
Machine Learning, 36, 183–199 (1999)
c© 1999 Kluwer Academic Publishers. Manufactured in The Netherlands.

An Efficient Extension to Mixture Techniques
for Prediction and Decision Trees

FERNANDO C. PEREIRA pereira@research.att.com
YORAM SINGER singer@research.att.com
AT&T Labs, 180 Park Avenue, Florham Park, NJ 07932

Editor: Lisa Hellerstein

Abstract. We present an efficient method for maintaining mixtures of prunings of a prediction or decision tree
that extends the previous methods for “node-based” prunings (Buntine, 1990; Willems, Shtarkov, & Tjalkens,
1995; Helmbold & Schapire, 1997; Singer, 1997) to the larger class ofedge-basedprunings. The method includes
an online weight-allocation algorithm that can be used for prediction, compression and classification. Although
the set of edge-based prunings of a given tree is much larger than that of node-based prunings, our algorithm
has similar space and time complexity to that of previous mixture algorithms for trees. Using the general online
framework of Freund and Schapire (1997), we prove that our algorithm maintains correctly the mixture weights
for edge-based prunings with any bounded loss function. We also give a similar algorithm for the logarithmic loss
function with a corresponding weight-allocation algorithm. Finally, we describe experiments comparing node-
based and edge-based mixture models for estimating the probability of the next word in English text, which show
the advantages of edge-based models.

Keywords: mixture models, decision and prediction trees, on-line learning, statistical language modeling

1. Introduction

Recent work in information theory (Willems, Shtarkov, & Tjalkens, 1995) and machine
learning (Helmbold & Schapire, 1997) shows that it is possible to maintain efficiently the
mixture weights for certain sets of prunings of decision and prediction trees. The solution
employs a recursive algorithm that updates the weights of each possible pruning, and also
computes the weighted decision or prediction of the entire mixture. Those results apply to
the class ofnode-basedprunings, which are obtained from atemplatetree by removing
entire subtrees rooted at selected nodes. Each node in the template tree has an associated
predictor, which in the applications we consider is estimated from empirical observations.
The prediction of a pruning is then an appropriate combination of the predictions of the leaf
nodes of the pruning.

In applications such as statistical language modeling, in which the out-degree of nodes
in the template tree may be very large, many nodes are seldom visited. Therefore, the
empirical estimates of the prediction functions for those nodes may be poor. Nevertheless,
the predictions of such nodes will contribute to many prunings. We propose to alleviate this
problem by using the larger class ofedge-based prunings, which are obtained by deleting
some of the internal edges of a template tree, and all of their descendants. That is, while

184 F. C. PEREIRA AND Y. SINGER

a node-based pruning deletes all the edges leaving a node and the subtrees below them,
an edge-based pruning may delete only some of the edges and the subtrees below them.
An edge-based pruning can thus be used to eliminate some poor-performing descendants
of a node while keeping the good-performing ones, which is not possible with node-based
prunings.

Our online weight-allocation algorithm maintains efficiently the correct weight for each
possible edge-based pruning. The core of the algorithm is a new recurrence for calculating
the mixture of all prunings rooted below a given node in the template tree. Although the
set of possible edge-based prunings might be much larger than the set of the node-based
prunings, we show that the space and time requirements of the new algorithm are similar
to those of previous algorithms.

We also describe statistical language-modeling experiments in which edge-based mixture
models are used to estimate the probability of the next word in English news text, showing
that edge-based models perform better than node-based models, and that both kinds of
mixture models are competitive with the back-off models (Katz, 1997) that have been a
standard tool in statistical language modeling. Finally, we conclude and discuss possible
extensions.

2. Preliminaries

The tasks we examine here are online classification and prediction. At each time step
t = 1, . . . , T the learning algorithm receives an instancext and outputs a prediction
ŷt . For example, in a context-based sequence prediction or compression algorithm, the
instancext = xj x j+1 · · · xt is a suffix of an underlying input sequencex1, . . . , xt over
some fixed finite input alphabet. After prediction, an outcomeyt is observed that results
in a lossl t = L(ŷt , yt). We derive a weight update rule for bounded-loss predictors using
the framework introduced by Freund and Schapire (1997) which generalizes former on-
line weight allocation algorithms (DeSantis, Markowsky, & Wegman, 1988; Vovk, 1990;
Littlestone & Warmuth, 1994; Cesa-Bianchi et al., 1997) and can be applied to a wide
variety of learning problems. This derivation does not depend on the precise form of the
loss function, requiring only that the appropriate loss value be provided to the learning
algorithm after each prediction.

More precisely, the generic learning algorithmA for the bounded-loss case maintains
weights for a pool ofN predictors. At time stept , A uses a normalized weight vectorpt

such thatpt
i is the weight of predictori and

∑N
i=1 pt

i = 1. Each predictor suffers a lossl t
i as

described above, and themixture losssuffered byA is pt · lt =∑N
i=1 pt

i l t
i . The goal ofA is

to minimize the cumulative mixture loss relative to the cumulative loss of the best predictor:
L A− mini Li , whereL A =

∑T
t=1 pt · lt andLi =

∑T
t=1 l t

i . The set of predictors we consider
in the rest of the paper have the special form of prunings of a fixed prediction tree.

