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Abstract. A method of combining learning algorithms is described that preserves attribute-efficiency. It yields
learning algorithms that require a number of examples that is polynomial in the number of relevant variables and
logarithmic in the number of irrelevant ones. The algorithms are simple to implement and realizable on networks
with a number of nodes linear in the total number of variables. They include generalizations of Littlestone’s
Winnow algorithm, and are, therefore, good candidates for experimentation on domains having very large numbers
of attributes but where nonlinear hypotheses are sought.
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1. Introduction

One area of stark contrast between current machine learning practice and natural biological
learning is that of data preparation. In machine learning it is often found that in order to
ensure success at a new learning task considerable effort has to be putinto creating the right
set of variables, and into eliminating redundant ones if there are large numbers of these. In
biological learning, on the other hand, no explicit methods for achieving these ends have
been identified. The learning process appears to have mechanisms for overcoming these
problems implicitly.

This dichotomy suggests the existence of a useful class of learning algorithms that have
yet to be discovered and exploited. Indeed it has been suggested that algorithms that fill this
gap are fundamental to systems that learn and maintain large knowledge bases for cognitive
computations (Valiant, 1998).

A simple but persuasive formulation of the problem at hand is the following: one needs
algorithms that learn, as efficiently as possible, functions that depend on a small humber
among a much larger numbenf available variables. The necessity for this is suggested by
the empirical observation that humans and other biological systems can learn from a small
number of examples, using a system that has many components {08 neurons), and
in which each component has a large number of potentially independent parameters (e.g
~10* synapses). On dimensionality grounds it appears that the only hope of learning from a
small number of examples is to have the concept learned have small dimensionality in some
sense. Perhaps the simplest expression of this restriction is to have each concept completely
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of Naval Research ONR-N00014-96-1-0550 and Army Research Office ARO-DAAL-03-92-G-0115.
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determined by the values of a small number of the variables. The question therefore is: just
how efficiently can a function df variables be learned in the presence of a possibly much
larger number oh — k irrelevant variables, when the identity of tkeelevant ones is not
known ahead of time.

Computational learning theory has supplied some remarkable positive results. Haussler
(1988) showed that for the problem of learning a Boolean disjunction or conjunction of
variables out of, the number of examples needed to learn in polynomial time grew essen-
tially asklogn. The fact that the dependencemhad been reduced to logarithmic, rather
than linear, represented a major breakthrough. Soon afterwards Littlestone proved a similar
result for a surprisingly elegant algorithm which he called Winnow (Littlestone, 1988).

It resembles the perceptron algorithm in simplicity and form, but achieves its attribute-
efficient behavior by having multiplicative rather than additive updates. The algorithm has
been shown to be effective, for example, in natural language settings with tens of thousands
of variables (Golding & Roth, 1996).

The primary purpose of this paper is to extend the known classes of algorithms that learn
in this attribute-efficient sense. We do this by showing that attribute-efficient learnability
can be preserved by composing algorithms that have this property in certain natural and
simple ways. This result applies directly to learning certain classes of two level structures.
These classes can be learned attribute-efficiently by a natural two level composition of
attribute-efficient algorithms such as Winnow. The number of mistakes made by the new
algorithm on any sequence of examples still depends only logarithmically and ork
polynomially. The dependence of the computational cost anessentially linear and no
separate transformation of the input space is needed.

The dual purpose of the paper, which we only mention here is passing but will expound
more fully elsewhere, is to show that attribute-efficiency can be achieved by algorithms that
satisfy the following additional constraints that have been argued to be useful for realizing
the neuroidal architecture described in (Valiant, 1998). First, it is considered desirable that
such algorithms be realizable on networks of elements that can each learn linear thresh-
old functions and have additional finite state computational capabilities. Furthermore, for
economy the numbers of such elements should be linear in the number of variables being
represented, rather than, say, quadratic. Second, the structures that can be learned should fill
some need of cognitive interest. Third, the structures should supply some welcome func-
tionality in learning and handling relational information rather than merely propositional
information, in a network setting (Valiant, 1999). The knowledge structures we describe
aim to satisfy these constraints. They can be viewed as attribute-efficient alternatives to trees
or production systems. The latter have been widely used to represent cognitive knowledge.
Khardon (1996) has used them recently to learn action strategies. It is an open empirical
question to determine to what extent the sequentiality that is implicit in general production
systems can be replaced in cognitive computations by the flatter structures that we consider
here.

