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Abstract. A method of combining learning algorithms is described that preserves attribute-efficiency. It yields
learning algorithms that require a number of examples that is polynomial in the number of relevant variables and
logarithmic in the number of irrelevant ones. The algorithms are simple to implement and realizable on networks
with a number of nodes linear in the total number of variables. They include generalizations of Littlestone’s
Winnow algorithm, and are, therefore, good candidates for experimentation on domains having very large numbers
of attributes but where nonlinear hypotheses are sought.
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1. Introduction

One area of stark contrast between current machine learning practice and natural biological
learning is that of data preparation. In machine learning it is often found that in order to
ensure success at a new learning task considerable effort has to be put into creating the right
set of variables, and into eliminating redundant ones if there are large numbers of these. In
biological learning, on the other hand, no explicit methods for achieving these ends have
been identified. The learning process appears to have mechanisms for overcoming these
problems implicitly.

This dichotomy suggests the existence of a useful class of learning algorithms that have
yet to be discovered and exploited. Indeed it has been suggested that algorithms that fill this
gap are fundamental to systems that learn and maintain large knowledge bases for cognitive
computations (Valiant, 1998).

A simple but persuasive formulation of the problem at hand is the following: one needs
algorithms that learn, as efficiently as possible, functions that depend on a small numberk
among a much larger numbern of available variables. The necessity for this is suggested by
the empirical observation that humans and other biological systems can learn from a small
number of examples, using a system that has many components (i.e.∼1010 neurons), and
in which each component has a large number of potentially independent parameters (e.g
∼104 synapses). On dimensionality grounds it appears that the only hope of learning from a
small number of examples is to have the concept learned have small dimensionality in some
sense. Perhaps the simplest expression of this restriction is to have each concept completely
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determined by the values of a small number of the variables. The question therefore is: just
how efficiently can a function ofk variables be learned in the presence of a possibly much
larger number ofn− k irrelevant variables, when the identity of thek relevant ones is not
known ahead of time.

Computational learning theory has supplied some remarkable positive results. Haussler
(1988) showed that for the problem of learning a Boolean disjunction or conjunction ofk
variables out ofn, the number of examples needed to learn in polynomial time grew essen-
tially ask logn. The fact that the dependence onn had been reduced to logarithmic, rather
than linear, represented a major breakthrough. Soon afterwards Littlestone proved a similar
result for a surprisingly elegant algorithm which he called Winnow (Littlestone, 1988).
It resembles the perceptron algorithm in simplicity and form, but achieves its attribute-
efficient behavior by having multiplicative rather than additive updates. The algorithm has
been shown to be effective, for example, in natural language settings with tens of thousands
of variables (Golding & Roth, 1996).

The primary purpose of this paper is to extend the known classes of algorithms that learn
in this attribute-efficient sense. We do this by showing that attribute-efficient learnability
can be preserved by composing algorithms that have this property in certain natural and
simple ways. This result applies directly to learning certain classes of two level structures.
These classes can be learned attribute-efficiently by a natural two level composition of
attribute-efficient algorithms such as Winnow. The number of mistakes made by the new
algorithm on any sequence of examples still depends onn only logarithmically and onk
polynomially. The dependence of the computational cost onn is essentially linear and no
separate transformation of the input space is needed.

The dual purpose of the paper, which we only mention here is passing but will expound
more fully elsewhere, is to show that attribute-efficiency can be achieved by algorithms that
satisfy the following additional constraints that have been argued to be useful for realizing
the neuroidal architecture described in (Valiant, 1998). First, it is considered desirable that
such algorithms be realizable on networks of elements that can each learn linear thresh-
old functions and have additional finite state computational capabilities. Furthermore, for
economy the numbers of such elements should be linear in the number of variables being
represented, rather than, say, quadratic. Second, the structures that can be learned should fill
some need of cognitive interest. Third, the structures should supply some welcome func-
tionality in learning and handling relational information rather than merely propositional
information, in a network setting (Valiant, 1999). The knowledge structures we describe
aim to satisfy these constraints. They can be viewed as attribute-efficient alternatives to trees
or production systems. The latter have been widely used to represent cognitive knowledge.
Khardon (1996) has used them recently to learn action strategies. It is an open empirical
question to determine to what extent the sequentiality that is implicit in general production
systems can be replaced in cognitive computations by the flatter structures that we consider
here.

2. Concept classes

We shall consider Boolean functions of Boolean variablesx1, . . . , xn. A conceptwill be a
function fromXn = {0, 1}n to {0, 1} for some finiten. We shall discuss classes of concepts,
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such as the class of Boolean disjunctions. We represent such a classC as the union of
stratified subclassesCn,

C =
⋃
n≥1

Cn

wherec ∈ Cn has domainXn as described, for example, by Kearns and Vazirani (1994).
A projection(or restriction)ρ of Xn is a subset ofXn, and is typically represented by a

simple constraint such asx2 = 1 or x3 = x̄4. For a functionf : Xn→ {0, 1} therestriction
fρ of f is defined as: fρ(x) = f (x) if ρ(x)= 1, and fρ(x) = 0 otherwise. Note that
fρ(x) can be written equivalently asρ(x) f (x). A projection set Rfor Xn is a set ofr such
projections.