In applications like compression or language modeling for speech recognition, the output
of algorithm output after each input is a probability distribution over possible next symbols
ŷt = Pt . Given an actual next symbolyt = xt+1, the algorithm suffers the lossl t =
− log Pt (xt+1). This loss function does not fit the requirements of the analysis and generic
algorithm just described, but it will turn out that the same weight-update method works in

AN EFFICIENT EXTENSION TO MIXTURE TECHNIQUES 185

that case. Therefore, we will start by extending the generic algorithm and its analysis for
the bounded-loss case to edge prunings, and then show how the same weight update applies
to probabilistic predictions with the logarithmic loss.

Let 6 be a finite alphabet ofK symbols. Atemplate treeT over6 is a rooted tree in
which the edges leaving each node are labeled by distinct elements of6 (thus, the maximum
node out-degree isK). Clearly, a template tree can be identified with a prefix-closed subset
of6∗: the root node is identified with the empty stringλ; if v is identified withs ∈ 6∗ and
there is an edgee from v to v′ labeledσ ∈ 6, v′ is identified withsσ . Thedepthof a node
is just the length of the corresponding string. It will also be convenient to represent the edge
labeledσ from u to uσ with the stringuσ . It will be clear from the context whether a string
represents a node or an edge. We writeu < v to indicate that stringu is a prefix of stringv,
or under the identification of nodes (or edges) with strings, thatu is an (possibly improper)
ancestor ofv.

We use template trees to associate paths (strings) with instances as follows. Each node of
template treeT is associated with a test on instances with possible outcomes in6. Given
an instancex, tests are performed sequentially onx, starting with the test for the root node
λ. If the test at nodeu has outcomeσ and uσ ∈ T then the test foruσ is performed
next. Otherwise,u is themaximal pathin T for x, denoted byT (x), andx is classified as
belonging to nodeu. It will be convenient to abbreviate the formulau < T (x), asserting
that a node is on the maximal path forx, asu < x.

It should be noted that our definitions of template tree and maximal path allows for
incomplete template trees, in which an instance may map to a path which is a prefix of the
path for another instance. This generalizes the definitions used by Willems, Shtarkov, and
Tjalkens (1995) and by Helmbold and Schapire (1997), which allow only completeK -ary
trees.

In sequence prediction or compression algorithms, the test for any node of depthi returns
xt−i , while in decision trees the sequence of tests is defined by the tree-growing algorithm
that yieldedT (Breiman et al., 1984; Quinlan, 1993). For instance, in a decision tree a test
may check whether a numerical feature is greater or smaller than a threshold. Based on the
outcome of the test, either the edge labeled 0 (false) or the one labeled 1 (true) is followed.
For simplicity in what follows, we will concentrate on the sequence prediction case, and
identify each instance (the reversal of a suffix of the input sequence) with the corresponding
maximal path inT .

To describe and analyze edge prunings, we need to associate certain quantities with each
edge that could leave a node, whether the edge occurs or not in a particular pruning. A
simple way to do this is to represent each potential edge leaving nodeu (represented by
a string) byuσ for an appropriate symbolσ , even thoughuσ may not correspond to a
node of the template tree. More formally, for each template treeT over6, we define the
correspondingedge extensioñT as the superset ofT defined as follows:

• If v ∈ T is a leaf node,v⊥ ∈ T̃ where⊥ is a fixed new symbol not in6.
• If v ∈ T is not a leaf, then∀σ ∈ 6: vσ ∈ T̃ .

We will call internal those edges that̃T inherits fromT , andterminalthe additional edges
in T̃ . Terminal edges serve as placeholders for the quantities associated with missing edges,
as we just argued.

186 F. C. PEREIRA AND Y. SINGER

Figure 1. A template tree and its edge based extension. Boxes denote internal, incomplete, nodes that are used
for prediction.

Given an instancex, we perform tests onx as before to determine a maximal path inT̃ .
By construction, for a test with outcomeσ performed at nodes, either edgesσ belongs to
the tree, or the only outgoing edge iss⊥, in which cases⊥ is the maximal path̃T (x) for x.

In figure 1 we show a template tree over6 = {0, 1} and its extended version. Extended
template trees are used in the analysis, but the actual algorithm does not need to represent
explicitly additional terminal edges of the extended tree.

A pruningP of the extended treẽT is an extended tree obtained by replacing zero or
more of the internal edges of̃T with terminal edges with the same label, and deleting the
subtrees reached by the affected edges. We write ‘P of T̃ ’ to indicate thatP is a pruning
of T̃ . Clearly, such prunings are in one-to-one correspondence with prunings ofT . The set
of edges ofP is denoted by edges(P) and the set of all terminal edges by term(P). When
an instancex is evaluated inP, it follows the same path that it would have followed inT̃
until it reaches a terminal edge. Following the conventions introduced earlier, we denote by
P(x) both that maximal path and its final (terminal) edge. Thesizeof a pruningP, written
|P|, is the sum of the number of internal edges ofP and the number of terminal edges
of P that arenot terminal edges of̃T . Thus, the size of a pruning is the number of edges
at which there was the option to include or exclude the edge and its descendants in the
pruning. This definition is analogous to those of of Willems, Shtarkov, and Tjalkens (1995)
and Helmbold and Schapire (1997) for node-based prunings, which count the number of
nodes at which there is an option to prune the tree. In both cases, the prior probability of a
pruning is a simple function of size if we assume a fixed probability of pruning at any edge
(node). Appendix A gives further details of the relationship between edge-based prunings
and node-based prunings.