2. Concept classes

We shall consider Boolean functions of Boolean varialgles. . , x,. A concepwill be a
function fromX, = {0, 1}" to {0, 1} for some finiten. We shall discuss classes of concepts,
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such as the class of Boolean disjunctions. We represent such aCclasghe union of
stratified subclassés,,

c=Jcn

n>1

wherec € C,, has domainX, as described, for example, by Kearns and Vazirani (1994).

A projection(or restriction)p of X, is a subset oK,,, and is typically represented by a
simple constraint such as = 1 orxz = X4. For a functionf : X, — {0, 1} therestriction
f, of f is defined as:f,(x) = f(x) if p(x)=1, andf,(x) = 0 otherwise. Note that
f,(x) can be written equivalently agx) f (x). A projection set Ror X, is a set of such
projections.

Projection sets are intended here to be easily enumerated sets of restrictions. For example,
we could take the set of all projections that fix the product of a pair of distinct variables to
0 or 1. In that case the sizeof this set would be 2(2).

The concept classes that we investigate in this paper are defined with respect to arbitrary
choices of botlC andR. A projective disjunction ovefC, R) is a functionc of the form

C(X) = p1(X)C1(X) V p2(X)C2(X) V - - - V pm(X)Cm(X)

wherepy, ..., om € R,C1,...,Cm € Cand foreach(1 <i < m)pic = pi¢. In other
wordsc andc; agree on every such thap; (x) = 1. Note that the novel constraint is this last
one that excludes the possibility for arythat o (x) = ¢(x) = 1, ¢i(X) = 0, andc;(x) =
pj(x) = 1for somej #i.

In the case that members & are mutually exclusive, (i.e. they map disjoint subsets
of X, to 1), this constraint is satisfied automatically. For example, one could clivtse
be the 2 projections defined by setting, . .., x, to the Z distinct combinations of truth
values. Disjointness is not essential. One could ché&bsebe the set of 2 single-variable
projections{x; =1, x;, =0| 1 < i < n}, or the set of quadratic projectiofigx; = 1|1 <
i < j <n}. Inallthese cases & is further chosen to be the set of conjunctions then the
class defined is a subclass of the class of disjunctive normal form formulae. More generally,
C will be chosen to be any class of functions learnable attribute-efficiently, such as the class
of linear threshold functions with moderate size integer coefficients (Littlestone, 1988).

The significance of projective disjunctions is that they suggest the following natural
learning strategy. For eaghe Rone applies a learning algorithm fGrto the input stream
of examples restricted to those satisfyimgnd obtains a hypothedis. For eachp that is
relevanttaC, a useful hypothests, will be learned. An appropriate disjunction constructed
from these will then approximate

We can also generalize this definition by making the same claims for an arbitrary subset
X, € Xn = {0, 1}" rather thanX, itself. This is relevant if some of the vectors never
occur as examples ardneed not be defined for them. If this more general situation is
acknowledged then simpler expressions sometimes suffice. For examples i = 1),
then

P1X2X3 + p2X1X4 = X1X2X3 + X2X1X4
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is a projective disjunction. However, if no examples with= x, = 1 occur inX|, then
the expression

X1X3 + XoX4

suffices. In order to put this in a formal setting we wold defipeaective disjunction over
(C, R for X;, as we did above for the cas€, = X, but would relax it so thapc = p;c
needs to be satisfied for eaicbnly for x € X/,. The remainder of this paper applies to this
generalized notion also.

The motivation in the cognitive setting of projective disjunctions may be characterized by
the following instance: A concept may be too complex to be learned directly by Winnow.
However, it may be that the concept occurs mainly in, say, just three contexts and when
restricted to any one of these the concept is simple enough to be learned attribute efficiently
by Winnow. Our results will state that as long as the three contexts belong to a set of contexts
that can be recognized, and even if we do not know the identity of the three within the set
ahead of time, the overall concept can be learned attribute efficiently nevertheless.

3. Mistake-bounded learning

We shall show for various algorithms that they learn attribute-efficiently. In particular, on
any sequence of examples the number of misclassifications made depends on the number of
irrelevant attributes only logarithmicly. Our results are established in the mistake-bounded
model, but these can be translated to the PAC model in various standard ways (Littlestone,
1988).