Projection sets are intended here to be easily enumerated sets of restrictions. For example,
we could take the set of all projections that fix the product of a pair of distinct variables to
0 or 1. In that case the sizer of this set would be 2· ( n

2 ).
The concept classes that we investigate in this paper are defined with respect to arbitrary

choices of bothC andR. A projective disjunction over(C, R) is a functionc of the form

c(x) = ρ1(x)c1(x) ∨ ρ2(x)c2(x) ∨ · · · ∨ ρm(x)cm(x)

whereρ1, . . . , ρm ∈ R, c1, . . . , cm ∈ C and for eachi (1 ≤ i ≤ m)ρi c = ρi ci . In other
wordsc andci agree on everyx such thatρi (x)= 1. Note that the novel constraint is this last
one that excludes the possibility for anyx thatρi (x) = c(x) = 1, ci (x) = 0, andcj (x) =
ρ j (x) = 1 for somej 6= i .

In the case that members ofR are mutually exclusive, (i.e. they map disjoint subsets
of Xn to 1), this constraint is satisfied automatically. For example, one could chooseR to
be the 2` projections defined by settingx1, . . . , x` to the 2` distinct combinations of truth
values. Disjointness is not essential. One could chooseR to be the set of 2n single-variable
projections{xi = 1, xi = 0 | 1 ≤ i ≤ n}, or the set of quadratic projections{xi x j = 1 | 1 ≤
i < j ≤ n}. In all these cases ifC is further chosen to be the set of conjunctions then the
class defined is a subclass of the class of disjunctive normal form formulae. More generally,
C will be chosen to be any class of functions learnable attribute-efficiently, such as the class
of linear threshold functions with moderate size integer coefficients (Littlestone, 1988).

The significance of projective disjunctions is that they suggest the following natural
learning strategy. For eachρ ∈ R one applies a learning algorithm forC to the input stream
of examples restricted to those satisfyingρ and obtains a hypothesishρ . For eachρ that is
relevant toC, a useful hypothesishρ will be learned. An appropriate disjunction constructed
from these will then approximatec.

We can also generalize this definition by making the same claims for an arbitrary subset
X′n ⊂ Xn = {0, 1}n rather thanXn itself. This is relevant if some of the vectors never
occur as examples andc need not be defined for them. If this more general situation is
acknowledged then simpler expressions sometimes suffice. For example, ifρi ≡ (xi = 1),
then

ρ1x̄2x3+ ρ2x̄1x4 ≡ x1x̄2x3+ x2x̄1x4
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is a projective disjunction. However, if no examples withx1 = x2 = 1 occur inX′n then
the expression

x1x3+ x2x4

suffices. In order to put this in a formal setting we wold define aprojective disjunction over
(C, R) for X′n as we did above for the caseX′n = Xn, but would relax it so thatρi c = ρi ci

needs to be satisfied for eachi only for x ∈ X′n. The remainder of this paper applies to this
generalized notion also.

The motivation in the cognitive setting of projective disjunctions may be characterized by
the following instance: A concept may be too complex to be learned directly by Winnow.
However, it may be that the concept occurs mainly in, say, just three contexts and when
restricted to any one of these the concept is simple enough to be learned attribute efficiently
by Winnow. Our results will state that as long as the three contexts belong to a set of contexts
that can be recognized, and even if we do not know the identity of the three within the set
ahead of time, the overall concept can be learned attribute efficiently nevertheless.

3. Mistake-bounded learning

We shall show for various algorithms that they learn attribute-efficiently. In particular, on
any sequence of examples the number of misclassifications made depends on the number of
irrelevant attributes only logarithmicly. Our results are established in the mistake-bounded
model, but these can be translated to the PAC model in various standard ways (Littlestone,
1988).

Consider a learning algorithmA that is given an arbitrary sequence of examplesx1, x2, . . .

each a member ofXn. Suppose for some Boolean concept classC that there is a concept
c ∈ Cn that classifies the examples asc(xi ) ∈ {0, 1}. An algorithmA is onlineif it behaves
as follows: It maintains a hypothesish : Xn → {0, 1} that is updated after each example:
On seeingxi the algorithm evaluatesh(xi ). If this does not equalc(xi ) then one mistake
has been made. Before seeingxi+1, h is updated in light of the following new pieces of
information: xi andc(xi ) (as well ash(xi ) which can be deduced fromxi .) We say thatM
is amistake boundfor A if for any, possibly infinitely long, sequence of examples,A never
makes more thanM mistakes.