In classification or prediction, each node in the original template treeT has a predictor for
instances terminating at that node. In terms of the extended templateT̃ , each terminal edge
of a pruning is associated with the predictor for its source node. That is, the predictions for
observations matching nonterminal edges of a node come from the descendants of the node,
while the predictions for observations matching terminal edges come from the node itself.
Intuitively, the subtree rooted at an edge is pruned if the observation suffixes represented
by that subtree are not significantly more informative than the shorter suffix represented by
the source node of the edge.

AN EFFICIENT EXTENSION TO MIXTURE TECHNIQUES 187

Figure 2. Three sample edge-based prunings of the template tree in figure 1.

Clearly, two prunings that share a terminal edge have agreeing predictions on any instance
that reaches that terminal edge of the common subtree. For example, figure 2 shows three
prunings of the template tree in figure 1. The terminal edges of each pruning are drawn
in gray. Since both the leftmost and the middle tree contain the terminal edge reached on
instance 11, they predict the same on this instance.

According to the foregoing discussion, the prediction at time stept of the pruningP
is given by the prediction function for the terminal edge reached byP on xt . The predic-
tions at the nodes can depend, for instance, on the different counts of the next symbol in
context-based sequence predictions or on the label associated with the instance in decision
trees (Breiman et al., 1984; Quinlan, 1993).

After prediction, pruningP suffers loss

l t
P = l t

P(xt). (1)

The overall loss at timet of a weight-allocation algorithm for all possible edge prunings is

l t =
∑
P
wt
P l t
P .

We seek a weight-allocation algorithmA whose cumulative lossL A is as close as possible
to the lossLP of the best pruningP.

3. An efficient weight-allocation algorithm

We now describe an efficient weight-allocation algorithm for competing against the best
edge-based pruning of a prediction tree, based on theHedgealgorithm of Freund and
Schapire (1997), which maintains a non-negative weight vector over predictors. In our
case, the predictors are prunings. We denote the unnormalized weight of a pruning at timet
bywt

P , and its initial weight byw1
P . Initial weights can be viewed as priors over prunings. A

reasonable choice of prior isw1
P = 2−|P|, where|P| is the size of the pruning as defined in

Section 2. This prior is monotonically decreasing in the size of the pruning. More generally,
we can define a prior over prunings from any assignment of pruning probabilities to template

188 F. C. PEREIRA AND Y. SINGER

tree edges. The prior probability of the pruning is the probability that the pruning will be
generated by the following recursive process. Starting at the root node, for each edge leaving
a node we randomly decide whether to prune the subtree reached by the edge by tossing a
coin with bias given by the edge’s pruning probability. If the subtree is kept, the process is
then recursively applied to the root of the subtree. Any such recursive prior enables efficient
evaluation of the mixture weights and results in worst case loss bounds which are relatively
simple to compute. Our earlier experiments with node prunings (Pereira, Singer, & Tishby,
1995) suggest that the exact value of the pruning prior is not very important in language
modeling with large training sets, but a more detailed analysis of the role of the prior would
be worthwhile.

At each time stept , each pruningP suffers a lossl t
P , and its weight is updated using the

multiplicative rule

wt+1
P = wt

P β
l t
P = w1

P

t∏
s=1

β l s
P = 2−|P|

t∏
s=1

β l s
P , (2)

whereβ is the learning rate.Hedgeuses the normalized weight vector

pt = 1∑
P w

t
P

wt

to combine the predictions of the predictors. Our algorithm maintains efficiently both the
weight vectorwt and the normalization

∑
P w

t
P . Freund and Schapire (1997) proved that

algorithms of this form suffer a loss of at most

min
P

− ln
(
w1
P
)− ln(β)LP

1− β = min
P

|P| − ln(β)LP
1− β

for bounded loss functions. Thus, the loss of the weight allocation algorithm scales linearly
with the loss of the best submodel.

In a na¨ıve implementation, the weight vector and its contribution to the normalization
would be computed for each pruning separately. Such an approach is clearly infeasible
given the huge number of possible prunings, especially when6 is large. However, we can
adopt the techniques of Willems et al. (1995) and Helmbold and Schapire (1997) to our
case. Those techniques require|xt | time to update the weights, where|xt | is the number of
edges in the path associated toxt in T .

The main idea of the algorithm is to extend the technique of Helmbold and Schapire
(1997) for computing certain sums over all the possible node-based prunings of a template
tree to similar sums ranging over all edge-based prunings of a template tree. For a fixed
template treeT and any functiong : edges(T̃)→ R we are interested in computing

E(g) =
∑
P of T̃

2−|P|
∏

e∈term(P)
g(e), (3)

where term(P) is the set of terminal edges ofP, as defined earlier.

AN EFFICIENT EXTENSION TO MIXTURE TECHNIQUES 189

As we show later, sums of the above form are the main tool in forming the predictions
for new instances.

In the following, we fix a template treeT and assume thatT is complete, that is, each node
is either a leaf or hasK children. We show later how to extend the analysis to incomplete
template tree.

For any nodeu of T̃ , let T̃u be the subtree of̃T rooted atu. Following our convention
of representing nodes and edges by strings, each node or edge ofT̃u is identified inT̃ with
strings and inT̃u with a strings′ such thats= us′.

For any functiong : edges(T̃)→ R, we define the function̄g : T̃ → R by

ḡ(u) =
∑
P of Tu

2−|P|
∏

s∈term(P)
g(us).