Consider alearning algorithithat is given an arbitrary sequence of examplex?, . ..
each a member oX,. Suppose for some Boolean concept claghat there is a concept
¢ € C, that classifies the examples@x') € {0, 1}. An algorithmA is onlineif it behaves
as follows: It maintains a hypothedis X, — {0, 1} that is updated after each example:

On seeing' the algorithm evaluatds(x'). If this does not equat(x') then one mistake
has been made. Before seeiig?, h is updated in light of the following new pieces of
information: x' andc(x') (as well ash(x') which can be deduced frori.) We say thatv

is amistake boundor A if for any, possibly infinitely long, sequence of examplésever
makes more tha mistakes.

Our algorithms will combine several mistake-bounded algorithms so that the output of
one becomes an input for another. We shall, therefore, need to consider the more complex
case that the labelling*(x') provided toA is false and not equal to(x'). Furthermore,
we need to distinguish between false positives fi.e= 1, c = 0) and false negatives (i.e.

h =0,c = 1), inthe case that the labels are correct.

We say forc € C on subdomairk/, C X, that it hask relevantvariables if there is some
set{xi,, ..., X } of kvariables such thatfor all, x” € X, it is the case that(x") = c(x")
wheneverx’, x” agree orx;,, ..., X;,. If this holds then{x; , ..., X} is called adecisive
set forc on X|,. A variablex; is calleddecisivewith respect to specifieddecisive set if
it belongs to that set. We are interested in small or minimal size decisive sets. A function
on a given subdomain may have several minimal size decisive sets. (We note that some
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definitions of relevance in the literature imply that if there lrelevant variables then all
the remaining ones have no influence on the function. Littlestone’s Winnow algorithm,
however, supports our stronger definition.)

Finally, we wish to express the numbigrof false positives and the numbter of false
negatives that algorithm\ makes over any sequence of examples, for@aeyC and for
any X;, € X,, in terms of four parameters: the total numinesf variables, the minimum
numberk of relevant variables of for X; the numberfpl of examples in the sequence
falsely labelled as positive (i.ec* = 1, ¢ = 0) and the numberfnl of examples falsely
labelled as negative (i.€* = 0, c = 1). Hence we shall write the number of false positives
and false negatives fok asfp = 7 (n; k; fpl; fnl) andfn = v(n; k; fpl; fnl).

Inthe particular case of learning monotone Boolean disjunctions it will yield better results
to consider the related functioms, v’ in which the last parameter falms, thenumber of
false negative labels with multiplicity relative to the decisive sérs for whichc*(x) = 0
butx; = 1fort > 1 distinct variables; € S (and hence(x) = 1), contributeg to fnlmg
(but contributes just 1 td nl.) The dual of this measure, used for learning conjunctions,
is fplms that counts the number of occurrencesxpf= 0 for x; € Sin examples with
¢c(x) = 0 andc*(x) = 1.

We shall adopt the convention that when an algorithm is presented with a false labelling
for an examplg, its classification ok according td(x) will not be counted as contributing
tom, v, v’ orv.

The paradigmatic known attribute-efficient algorithm is Littlestone’s Winnow. We shall
use the following instance of it, which we shall call Algorithm W: For domdjnc X, the
hypothesis maintained after each exampl&i¥™, wix; > n”. Thush(x) = 1if > wix >
n, andh(x) = 0 otherwise. Initiallyw; = w, = ---w, = 2. On each example: (i) if
h(x) = c*(x) no change is made to, (ii) if h(x) = 1 andc*(x) = 0 then for alli s.t.

X =1linx:w; < wi/2,and (iii) if h(x) = 0 andc*(x) = 1 then for alli s.t. x;, = 1in
X . wj < 2w;j. An update (ii) is called demotiorand an update (iii) is called@omotion

The following can be deduced, by an adaptation of Littlestone’s analysis, for theXlass

of monotone disjunctions (i.& =X, vV -+ V X,).

Theorem 3.1. For the class of monotone disjunctions Algorithm W has the following
mistake bounds for any subdomain{0f 1}":

7'(n; k; fpl; fnlmg) < 2(klog, n + fnimg + fpl + 1),
and
v'(n; k; fpl; fnlmg) < klog, n + fnims.

where S is any decisive set for the disjunction being learned for that subdcamaimvhere
the values of every, 2 S in the examples may be arbitrarily corrupted.

Proof: First we note that a promotion occurs only whaix) = 0 andc*(x) = 1. This
can happen only i€(x) = 1 andx was a false negative, or alternativel\cifx) = 0 andx
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was falsely labelled positive. Hence
#promotions = fn+ fpl. (1)

To be precise, in this prodpl, fnl and fnlms are measures of just those false labellings
that give rise to updates, ignoring those that cause no updates. The bounds claimed in the
Theorem will also hold, clearly, if all the false labellings are included in the counts.