Our algorithms will combine several mistake-bounded algorithms so that the output of
one becomes an input for another. We shall, therefore, need to consider the more complex
case that the labellingc∗(xi ) provided toA is false and not equal toc(xi ). Furthermore,
we need to distinguish between false positives (i.e.h = 1, c = 0) and false negatives (i.e.
h = 0, c = 1), in the case that the labels are correct.

We say forc ∈ C on subdomainX′n ⊆ Xn that it hask relevantvariables if there is some
set{xi1, . . . , xik} of k variables such that for allx′, x′′ ∈ X′n, it is the case thatc(x′) = c(x′′)
wheneverx′, x′′ agree onxi1, . . . , xik . If this holds then{xi1, . . . , xik} is called adecisive
set forc on X′n. A variablexj is calleddecisivewith respect to aspecifieddecisive set if
it belongs to that set. We are interested in small or minimal size decisive sets. A function
on a given subdomain may have several minimal size decisive sets. (We note that some
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definitions of relevance in the literature imply that if there arek relevant variables then all
the remaining ones have no influence on the function. Littlestone’s Winnow algorithm,
however, supports our stronger definition.)

Finally, we wish to express the numberfp of false positives and the numberfn of false
negatives that algorithmA makes over any sequence of examples, for anyc ∈ C and for
any X′n ⊆ Xn, in terms of four parameters: the total numbern of variables, the minimum
numberk of relevant variables ofc for X′n the numberfpl of examples in the sequence
falsely labelled as positive (i.e.c∗ = 1, c = 0) and the numberfnl of examples falsely
labelled as negative (i.e.c∗ = 0, c = 1). Hence we shall write the number of false positives
and false negatives forA asfp= π(n; k; fpl; fnl) andfn= ν(n; k; fpl; fnl).

In the particular case of learning monotone Boolean disjunctions it will yield better results
to consider the related functionsπ ′, ν ′ in which the last parameter isfnlmS, thenumber of
false negative labels with multiplicity relative to the decisive set S. An x for whichc∗(x) = 0
but xi = 1 for t ≥ 1 distinct variablesxi ∈ S (and hencec(x) = 1), contributest to fnlmS

(but contributes just 1 tof nl.) The dual of this measure, used for learning conjunctions,
is fplmS that counts the number of occurrences ofxi = 0 for xi ∈ S in examples with
c(x) = 0 andc∗(x) = 1.

We shall adopt the convention that when an algorithm is presented with a false labelling
for an examplex, its classification ofx according toh(x)will not be counted as contributing
to π, ν, π ′ or ν ′.

The paradigmatic known attribute-efficient algorithm is Littlestone’s Winnow. We shall
use the following instance of it, which we shall call Algorithm W: For domainX′n ⊆ Xn, the
hypothesis maintained after each example is “

∑n
i=1wi xi > n”. Thush(x) = 1 if

∑
wi xi >

n, andh(x) = 0 otherwise. Initiallyw1 = w2 = · · ·wn = 2. On each examplex: (i) if
h(x) = c∗(x) no change is made toh, (ii) if h(x) = 1 andc∗(x) = 0 then for alli s.t.
xi = 1 in x : wi ← wi /2, and (iii) if h(x) = 0 andc∗(x) = 1 then for alli s.t. xi = 1 in
x : wi ← 2wi . An update (ii) is called ademotionand an update (iii) is called apromotion.

The following can be deduced, by an adaptation of Littlestone’s analysis, for the classC
of monotone disjunctions (i.e.c = xi1 ∨ · · · ∨ xik).

Theorem 3.1. For the class of monotone disjunctions Algorithm W has the following
mistake bounds for any subdomain of{0, 1}n:

π ′(n; k; fpl; fnlmS) ≤ 2(k log2 n+ fnlmS+ fpl+ 1),

and

ν ′(n; k; fpl; fnlmS) ≤ k log2 n+ fnlmS.

where S is any decisive set for the disjunction being learned for that subdomain, and where
the values of every xi 6∈ S in the examples may be arbitrarily corrupted.

Proof: First we note that a promotion occurs only whenh(x) = 0 andc∗(x) = 1. This
can happen only ifc(x) = 1 andx was a false negative, or alternatively ifc(x) = 0 andx
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was falsely labelled positive. Hence

#promotions= fn+ fpl. (1)

To be precise, in this prooffpl, fnl and fnlmS are measures of just those false labellings
that give rise to updates, ignoring those that cause no updates. The bounds claimed in the
Theorem will also hold, clearly, if all the false labellings are included in the counts.