ThenE(g) = ḡ(λ). The following lemma gives an efficient method of computingḡ, and
thus in particular a method for computingE(g). The lemma generalizes Lemma 1 of
Helmbold and Schapire (1997), which in turn generalizes the more specialized results of
Buntine (1990, Lemma 6.5.1) and Willems, Shtarkov, and Tjalkens (1995, Appendices III
and IV).

Recall that we identify each edge with the string for the path leading to that edge, which
in turn can also be identified by target node of the edge.

Lemma 1. Let g, ḡ be as above. Then, for any node u of a complete template treeT̃ :
1. If u is a leaf, thenḡ(u) = g(u⊥);
2. If u is an internal node, thenḡ(u) =∏σ∈6(

1
2g(uσ)+ 1

2 ḡ(uσ)).

Proof: Case 1 follows from the definition of̄g andT̃ : if u is a leaf inT , P is the single
nodeu, with edge extensionu⊥.

For case 2 (u is an internal node), we consider first the special case of6 = {0, 1}. Any
pruningP of Tu falls into one of four cases: both outgoing edges fromu are terminal edges
ofP, only edgeu0 is terminal inP, only edgeu1 is terminal inP, or both edges are internal
in P. Denote byP0 (P1) the subtree rooted at the childu0 (u1) of u, which may be empty
if the corresponding edge is terminal inP. By the definition of|P|, it is easy to see that
in general|P| = K +∑σ∈6 |Pσ |, and thus|P| = 2+ |P0| + |P1| for a binary alphabet.
Decomposing the sum over all possible prunings into the above four cases,ḡ(u) for a binary
alphabet can be written as

ḡ(u) =
∑
P0

∑
P1

2−(2+|P0|+|P1|)
∏

s0∈term(P0)

g(u0s0)
∏

s1∈term(P1)

g(u1s1)

= 1

4
g(u0)g(u1)+ 1

4
g(u1)

∑
P0

2−|P0|
∏
s0

g(u0s0)

+ 1

4
g(u0)

∑
P1

2−|P1|
∏
s1

g(u1s1)

190 F. C. PEREIRA AND Y. SINGER

+ 1

4

(∑
P0

2−|P0|
∏
s0

g(u0s0)

)(∑
P1

2−|P1|
∏
s1

g(u1s1)

)

= 1

2
g(u0)

1

2
g(u1)+ 1

2
ḡ(u0)

1

2
g(u1)+ 1

2
g(u0)

1

2
ḡ(u1)+ 1

2
ḡ(u0)

1

2
ḡ(u1)

=
(

1

2
g(u0)+ 1

2
ḡ(u0)

)(
1

2
g(u1)+ 1

2
ḡ(u1)

)
,

where
∑
Pσ ranges over all pruningsPσ of Tuσ .

For the case of a general alphabet, define

IP(uσ) =
{

1 uσ is an internal edge ofP
0 otherwise

andĪP = 〈IP(uσ1), IP(uσ2), . . . , IP(uσK)〉 ∈ {0, 1}K . Each possible pruning corresponds
to a unique binary vector̄IP . Thus, we can decomposeḡ(u) into 2K terms corresponding
to the possible values of̄IP , yielding for the general case

ḡ(u) =
∑

ĪP∈{0,1}K

∏
σ∈6,IP (uσ)=1

1

2
ḡ(uσ)

∏
σ∈6,IP (uσ)=0

1

2
g(uσ)

=
∏
σ∈6

(
1

2
g(uσ)+ 1

2
ḡ(uσ)

)
,

where the second equality was derived by applyingK − 1 times the identity
(a0+ b0)(a1+ b1) =

∑
i=0,1, j=0,1 ai bj . 2

If the template treeT is incomplete, some of̃T ’s internal nodes will have at least one
outgoing terminal edge. Ifu is such an incomplete node anduσ a terminal edge, namely
IP(uσ) = 0. Then, there is a single pruningPu of T̃u containing a single edge fromu to
uσ . The equation for case 2 takes then the form:

ḡ(u) =
∏

σ∈6, uσ∈T

(
1

2
g(uσ)+ 1

2
ḡ(uσ)

) ∏
σ∈6, uσ 6∈T

g(uσ).

It is straightforward, albeit tedious, to modify Lemma 1 for the general case of incomplete
template trees. Briefly, we follow the same line of inductive proof by applying the recursion
for a given node only to subtrees which contain more than one edge.

Using Lemma 1 and an adaptation of the derivation of Helmbold and Schapire (1997),
we now compute the losses (2) for prunings and thus their weights and the overall weight
normalization. TheweightWt (e) at stept of each edgee= uσ ∈ T̃ is defined as:

Wt (e) =
∏

1≤i<t
e<xi

β l i
u . (4)

AN EFFICIENT EXTENSION TO MIXTURE TECHNIQUES 191

Assume now thate is a terminal edge of pruningP. Then the conditione < xi is equivalent
toP(xi) = uσ = e. Therefore, from the assumption and (1) we conclude

Wt (e) =
∏

1≤i<t
P(xi)=e

β l i
P .

That is, ife is a terminal edge of pruningP, Wt (e) is the product of the loss factors for the
time steps in which the predictor associated with the source node ofe was used.

Recall thatβ l i
P is the allocation algorithm’s weight update factor for pruningP at time

stepi . By (2), we have

wt
P = 2−|P|

∏
1≤i<t

β l i
P = 2−|P|

∏
e∈term(P)

∏
1≤i<t
P(xi)=e

β l i
P = 2−|P|

∏
e∈term(P)

Wt (e).

