.5 Revision 8 (Quinlan, 1993) with default parameter
settings and the standard naive Bayes procedure for classification on these datasets. Our
implementation of naive Bayes for classification discretizes numeric attributes using Fayyad
and Irani’s (1993) method, ignores missing values, and employs the Laplace estimator to
avoid zero counts (Domingos & Pazzani, 1997).

The results in Table 6 show that C4.5 performs significantly better than naive Bayes for
regression on five datasets, and significantly worse on eleven. Compared to naive Bayes
for classification it performs significantly better on seven datasets, and worse on nine.
These results show that naive Bayes for regression applied to classification problems per-
forms comparably, or even slightly better than the standard approach to naive Bayes for
classification.
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5.2. Regression problems

We now turn to a comparison of naive Bayes for regression and standard naive Bayes
for classification on the set of benchmark regression problems from Section 4. In order
to apply naive Bayes for classification to those datasets, they have to be transformed into
classification problems. We do this using the regression-by-discretization strategy applied
by Kononenko (1998). In other words, we discretize the target value into a set of intervals,
and apply naive Bayes for classification to the discretized data. For prediction, the intervals’
mean values are weighted according to the class probabilities output by the naive Bayes
model. However, instead of Kononenko’sad hocmethod for discretizing the target value,
our implementation finds the best equal-width discretization by performing ten-fold cross-
validation on the training data, and choosing the number of intervals with minimum root
mean squared error.

Table 7 shows that both naive Bayes for regression and the discretization approach per-
form worse than M5′ with respect to the relative root mean squared error. M5′ performs
significantly better than naive Bayes for regression on twenty-three datasets, and signifi-
cantly worse on three. Compared to naive Bayes for classification M5′ performs significantly
better on twenty-three datasets, and worse on four.

This result and the findings from the previous section suggest that there is no fundamental
flaw in our methodology. They support our conjecture that it is indeed impossible to apply
naive Bayes as successfully to standard regression problems as to classification tasks.

6. Isolating the independence assumption

In order to test if the independence assumption is the main reason for the relatively poor
performance of naive Bayes for regression, we designed an experiment to isolate its influence
on the results. To this end, we created a version of the model tree inducer M5′, which assumes
that the attributes contribute independently to the prediction. More specifically, if there arem
attributes, we generatem datasets, each consisting of one of the attributes and the class, and
build m model trees from them—each of the trees basing its prediction on just one attribute.
Assuming that the attributes contribute independently to the final prediction equates to
taking a weighted average of these individual model trees, and using it for prediction.

The naive approach is to use a straight, unweighted average. However, the predictive per-
formance of the combined trees can be dramatically improved by weighting their predictions
according to their performance on the training data—otherwise, adding non-informative at-
tributes has a strongly detrimental effect. In our experiments, we obtained best results by
weighting according to the relative root mean squared error. More specifically, ifmi is
the prediction of the model tree for attributei , andRRMSi is the tree’s root relative mean
squared error on the training data, then the final predictionm is

m=
∑

i (100− RRMSi ) ∗mi∑
i 100− RRMSi

. (18)

In the following, we will call this prediction method M5′Independent. Of course, more so-
phisticated weighting schemes might produce better results. However, we are only interested
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Table 7. Experimental results: relative root mean squared error, and standard deviation.

Naive Bayes Naive Bayes
Dataset M5′ for regression for classification

Schlvote 94.00± 10.2 95.92± 7.2 104.71± 6.2

Bolts 21.79± 3.1 36.27± 2.8• 38.55± 4.5•
Vineyard 72.11± 5.4 66.97± 5.1◦ 60.47± 5.0◦
Elusage 50.48± 3.3 52.78± 3.2 54.89± 3.5•
Pollution 73.98± 5.3 83.97± 4.6• 92.45± 4.5•
Mbagrade 89.23± 5.0 92.35± 3.7• 95.78± 1.1•
Sleep 71.72± 4.1 80.79± 5.4• 77.20± 3.2•
Auto93 54.65± 4.2 61.76± 5.5• 69.07± 5.9•
Baskball 79.84± 1.6 86.53± 2.6• 98.32± 2.6•
Cloud 38.36± 2.5 52.09± 2.2• 64.71± 6.0•
Fruitfly 100.00± 0.0 116.42± 2.1• 102.45± 0.6•
EchoMonths 71.01± 0.7 78.53± 1.5• 67.51± 1.2◦
Veteran 90.53± 2.6 86.32± 3.1◦ 102.25± 3.5•
Fishcatch 16.23± 0.6 31.20± 2.2• 41.35± 2.6•
AutoPrice 39.82± 2.5 41.56± 1.2 40.05± 1.6

Servo 37.92± 3.3 70.40± 2.1• 53.35± 1.7•
Lowbwt 62.00± 1.0 62.13± 1.0 63.23± 1.1•
Pharynx 71.56± 1.4 74.25± 1.6• 75.63± 1.4•
PwLinear 32.28± 0.4 51.58± 0.7• 69.03± 1.0•
AutoHorse 33.32± 2.0 37.92± 1.9• 40.27± 2.1•
cpu 21.23± 2.4 33.56± 3.3• 71.06± 10.7•
Bodyfat 11.15± 1.0 25.88± 0.7• 56.64± 2.2•
BreastTumor 97.29± 0.6 100.96± 1.2• 96.45± 0.7