Suppose without loss of generality thatc ≡ x1∨ x2∨ · · · ∨ xk on X′n so that{x1, . . . , xk}
is a decisive set. First we observe that no coefficientwi ever exceeds 2n in value since if
it did it must have achieved such a value by doubling some value exceedingn for an input
with xi = 1 that caused a promotion. But ifwi > n andxi = 1 thenh(x) = 1, since
wi > 0 for all j , and promotions are only possible ifh(x) = 0. Next we observe that for a
decisive setSand forxi ∈ S, wi halves only ifx is falsely negatively labelled andxi = 1.
This is because ifxi = 1 a demotion occurs ifh = 1 andc∗ = 0. The possibility thatc = 0
is inconsistent with a decisivexi = 1, hence it must be thatc = 1 and hence thatx is falsely
negatively labelled. We are now in a position to upper bound the number of promotions
caused by false negatives by using these constraints on the values ofwi for xi ∈ S. Each
false negative causes at least one decisivewi to double. Since eachwi = 2 initially, and at
most 2n finally, this permitsk log2 n such promotions. Each contribution tofnlmS causes
exactly one decisivewi to halve, and therefore each one permits potentially one further
promotion on false negative. Also, each false positive label may cause a promotion but has
no influence onwi . Hence

#promotions≤ kblog2 nc+ fnlmS+ fpl. (2)

Combining (1) and (2) gives

fn≤ kblog2 nc+ fnlmS. (3)

Now a demotion can occur only when
∑
wi xi > n. Since for eachi such thatxi = 1, wi

will be halved, it follows that
∑
wi will be reduced by more thann/2. On the other hand,

a promotion occurs only if
∑
wi xi ≤ n. Since for everyi such thatxi = 1, wi will be

doubled, it follows that
∑
wi can never be as small asn/2 since if

∑
wi ≤ n no demotion

can occur and hence the lowest value reachable exceedsn/2. Hence, counting the increases
and decreases in

∑
wi in units ofn/2,

#demotions≤ 2 · #promotions+ 2. (4)

since otherwise the value of
∑
wi would be belown/2.

Finally we note that by the definitions

#demotions= fp+ fnl. (5)

Combining (2), (4) and (5) gives

fp≤ 2kb log2 nc + 2 fnlmS+ 2 fpl+ 2− fnl. (6)

2
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We note that by Boolean duality Theorem 3.1 can be adapted to learning conjunc-
tions. Thus in order to learn a conjunctionc over x1, . . . , xn we learn a disjunctionc′

over x̄1, . . . , x̄n that equals the negation ofc, and negate the learned function. Thus the
bounds of Theorem 3.1 apply for the dual false positive and false negative countsπ ′′ and
ν ′′, that take label parametersfplmS and fnl. Also we need to interchange positive and
negative everywhere.

Corollary 3.2. For the class of monotone conjunctions the dual of Algorithm W has the
following mistake bounds where S is any decisive set:

π ′′(n; k; fplmS; fnl) ≤ k log2 n+ fplmS,

and

ν ′′(n; k; fplmS; fnl) ≤ 2(k log2 n+ fplmS+ fnl+ 1). 2

We note that these algorithms can be made to learn conjunctions and disjunctions in
which negated and unnegated variables may occur arbitrarily, by, for example, introducing
separate variables forxi and its negation̄xi for eachi . This will double the number of
irrelevant variables but not increase the number of relevant ones (Littlestone, 1988). Also,
the algorithm itself can be tuned in various ways by modifying the update function. For
example, it can be verified that if in AlgorithmW for conjunctions the promotions are
replaced bywi ← (1+q−1)wi and demotions are unchanged, then the mistakes made will
be a factor ofq times less sensitive to false positive labels, butq times more sensitive to
false negative labels.

4. A projection learning algorithm

We first consider learning in a domainXn over(C, R) whereC is a concept class learnable
by an algorithmA with mistake boundsπA andνA, andR is a projection set.

As defined in Section 2, a disjunction over(C, R) can be expressed as

c(x) = ρ1(x)c1(x) ∨ ρ2(x)c2(x) ∨ · · · ∨ ρm(x)cm(x)

whereci ∈ C andρi ∈ R. In learning such a function, the learner does not know the
identities of the projectionsρ1, . . . , ρm that are relevant to the particular disjunction being
learned.

Below we describe AlgorithmY for learning such disjunctions, and analyze it. This
online algorithm uses its one examples stream and learns a separate hypothesishρ for each
of the r projectionsρ ∈ R. To learnhρ it updates its hypothesis forhρ according to
algorithm A for each examplex such thatρ(x) = 1, and ignores(x) if ρ(x) = 0. The
label of x for hρ is taken to be 1 if and only ifc(x) = 1. The hypothesis of Algorithm
Y is then updated according to an algorithmB for learning disjunctions over the domain
Vr = {0, 1}r , where ther componentsvi are taken asρ(x)hρ(x) for the variousρ ∈ R and
the truth value of the disjunction is taken asc(x). More formally:
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Algorithm Y.

Initialize hρ for eachρ ∈ R.
Initialize h for Algorithm B.
For each examplex:
Let vρ = ρ(x)hρ(x) for eachρ.
Output the value ofh on {vρ} as the predicted value.
For eachρ such thatρ(x) = 1 updatehρ according

to A givenx and labelc(x).
For eachρ let vρ = ρ(x)hρ(x).
Updateh according toB given{vρ | ρ ∈ R}

and labelc(x).