The weight normalization for prunings is then∑
P
wt
P =

∑
P

2−|P|
∏

e∈term(P)
Wt (e), (5)

which has the form (3) and can therefore be computed asW̄
t
(λ) using Lemma 1. We use

(4) to compute the weight update for edgee, although we do not need to maintainWt (e) for
terminal edgese= u⊥ in T̃ , becauseWt (u⊥) = W̄

t
(u⊥) by Lemma 1, case 1.

Since no loss has been incurred initially,W1(e) = 1 for every edgee. A straightforward
induction from Lemma 1 shows that̄W

1
(λ) = 1, and thus the priors over prunings add

up correctly as required
∑
P w

1
P = 1. Finally, the normalized weightsp can be computed

directly from fromWt (u) andW̄
t
(u) at each node. Figure 3 shows weight-update pseudo-

code for complete template trees summarizing the results of our analysis.
This basic algorithm can be improved in several ways. First, in practical applications

such as compression and statistical language modeling, the shape of the template tree is
defined in advance (for instance, as a complete tree of given depth), but the actual tree data
structure is built “on the fly” as new instances are looked up in the template. An internal
nodeu of the tree data structure will lack the outgoing edge fore for σ when no instance
reaching that edge has yet been encountered. In that case, no loss has yet been incurred
by e. That is, no loss is associated to the parts of the template not yet built, and the terms
associated to those losses can be ignored in the recursive calculation of the weightsW̄

t .
Second, although the calculation ofW̄

t+1
(u) in figure 3 iterates over6 if u is an internal

node, in reality only one ofu’s children is affected by the update, the one satisfyinguσ <

xt . Therefore we haveWt+1(uσ ′) = Wt (uσ ′) and W̄
t+1
(uσ ′) = W̄

t
(uσ ′) for σ ′ 6= σ ,

allowing the update of nodes reached at time stept to be performed in time independent
of |6| as follows:

W̄
t+1
(u) = W̄

t
(u)

1
2Wt+1(uσ)+ 1

2W̄
t+1
(uσ)

1
2Wt (uσ)+ 1

2W̄
t
(uσ)

. (6)

192 F. C. PEREIRA AND Y. SINGER

Input: Complete template treeT
access to lossesl t

u of node predictors
parameterβ ∈ [0, 1]

Initialize W1(e) = W̄
1
(e) = 1 for all edges inT̃

Do for t = 1, 2, . . .

• Update the edge weightsWt :

Wt+1(uσ) =
{

Wt (uσ)β l tu if uσ < xt (on path)

Wt (uσ) otherwise (off path)
• Update the subtree weightsW̄

t :

W̄
t+1
(u) =

W̄

t
(u) if u 6< xt (off path)

W̄
t
(u) β l tu if u⊥ = T̃ (xt) (terminal edge)∏

σ∈6

(
1

2
Wt+1(uσ)+ 1

2
W̄

t+1
(uσ)

)
otherwise (internal edge)

Figure 3. Pseudo-code for the weight-allocation algorithm.

Therefore, the time required to update the entire tree for an instance is at most the depth
of the template tree, or if the template tree is (notionally) infinite, the length of the input
instance.

For bounded loss functions, the loss bounds of theHedgealgorithm apply giving:

Theorem 1. LetT be a template tree, let x1, . . . , xT be any sequence of instances, and
let the losses lt

P associated with each pruningP of T be of the form given in(1). Then the
loss of Hedge based on the on-line weight allocation algorithm of figure3 is at most

− ln
(
w1
P
)− ln(β)LP

1− β = ln(2)|P| − ln(β)LP
1− β ,

for every pruningP. Furthermore, the running time of this algorithm, at every time step t,
is linear in |xt |.

The weight allocation algorithm is also used for prediction. LetPt
u be the prediction of

nodeu at time stept , andWP
t
(u) be the weighted mixture of the predictions of all prunings

rooted atu at time stept . Assuming a complete template tree, a straightforward adaptation
of the argument of Lemma 1 gives the following recursion forWP

t
(u):

WP
t
(u) =

W̄

t
(u) Pt

u if u⊥ = T̃ (xt) (terminal edge)∏
σ∈6

(
1

2
Wt (uσ) Pt

u +
1

2
WP

t
(uσ)

)
otherwise (internal edge)

(7)

AN EFFICIENT EXTENSION TO MIXTURE TECHNIQUES 193

The prediction of the entire mixture, denotedŷt , is computed by normalizingWP
t
(λ) by

the total mixture weight̄Wt
(λ), and applying an appropriate function to the normalized

prediction:

ŷt = Fβ(WP
t
(λ)/W̄

t
(λ)). (8)

The functionFβ(y) depends on the learning rateβ and need only to be bounded for all
0≤ y ≤ 1, as discussed in more detail by Cesa-Bianchi et al. (1997).

In compression applications, the appropriate loss function for a pruningP is the negative
log probability (logloss) of the input sequence, which determines the code length of the
sequence as compressed by an optimal coder, for instance, an arithmetic coder governed by
the next-input probabilities given by the pruning (Bell, Cleary, & Witten, 1990).