Hungarian 73.79± 1.5 71.28± 2.0◦ 70.63± 1.8◦
Cholesterol 101.62± 2.1 101.73± 1.2 100.30± 1.0

Cleveland 71.03± 1.0 74.45± 1.5• 70.49± 0.9

AutoMpg 35.67± 0.8 41.85± 0.7• 47.42± 0.6•
pbc 80.83± 1.5 86.30± 0.9• 85.68± 0.9•
Housing 39.84± 1.6 60.04± 1.6• 59.08± 1.8•
Meta 150.68± 32.2 160.49± 17.4 111.98± 3.6◦
Sensory 87.84± 1.4 92.22± 0.9• 90.65± 0.6•
Strike 84.61± 1.9 160.30± 12.1• 88.20± 0.8•

in the relative performance of M5′Independent when compared to M5′, and, hence, this
scheme is sufficient for our purpose.

Our goal is provide further evidence for our claim that the independence assumption of
naive Bayes for regression is the reason for its comparably high prediction error. To this
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Figure 3. Comparing the difference in relative root mean squared error between M5′ and M5′Independent, and
M5′ and naive Bayes, on the 26 practical datasets for which none of the three methods had greater than 100%
relative root mean squared error.

end, we compare the difference in performance between M5′Independent and M5′ to the
difference in performance between naive Bayes for regression and M5′. If the former is
predictive of the latter we have evidence that the independence assumption is indeed the
culprit, because the difference between M5′Independent and M5′ is that the former cannot
exploit attribute dependencies when generating its predictions.

Figure 3 shows the difference in relative root mean squared error for the two combinations.
As in Section 4, ten ten-fold cross-validation runs were used to estimate the error. One
point corresponds to one of twenty six datasets from Table 1. We did not include those
datasets from Table 1 for which any of the three learning schemes involved had greater
than 100% relative root mean squared error (schlvote, fruitfly, breastTumor, cholesterol,
meta, strike) because in those cases it is obvious that our particular implementation of the
learning algorithm overfits the data, and we wanted to prevent implementation issues from
obfuscating the effect of the independence assumption.

Figure 3 also shows the result of a linear regression on the datapoints. The correlation
coefficient for the data is 0.77. Assuming that both performance differences are normally
distributed, this correlation is statistically significant at the 0.0001-level, providing strong
evidence that there is a linear relationship between them, and that the independence as-
sumption is indeed responsible for the large performance difference between M5′ and naive
Bayes for regression.

7. Conclusions

This paper has shown how naive Bayes can be applied to regression problems by model-
ing the distribution of the target value using kernel density estimators. As discussed in the
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introduction, previous work suggests that the remarkable performance of naive Bayes for
standard classification problems may not translate into the regression context. Our experi-
mental results confirm this hypothesis. On a set of standard datasets, naive Bayes performs
comparably to linear regression with respect to the absolute error of the predictions, but
worse with respect to the squared error, and almost uniformly worse than locally weighted
linear regression and the model tree algorithm M5′. This is the case even though our imple-
mentations of the latter three methods use a rather crude technique for dealing with missing
values.

We also show that standard naive Bayes applied to regression problems by discretizing
the target value performs similarly badly. In conjunction with our experimental results that
isolate the independence assumption as the culprit for naive Bayes’ poor performance, this
finding leads us to conclude that naive Bayes should only be applied to regression problems
when the independence assumption holds.
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Notes

1. Note, however, that in the case of a nearly symmetric bimodal distribution, the position of the mode could be
more sensitive to a small distribution change than the position of the mean. Fortunately in a classification task,
if the true distribution is similarly balanced, the choice between the two is of little relevance to the true error
rate.

2. This is a rather crude technique for dealing with missing values. However, it does not impact on any of the
conclusions drawn in this paper. The artificial dataset from this section does not contain any missing values.

3. All the datasets can be obtained from the authors upon request.
4. Of these, the auto93, fishcatch, and fruitfly datasets are from the Journal of Statistics Education Data Archive

([gopher://jse.stat.ncsu.edu]), the bodyfat dataset from the StatLib repository (StatLib, 1999), and the pbc, phar-
ynx, and lowbwt datasets from a dataset collection at the University of Massachusetts Amherst ([http://www-
unix.oit.umass.edu/∼statdata]). The remaining datasets are from the UCI repository (Blake, Keogh, & Merz,
1998).

5. Simonoff’s datasets can also be found at the StatLib repository.
6. Following Holte (1993), theglassdataset has classes 1 and 3 combined and classes 4 to 7 deleted, and the

horse-colicdataset has attributes 3, 25, 26, 27, 28 deleted with attribute 24 being used as the class. We also
deleted all identifier attributes from the datasets.
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