We now prove the following, where we extend the notation forπ andν to have two
parameters,r andn, to describe the total numbers of variables, and two morem andk, to
describe the numbers of the relevant ones, instead of just one parameter each.

Theorem 4.1. Suppose that Algorithm A and B have respective mistake boundsπA, νA,

πB, andνB. Then for learning projective disjunctions over(C,R)where there are at most m
disjuncts out of r= |R| projections, and in each ci at most k of the n variables are relevant,

Algorithm Y has mistake bounds:

πY(r, n;m, k; 0; 0) ≤ π ′B(r ;m;m · νA(n; k; 0; 0);m · πA(n; k; 0; 0)),

and

νY(r, n;m, k; 0; 0) ≤ ν ′B(r ;m;m · νA(n; k; 0; 0);m · πA(n; k; 0; 0)).

Proof: In the course of running AlgorithmY we regardhρ for ρ = ρi (1 ≤ i ≤ m) as
learningci from the domainXn restricted toρ = 1. Then calls of AlgorithmA never get
false labellings, since, by definition, ifρi (x) = 1 thenc(x) is the correct labelling forci (x).
Hence for eachρ the hypothesishρ produces at mostfp=πA(n; k; 0; 0) false positives,
and at mostfn= νA(n; k; 0; 0) false negatives.

Let S be the decisive set consisting of thevρ corresponding toρ = ρi (1 ≤ i ≤ m).
We regard AlgorithmB as learning the disjunction of this set. Calls of AlgorithmB may
get false labellings. While for eachx the supplied labelc(x) is correct, the supplied input
v(x) will be corrupted if some of thehρ are incorrect. As long ashρ is correct forρ ∈ S
the labellingc(x) remains correct for calls ofB. Hence iffp, fn are upper bounds on the
mistakes for eachhρ there will be at mostm· fp examples where a decisive bit ofv is a false
positive, and at mostm· fnexamples where a decisive bit ofv is a false negative. The former
may cause false negative labellings and the latter false positive labellings of the disjunction
being learned by AlgorithmB. They contribute tofnlmS and tofpl respectively. Note that
the values ofvρ for ρ 6∈ Sare irrelevant in this calculation. In other words, the behavior of
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these otherhρ may be arbitrarily noisy, adversarial or inconsistent without ill effect! Hence

πY(r, n;m, k; 0; 0) ≤ π ′B(r ;m;m · νA(n; k; 0; 0);m · πA(n; k; 0; 0)),

and

νY(r, n;m, k; 0; 0) ≤ ν ′B(r ;m;m · νA(n; k; 0; 0);m · πA(n; k; 0; 0)). 2

Corollary 4.1. If both of Algorithms A and B have the mistake bounds given in
Theorem3.1 for Algorithm W, then

πY(r, n;m, k; 0; 0) ≤ 6mklog2 n+ 2m log2 r + 4m+ 2,

νY(r, n;m, k; 0; 0) ≤ 2mklog2 n+m log2 r + 2m.

Proof: From Theorem 3.1,

πA(n; k; 0; 0) ≤ 2k log2 n+ 2,

and

νA(n; k; 0; 0) = ν ′A(n; k; 0; 0) ≤ k log2 n.

Applying Theorem 3.1 again to AlgorithmB:

π ′B(r ;m;m · νA(n; k; 0; 0);m · πA(n; k; 0; 0))
≤ 2(m log2 r +m(2k log2 n+ 2)+mklog2 n+ 1),

and

ν ′B(r ;m;m · νA(n; k; 0; 0);m · πA(n; k; 0; 0)) ≤ m log2 r +m(2k log2 n+ 2). 2

Corollary 4.2. If Algorithms A and B have the mistake bounds of Corollary3.2 and
Theorem3.1 respectively, then

πY(r, n;m, k; 0; 0) ≤ 6mklog2 n+ 2m log2 r + 4m+ 2,

νY(r, n;m, k; 0; 0) ≤ mklog2 n+m log2 r.

Proof: From Corollary 3.2

πA(n; k; 0; 0) ≤ k log2 n,

and

νA(n; k; 0; 0) = ν ′′(n; k; 0; 0) ≤ 2k log2 n+ 2.
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Applying Theorem 3.1 to AlgorithmB,

π ′B(r ;m;m · νA(n; k; 0; 0);m · πA(n; k; 0; 0))
≤ 2(m log2 r +m(2k log2 n+ 2)+mklog2 n+ 1)

ν ′B(r ;m;m · νA(n; k; 0; 0);m · πA(n; k; 0; 0)) ≤ m log2 r +mklog2 n. 2

From the above statements we can deduce attribute efficient learnability for a variety of
projectiveclasses. We can considerR to contain only conjunctive constraints (e.g.xi x j =
1). Then ifC is conjunctions then the resulting class is a class ofprojectiveDNF, a subclass
of disjunctive normal form. We can equally consider forC the class of disjunctions or
the class of Boolean functions that are separable by linear inequalities with small integer
coefficients. Also in either case the classRcan be broadened beyond conjunctions to, among
others, disjunctions or threshold functions. Finally, our composition construction can be
iterated more than once.