Thus, the loss incurred byP at timet is

l t
P = − log PP(xt)(xt+1). (9)

We can still use the weight-update algorithm of figure 3 and the prediction mixing formula
(7) is we setβ = 1/e andFβ(r) = r . Thenβ l t

u = Pt
u(xt+1), and from figure 3 and (7) it is

easy to see thatWP
t
(u) = W̄

t+1
(u). Therefore, the prediction of the mixture is simply

ŷt = W̄
t+1
(λ)/W̄

t
(λ). (10)

The time and the space complexity of the edge-based algorithm for the logloss remain
the same. Using Lemma 1 we get the following bound on the predictions of the mixture.

Theorem 2. LetT be a template tree and x1, . . . , xT be any sequence of instances, and
LP =

∑T
t=1 l t

P be the loss of the pruningP of T on the sequence, where ltP is given by(9).
Then the logloss of the weight allocation algorithm of figure3 is at most

− ln
(
w1
P
)+ LP = ln(2)|P| + LP .

Proof: The proof is a direct application of the proof technique of technique of DeSantis
et al. (1988). From (10) we get that the log loss of the mixture on the sequence
x1, . . . , xT is

−
T∑

t=1

ln(ŷt) = − ln

(
T∏

t=1

ŷt

)
= − ln

(
T∏

t=1

W̄
t+1
(λ)

W̄
t
(λ)

)
= − ln(W̄T+1

(λ))− ln(W̄1
(λ)) = − ln(W̄T+1

(λ)), (11)

where for the last equality we used the fact that the initial weights are set such thatW̄
1
(λ) = 1.

From (5) and Lemma 1, the following holds for any pruningP:

W̄
T+1

(λ) =
∑
P
wT+1
P ≥ wT+1

P . (12)

194 F. C. PEREIRA AND Y. SINGER

We now get the bound on the logloss by combining (11) and (12) while using the fact that
w1
P = 2−|P|. 2

4. Experiments

We used the algorithm just discussed to build statistical language models that estimate the
probability that a word follows a sequence of other words in English text. Such models
are essential in large-vocabulary speech recognition (Jelinek, 1998). In contrast to the
character-based models used in text compression, the word-based models used in speech
recognition have very large alphabets (the words in a dictionary). In addition, in typical
applications the model is built in batch mode from a large collection of training text, and
then applied to the test task without online modification. Our experiments show, however,
that an online algorithm can have competitive performance with the most widely-used batch
language-modeling method (Katz, 1987) even for very large vocabularies. The experiments
also suggest that edge-based pruning has considerable advantages over node-based pruning
for the very large alphabets required in speech recognition.

Our experiments compare edge-based and node-based mixture algorithms with the base-
line back-offmethod of (Katz, 1987) on training and test material derived from the NIST-
supplied North-American Business News (NAB) corpus of English news text. The text
is tokenized into words. The alphabet for the algorithm consists of theK most frequent
words plus an “unknown word” symbol to which all the other words are mapped; we used
K = 60,000 on some experiments, but memory limits forced us to useK = 20,000 for the
remaining experiments. Model performance is evaluated by the log-likelihood assigned by
the model to test material. ForK = 60,000, the training text consisted of around 78 million
words, and, forK = 20,000, we used around 61 million words of training material (the
size of the training sets was also determined by memory limits). In both cases, the training
data was created by a random drawing without repetition of sentences from the whole NAB
corpus. We used the log-conditional probability of the next word as prediction loss.

We store in working memory only the subtree of the template containing the prediction
suffixes found in training data. When a suffix corresponding to a new branch of the template
tree is observed, we allocate the corresponding nodes and initialize the counts used in
forming predictions to zero. The next word probabilities are also estimated online from
those counts, as we describe below.

Each node predictor must assign a conditional probability to any word even if that word
has not been observed before in the context represented by the node. The are several possible
methods to assign word probabilities. The modified Laplace rule (Krichevsky & Trofimov,
1981) is often used in character-based text compression, but turned out to be inadequate
for large alphabets. This rule estimates the conditional probability of observing a symbol
at a tree node tonσ+1/2

n+K/2 , wherenσ is the number of times symbolσ was observed at the
node andn is the number of times the node was visited. The regret (additional loss) of this
estimator scales linearly with the size of the alphabet, hence its performance is poor when
only a small fraction of the entire alphabet is observed at a node. The common method
for estimating probabilities of unseen words is due to Turing and Good (Good, 1953). The
Good-Turing estimator is used in batch as it uses the number of words which appeared only
once for estimating the conditional probability of unseen words.

AN EFFICIENT EXTENSION TO MIXTURE TECHNIQUES 195

Instead, we used two estimation techniques that have been shown to perform well on nat-
ural data sets and can easily modified for on-line prediction problems (Witten & Bell, 1991).
The first estimates the probability of symbolσ at a node asnσ

n+r wherer is the number of dif-
ferent symbols observed at the node. The second method, which is an approximation of the
Good-Turing formula, estimates the probability of symbolσ as(n−t1)nσ

n2 , wheret1 is the num-
ber of different words that have been observed only once at the node. This scheme requires
a “fall-back” estimate whent1 = n, as described in more detail by Witten and Bell (1991).

We stress that the goal of the experiments was to compare the two different mixture tech-
niques and not possible online estimation techniques for the node predictors. However, our
confidence in the advantage of edge-based mixtures over node-based mixtures is increased
by the fact that they can be demonstrated with both unseen event estimators, as we will now
see.