5. Sequential structures

Production systems, or sequences of condition-action rules have been frequently suggested
as appropriate for representing cognitive computations (Newell & Simon, 1972). These can
be formalized skeletally as decision lists (Rivest, 1987; Khardon, 1996). No polynomial
time learning algorithm is known that can learn decision lists attribute efficiently in the
strong sense so far considered here, that the computation time is polynomial in all the
parameters, and sample complexity is polynomial inm the number of relevant variables,
and logarithmic inr , the number of irrelevant ones. If this sense is relaxed toweakattribute
efficiency, where the dependence of the sample complexity onm is allowed to be exponential
while the dependence onr is still logarithmic, then a positive result holds: It is easy to
write a decision list ofm relevant variables as a linear inequality onm variables with integer
coefficients whose magnitudes sum to 2m. Further, variants of Winnow (Littlestone, 1988)
can learn linear threshold functions with integer coefficients overr variables, with the
number of mistakes growing proportionally to log2 r times the square of the sum of the
magnitudes of the coefficients.

We can define decision-lists over(C, R), in analogy with the disjunctions we defined
earlier (cf. Bshouty, Tamon, & Wilson, 1996), as

c = ρ1c1 ∨ ρ̄1ρ2c2 ∨ ρ̄1ρ̄2ρ3c3 ∨ · · · ∨ ρ̄1ρ̄2 · · · ρ̄m−1ρmcm

and attempt to understand their learnability. Note that if the learner knows the identities
of ρ1, ρ2, . . . , ρm ahead of time then the task would be equivalent to learning projective
disjunctions, since the projections{ρ̄1 · · · ρ̄i−1ρi | 1 ≤ i ≤ m} are mutually exclusive and
could be chosen asR. Attribute-efficient learning even in the weak sense is of interest here
since it is plausible that in cognitive computations the depthm of the list is some small
number.

For completeness we shall describe here some positive results for restricted cases that
follow from known methods. They are similar to ones referred to by Blum and Singh (1990)
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and also discussed by Kivinen, Mannila and Ukkonen (1992) and by Dhagat and Hellerstein
(1994).

We consider decision lists over(C, R), whereC = {0, 1} is the class consisting of the
two constant functions zero and one. In other words we have standard decision-lists with
conditionsρ ∈ R at the nodes, and constants 0 or 1 at the leaves. We define thedegree
of a decision list ofm decision points (i.e. internal nodes) to bed if d of the leaves have
value 1, and the remainder have value 0. We say that it hast alternationsif the sequence of
constants at the leaves can be partitioned into no more thant +1 subsequences, where each
subsequence is all 0 or all 1. Thus, for example, a decision list of degreed has at most
2d alternations. We note also that, by convention, the last internal node always leads to
two leaves with distinct labels, and hence the last sequence of leaves having the same label
consists always of just a single leaf.

Theorem 5.1 gives an improved result for this class in the case thatd or t is significantly
smaller thanm. One motivation for considering the small degree case comes from decision-
list systems where the leaves are labelled from a larger set than{0, 1}, and each label
recommends an action. We may have a large decision list ofm leaves where each label
occurs a small numberd of times. Then each label can be considered to define its own
degreed decision list.

For the purposes of the proof below it is convenient to reverse the ordering of theρi , and
to denote byj1, j2, . . . , jd the indices of theci such thatci = 1. Then a degreed decision
list can be written as:

if (ρi = 1 for anyi > jd) c = 0;
else if (ρ jd = 1) c = 1;
else if (ρi = 1 for anyi such thatjd−1 < i < jd) c = 0;
else if (ρ jd−1 = 1) c = 1;
else if (ρi = 1 for anyi such thatjd−2 < i < jd−1) c = 0;

...

else if (ρ j1 = 1) c = 1;
elsec = 0.

We can show the following, which implies polynomial time learnability with mistake
bounds depending on the relevant variables as(2m/d)d and 2t (m/t)t rather than the general
2m bound mentioned earlier. (We note that respective bounds ofO(md) andO(mt ) can be
obtained more simply.)

Theorem 5.1. A decision list over({0, 1}, R)with m leaves and degree d can be expressed
as a linear inequality

∑
wiρi > τ whereτ and every coefficientwi is an integer, and the

sum of the magnitudes of the|wi | is less than(2m/d)d. If the decision list has t alternations
then the sum of the magnitudes of the|wi | is less than2(m/t + 1)t .

Proof: We shall show the first upper bound by induction ond. Let Ld−1(ρ) > 0 be
a linear inequality for expressing the condition thatc = 1 in the decision list obtained
by deletingρm, ρm−1, . . . , ρ jd+1,ρ jd , from the decision list. We shall derive from this a
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linear inequalityLd(ρ) for the original decision list in two stages. First we add backρ jd ,
and second we add back the remaining nodesρm, ρm−1, . . . , ρ jd+1. For the first stage we
consider the inequalityL∗d(ρ) > 0 where

L∗d(ρ) = Ld−1(ρ)− ρ jd ·

min

min
ρ s.t.
ρ jd=1

{Ld−1(ρ)}, 0

 − 1

 (7)

Clearly if ρ jd = 0 then for all suchρ L∗d(ρ) = Ld−1(ρ), as desired, and ifρ jd = 1 then
L∗d(ρ) > 0 for all ρ with that constraint, again as needed. (Note that we may minimize
over {0, 1} values of theρ j for vectorsρ consistent with the domainX′n from which the
examples are drawn. Some choices ofX′n may yield better bounds than the general case that
we analyze here. Note also that if the minimal value ofLd−1 is positive, then the value zero
is used instead of it.) For the second stage we consider the inequalityLd(ρ) > 0 where

Ld(ρ) = L∗d(ρ)−
m∑

i= jd+1

ρi ·
max

max
ρ s.t.
ρi=1

{L∗d(ρ)}, 0

 . (8)

Then ifρi = 0 for all i ( jd + 1 ≤ i ≤ m) then for all suchρ Ld(ρ) = L∗d(ρ). If ρi = 1
for some suchi , thenLd(ρ) ≤ 0. In both cases this is as needed. (Note that here we are
assuming similarly that if the maximum value ofL∗d is negative, then the value zero is used
instead of it.)

Now let |L| denote the sum of the magnitudes of the coefficients of the linear formL.
Then the two stages of the construction imply respectively that

|L∗d| ≤ 2|Ld−1| + 1,

and

|Ld| ≤ (m− jd+ 1)|L∗d|.

For the basis of the induction letL1(ρ) > 0 where

L1(ρ) = ρ j1 −
∑

j1<i< j2

ρi .

Then clearly ifρi = 1 for anyi ( j1 < i < j2) thenL1(ρ) ≤ 0, while otherwise ifρ j1 = 1
thenL1(ρ) > 0. If all theseρ values are zero, thenL1(ρ) ≤ 0 also as required. This gives
the basis inequality|L1| ≤ j2− j1.

Putting together these inequalities gives ford> 1 that|Ld| is upper bounded by a qua-
ntity ld satisfying

l i < ( ji+1− ji )(2l i−1+ 1)
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for d ≥ i ≥ 2 where jd+1 = m+ 1 andl1 = j2 − j1. In other words there exist quantities
x1, . . . , xd wherexi = ji+1− ji ≥ 1, such that

∑
xi = jd+1− j1 ≤ m,

l i < xi (2l i−1+ 1) for i = 2, . . . ,d, andl1 = x1

Multiplying out gives:

ld < xd(2xd−1(2xd−2 · · ·2x2(2x1+ 1) · · ·)+ 1)

≤
d∑

i=1

2d−i xd · · · xi

< 2dxd · · · x1

≤ (2m/d)d by the arithmetic-geometric mean inequality.

We can analyze the more general case oft alternations by the same method. We use (8)
above for sequences of 0-leaves, and an adaptation of (7) for sequences of 1-leaves. Suppose
that thekth sequence of identical leaves correspond toρ jk−1+1, . . . , ρ jk where j0 = 0 and
jt+1 = m+ 1. We define the linear inqualitites{Lk} inductively. If thet th such sequence
consists of 0-leaves we have

Lt (ρ) = Lt−1(ρ)−
m∑

i= jt+1

ρi

max

max
ρ s.t.
ρi=1

{Lt−1(ρ)}, 0



and it consists of 1-leaves we have

Lt (ρ) = Lt−1(ρ)−
m∑

i= jt+1

ρi

min

min
ρ s.t.
ρi=1

{Lt−1(ρ)}, 0
−1


The last sequence is always a single leaf. If it is a 0-leaf then it can be ignored. Hence

the worst case is a 1-leaf, which gives a base equation of

L1(ρ) = 1.

Hence ifl i+1 is the sum of the magnitudes of the coefficients (but excluding the constant
term) for i alternations, thenl i < (xi + 1)(l i−1 + 1) for i = 2, . . . , t + 1, andl1 = 0, for
somex2, . . . , xt+1 such thatx2+ · · · + xt+1 ≤ m. Puttingyi = xi + 1 gives the recurrence
l i < yi (l i−1+ 1) where nowy2+ · · · + yt+1 ≤ m+ t . Hence

l t+1 <

t+1∑
k=2

t+1∏
i=k

yi .