For K = 60,000 we used a template tree of depth 2 with the larger training set while
for K = 20,000 we used a (much larger) template tree of depth 3 with the smaller training
set. LetP̂edge(xt) (P̂node(xt)) be the probability ofxt as induced by the edge-based (node-
based) mixture model. Figure 4 shows the differences between the average logloss of the
two models every million words1Ti

∑Ti
t=1[log P̂edge(xt) − log P̂node(xt)] (Ti = 106 × i) as

the two algorithms operate in online mode on the training data . Each plot in the figure
shows results for the two estimation methods. The first plot gives the results for the depth 2
template tree (on the larger data set) and the second plot gives the results for the depth 3 tree.
In both cases, the initial predictions of the node-based mixture are better than those of the
edge-based mixture, but eventually the edge-based mixture achieves a better performance,
starting at around 10 million words for the depth 2 tree and at over 50 million words for
the depth 3 tree. The results show similar trends for both estimation methods, and are
consistent with the theoretical analysis. The set of edge-based prunings strictly contains
the set of node-based prunings, and therefore the initial weight of a pruning that belongs
to both sets is much smaller as a member of the edge-based pool of prunings. Hence, at
the beginning of a run, when the number of observations is relatively small, the initial
weights of the good prediction trees have a large influence on the logloss. As more data
is processed, the influence of the initial weights becomes less crucial. In addition, in the
larger collection of edge-based prunings there may be some that achieve lower loss than any

Figure 4. The difference in the log-loss of the edge-based and node-based mixtures for the NAB corpus using a
depth 2 (left) and a depth 3 (right) template trees.

196 F. C. PEREIRA AND Y. SINGER

Table 1. Perplexity results on data the NAB corpus.

Model Perplexity

Back-off trigram 95.2

Node-based mixture 100.5

Edge-based mixture 98.9

Node-based mixture (w/adaptation) 97.9

Edge-based mixture (w/adaptation) 96.0

node-based pruning, although it takes a lot of data to adjust the weights to favor those better
prunings.

We also would like to note that the time and space needed to build an edge-based and
a node-based language model is practically the same (see also Appendix A). Specifically,
for the corpora described in this section it takes no more than 30 CPU minutes on an
194 MHz MIPS R10000 processor to build each model, which is much faster than stan-
dard statistical language modeling algorithms. The major drawback of the online algo-
rithms is their memory requirements, which were over 1GB for the experiments described
here. For this reason we had to limit the training set and vocabulary size in our exper-
iments. We describe a possible extension that overcomes the memory requirements in
Section 5.

Finally, we compared the performance of both mixture models with a standard back-
off model (Katz, 1987). This model estimates the probability of a wordn-gram seen in
training from its empirical frequency in training discounted by the Good-Turing formula.
The discounting makes some probability mass available for unseenn-grams. This mass is
distributed among unseenn-grams according to the model probabilities of then−1-grams
obtained from then-grams by dropping their first word.

For a fair comparison, we took an unseen test set of 13 million words, and measured
the loss of a fixed mixture model, built from the training set, on that test set. That is,
the mixture model is not allowed to adapt to the test set. Table 1 summarizes the test-
set perplexity, a measure used in evaluating statistical language models which is simply
the exponentiation of the average logloss on the test data. We used the second estimation
method for the node predictors. We also calculated the perplexity when the models were
allowed to adapt their weights to the test data. Even though the mixture models are created
by an online algorithm, they achieve a performance close to the back-off model, which uses
the Good-Turing estimator instead of the online approximation we used. Furthermore, the
edge-based mixture model achieves a small but significant improvement in perplexity over
the node-based mixture model. Given the large sizes of training and test sets, all of these
perplexity differences are statistically significant.

5. Conclusions

In this paper we presented an efficient method for maintaining mixtures of prunings of
a prediction or decision tree that extends the node-based prunings of earlier work to the

AN EFFICIENT EXTENSION TO MIXTURE TECHNIQUES 197

larger class of edge-based prunings, while using the same time and space complexity of
previous mixture algorithms for trees. The method could be extended in several ways.
In particular, by using more sophisticated data structures, it may be possible to maintain
efficiently the edge-based prunings of unbounded-depth trees in which the maximal paths
are determined by the input sequence. More generally, the method might be applicable to
maintain mixtures of other probabilistic models, such as product distributions represented
by Bayesian networks.

Appendix: On the equivalence of edge-based and node-based prunings

We claimed that edge-based prunings generalize node-based prunings. Indeed, any node-
based pruning of a completeK -ary tree can be simulated by an edge-based pruning that
removes theK edges of every internal node that would have been made a leaf by the node-
based pruning. Clearly, there are many more edge-based prunings than node-based prunings
of any given template tree. To clarify the connections between the two types of prunings,
we now calculate more precisely the numbers of possible prunings.

We denote byNn(d) the number of distinct node-based prunings of a completeK -ary tree
of depthd, and byNe(d) the number of distinct edge-based prunings. LetT be a complete
K -ary tree of depthd. There areK complete subtrees rooted at the children nodes ofT ’s
root, each withNn(d−1) distinct node-based prunings. A node-based pruning ofT is either
the root node alone or the root node together withK child subtrees each selected from the
Nn(d − 1) possible ones. The total number of prunings is therefore

Nn(d) = Nn(d − 1)K + 1.

With edge-based prunings, there are 2K possible subsets of edges that can be deleted from
the root node (together with the subtrees they point to). Letzi ∈ {0, 1} indicate whether the
i th outgoing edge from the root has been deleted. Then

Ne(d) =
∑

z1∈{0,1}

∑
z2∈{0,1}

. . .
∑

zK∈{0,1}

K∏
i=1

Ne(d − 1)zi

=
K∏

i=1

∑
zi∈{0,1}

Ne(d − 1)zi = (Ne(d − 1)+ 1)K .

SinceNe(0) = Nn(0) = 1, a simple induction using the recurrences forNn andNd shows
that ford > 2

Nn(d) = Ne(d − 1)+ 1.

Therefore, to encode all edge-based prunings of a template tree as node-based prunings,
we need to increase by 1 the depth of the template. LetT be the original template for
edge-based prunings andT ′ the enlarged template for node-based prunings only. Define
the prediction associated with a node inT ′ reached on instancex1 · · · xn−1xn to be equal to

198 F. C. PEREIRA AND Y. SINGER

Figure 5. An illustration of the equivalence of edge-based and node based prunings: the edge-based prunings of
the tree shown on the left can be encoded as node-based prunings of the tree on the right.

the prediction of the node reached onx1 · · · xn−1 in T . If we augment each instance with
anysymbol from6, then the set of possible edge-based prunings ofT is equivalent to the
set of possible node-based prunings excluding the root node ofT ′ alone. The construction
is illustrated in figure 5.

Acknowledgments

We would like to thank Dana Ron, Rob Schapire, and the anonymous reviewers for useful
comments.

References

Bell, T. C., Cleary, J. G., & Witten, I. H. (1990).Text Compression. Englewood Cliffs, New Jersey: Prentice Hall.
Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984).Classification and Regression trees. Wadsworth

International Group.
Buntine, W. L. (1990). A theory of learning classification rules. Unpublished doctoral dissertation, University of

Technology, Sydney.
Cesa-Bianchi, N., Freund, Y., Helmbold, D. P., Haussler, D., Schapire, R. E., & Warmuth, M. K. (1997). How to

use expert advice.Journal of the Association for Computing Machinery, 44(3), 427–485.
DeSantis, A., Markowsky, G., & Wegman, M. N. (1988). Learning probabilistic prediction functions.Proceedings

of the 1988 Workshop on Computational Learning Theory(pp. 312–328). San Francisco, California: Morgan
Kaufmann.

Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application
to boosting.Journal of Computer and System Sciences, 55(1), 119–139.

Good, I. J. (1953). The population frequencies of species and the estimation of population parameters.Biometrika,
40(3), 237–264.

Helmbold, D. P., & Schapire, R. E. (1997). Predicting nearly as well as the best pruning of a decision tree.Machine
Learning, 27(1), 51–68.

Jelinek, F. (1998).Statistical methods for speech recognition. Cambridge, Massachusetts: MIT Press.
Katz, S. M. (1987). Estimation of probabilities from sparse data for the language model component of a speech

recognizer.IEEE Transactions on Acoustics Specch and Signal Processing, 35(3), 400–401.
Krichevsky, R. E., & Trofimov, V. K. (1981). The performance of universal coding.IEEE Transactions on Infor-

mation Theory, 27, 199–207.
Littlestone, N., & Warmuth, M. K. (1994). The weighted majority algorithm.Information and Computation, 108,

212–261.

AN EFFICIENT EXTENSION TO MIXTURE TECHNIQUES 199

Pereira, F. C. N., Singer, Y., & Tishby, N. (1995). Beyond wordn-grams. In D. Yarowsky, & K. Church (Eds.),
Proceedings of the Third Workshop on Very Large Corpora(pp. 95–106). Somerset, New Jersey: Association
for Computational Linguistics.

Quinlan, J. R. (1993).C4.5: Programs for machine learning.San Francisco, California: Morgan Kaufmann.
Rissanen, J. (1986). Complexity of strings in the class of Markov sources.IEEE Transactions on Information

Theory, 32(4), 526–532.
Rissanen, J., & Langdon, G. G. (1981). Universal modeling and coding.IEEE Transactions on Information Theory,

IT-27(1), 12–23.
Ron, D., Singer, Y., & Tishby, N. (1996). The power of amnesia: Learning probabilistic automata with variable

memory length.Machine Learning, 25, 117–149.
Singer, Y. (1997). Adaptive mixtures of probabilistic transducers.Neural Computation, 9(8), 1711–1733.
Vovk, V. G. (1990). Aggregating strategies.Proceedings of the Third Annual Workshop on Computational Learning

Theory(pp. 371–383). San Francisco, California: Morgan Kaufmann.
Weinberger, M., Lempel, A., & Ziv, J. (1992). Universal coding of finite-memory sources.IEEE Transactions on

Information Theory, 38(3), 1002–1014.
Weinberger, M., Merhav, N., & Feder, M. (1994). Optimal sequential probability assignment for individual

sequence.IEEE Transactions on Information Theory, 40(2), 384–396.
Weinberger, M., Rissanen, J., & Feder, M. (1995). A universal finite memory source.IEEE Transactions on

Information Theory, 41(3), 643–652.
Willems, F. M. J., Shtarkov, Y. M., & Tjalkens, T. J. (1995). The context tree weighting method: Basic properties.

IEEE Transactions on Information Theory, 41(3), 653–664.
Witten, I. H., & Bell, T. C. (1991). The zero-frequency problem: estimating the probabilities of novel events in

adaptive text compression.IEEE Transactions on Information Theory, 37(4), 1085–1094.

Received August 28, 1997
Accepted September 21, 1998
Final manuscript June 22, 1998