Using the fact thatyi ≥ 2 for all i and the arithmetic-geometric mean inequality gives the
claimed bound. 2
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A number of concept classes that are natural applications of our Algorithm Y and
Theorem 4.1 can be learned more simply by appropriately recoding the input represen-
tation and applying Winnow and Theorem 5.1. We shall consider the class of projective
disjunctions over(C, R), for variousC, R and apply the following corollary of Theorem 9
and Example 6 of Littlestone (1989):

Theorem 5.2. (Littlestone): For some constantκ a variant of Winnow can learn any
inequality

∑n
i=1wi xi > τ, wherew1, . . . , wn are integral and the sum of the magnitudes

of thewi equals Z, with mistake bound no more thanκZ2 logn.

Suppose first thatC can be expressed as a class of linear separators that are learnable
by Winnow attribute efficiently, and thatR = {ρ1, . . . , ρr } is a set of restrictions that
aredisjoint (i.e. ∀x ∈ X′nρi (x) = ρ j (x) = 1 ⇒ i = j ). Then it is easy to see that if
we defineyi = ρ̄1ρ̄2 · · · ρ̄i−1ρi ρ̄i+1 · · · ρ̄r for 1 ≤ i ≤ r then replacingρi by yi in any
expressionf being learned leavesf invariant onX′n. We now introduce a new set ofrn
variables{zi j | 1 ≤ i ≤ n, 1 ≤ j ≤ r } wherezi j = xi yj . It is easy to see that a linear
inequality suffices where the coefficients of thezi j variables are equal to those ofρ j cj when
these are learned separately.

Second, let us consider the case thatC is the set of conjunctions. Corollary 4.1 gives a
mistake bound ofO(mklog(rn)) for learning a projective disjunction ofm conjunctions
underr projections where at mostk variables out of then appear in any conjunction. The
question arises whether this bound can be obtained more directly, even in the nonprojec-
tive case. In particular as a referee of this paper has observed, a projective disjunction∨

i (ρi
∧

j xi j ) can be expressed as a decision list with two alternations as follows: starting
from the root there is a sequence of internal nodes representingρi x̄i j for all i, j that lead
to 0-labelled leaves when these conditions are satisfied. Then come a sequence of internal
nodes representingρi for all i , that lead to 1-labelled leaves. Finally there is a 0-labelled
leaf. It appears, however, that applying to this construction any of the known algorithms
mentioned for learning decision lists with a fixed number of alternations yields worse bounds
than Corollary 4.1. For example, a direct application of Theorems 5.1 and 5.2 would give
a larger bound ofO((mk)4 log(rn)).

Finally, for this same concept class an alternative coding is to have a new variable for
each of theÄ(nk) possiblek-conjunctions of variables and then use Winnow. However, if
k > 2 this introduces an unacceptably high dependence, as compared with AlgorithmY,
of the computational cost onn.

6. Conclusion

If a concept cannot be learned satisfactorily because it does not approximate a function
in any class for which a learning algorithm is available, it is natural to do the following.
One tries a variety of restrictions of the function to various subdomains in the hope that the
functions on some of these restrictions will be simple, and will become accessible to the
available algorithms. If such favorable restrictions cover most cases then it remains to put
together into a single hypothesis the hypotheses for the various restrictions, in order to



PROJECTION LEARNING 129

derive a hypothesis for the whole function. This general methodology we call projection
learning.

In this paper we described an algorithm for this that exhibits the desired properties in
a certain context. In particular we showed some conditions under which attribute-efficient
learnability of the subdomains was sufficient to guarantee attribute-efficient learning over
the whole domain. Mistake-bounded analysis was found to be effective, though these phe-
nomena may also be amenable to analysis directly in the PAC model.

The algorithm described suggests a broader variety of algorithms that might be tried as
a heuristics for difficult learning problems. For example, if the variable set is very large,
as may be the case in cognitive or computational biology applications, it may be more
practicable to use as the set of projections a much smaller set of carefully preselected
restrictions, and not fully exploit attribute-efficiency at the level of the projections.

We expect that projection learning might find a use within a broader toolkit of methods.
As observed in the previous section, several classes of functions that can be learned by
the basic algorithm described can also be learned by Winnow itself, though sometimes
with quantitatively inferior bounds, after the variable set has been recoded to an appropriate
larger set. We have not been able to usefully characterize the domains in which our methods
outperform others. However, Winnow appears to be particularly useful in practice in noisy
environments where linear inequalities with moderate size integer coefficients provide ade-
quate approximations to the function being learned. Hence applications having projections
with these properties look the most promising.

The development of efficient learning algorithms for particular representations can be
expected to influence the representations of choice used in computer systems that perform
cognitive computations. While sequential structures such as production systems and deci-
sion lists have been advocated for their expressiveness, it is possible, though not proven, that
there are fundamental impediments to their attribute-efficient learnability. If these apparent
impediments remain insurmountable, then it would appear that in the context of cognitive
computations attention will need to be redirected to the flatter, possibly projective, structures
suggested by this paper.
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