Suppose without loss of generality tltats X1 vV X2 v - - - vV X on X;, so that{xy, . .., Xk}
is a decisive set. First we observe that no coefficiengver exceedsrRin value since if
it did it must have achieved such a value by doubling some value excerdtin@n input
with x; = 1 that caused a promotion. Butidfi > nandx; = 1 thenh(x) = 1, since
w;j > 0 forall j, and promotions are only possiblehifx) = 0. Next we observe that for a
decisive seSand forx; € S, w; halves only ifx is falsely negatively labelled and = 1.

This is because ; = 1 a demotion occurs i = 1 andc* = 0. The possibility that = 0

is inconsistent with a decisive = 1, hence it must be that= 1 and hence thatis falsely
negatively labelled. We are now in a position to upper bound the number of promotions
caused by false negatives by using these constraints on the values$aofx; € S. Each

false negative causes at least one decigivio double. Since each; = 2 initially, and at

most 2 finally, this permitsk log, n such promotions. Each contributionfidmg causes
exactly one decisivay; to halve, and therefore each one permits potentially one further
promotion on false negative. Also, each false positive label may cause a promotion but has
no influence orw;. Hence

#promotions< k|log, n| + fnlmg + fpl. (2)
Combining (1) and (2) gives
fn < k[log, n] + fnlms. 3)

Now a demotion can occur only whén wiX; > n. Since for each such thak, = 1, w;
will be halved, it follows tha " w; will be reduced by more tham/2. On the other hand,
a promotion occurs only i~ wix < n. Since for everyi such thatg = 1, w; will be
doubled, it follows thad " w; can never be as small ag2 since if}_ w; < nno demotion
can occur and hence the lowest value reachable exog@d$lence, counting the increases
and decreases i wj in units ofn/2,

#demotions< 2 - #promotions+ 2. 4)

since otherwise the value 3 w; would be belown/2.
Finally we note that by the definitions

#demotions= fp + . (5)
Combining (2), (4) and (5) gives

fp < 2k| log, n] + 2fnimg + 2fpl + 2 — fnl. (6)
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We note that by Boolean duality Theorem 3.1 can be adapted to learning conjunc-
tions. Thus in order to learn a conjunctiorover xy, ..., X, we learn a disjunctiomt’
overX, ..., Xy that equals the negation of and negate the learned function. Thus the
bounds of Theorem 3.1 apply for the dual false positive and false negative eduatsd
v”, that take label parametefglms andfnl. Also we need to interchange positive and
negative everywhere.

Corollary 3.2. For the class of monotone conjunctions the dual of Algorithm W has the
following mistake bounds where S is any decisive set

7" (n; k; fplmg; fnl) < klog, n + fplmg,
and
v’ (n; k; fplmg; fnl) < 2(klog, n+ fplmg+ fnl + 1). O

We note that these algorithms can be made to learn conjunctions and disjunctions in
which negated and unnegated variables may occur arbitrarily, by, for example, introducing
separate variables fo¢ and its negatiorx; for eachi. This will double the number of
irrelevant variables but not increase the number of relevant ones (Littlestone, 1988). Also,
the algorithm itself can be tuned in various ways by modifying the update function. For
example, it can be verified that if in AlgorithW for conjunctions the promotions are
replaced byw; < (1+ g~ w; and demotions are unchanged, then the mistakes made will
be a factor ofg times less sensitive to false positive labels, dptimes more sensitive to
false negative labels.

4. A projection learning algorithm

We first consider learning in a domaXy, over (C, R) whereC is a concept class learnable
by an algorithmA with mistake bounds » andva, andR is a projection set.
As defined in Section 2, a disjunction ou&, R) can be expressed as

C(X) = p1(X)C1(X) V p2(X)C2(X) V - - - V pm(X)Cm(X)

wherec; € C andp; € R. In learning such a function, the learner does not know the
identities of the projectiong, ..., om that are relevant to the particular disjunction being
learned.

Below we describe Algorithny for learning such disjunctions, and analyze it. This
online algorithm uses its one examples stream and learns a separate hyppthesesach
of ther projectionsp € R. To learnh, it updates its hypothesis fdr, according to
algorithm A for each example such thato(x) = 1, and ignoregx) if o(x) = 0. The
label of x for h, is taken to be 1 if and only i€(x) = 1. The hypothesis of Algorithm
Y is then updated according to an algoritiBrfor learning disjunctions over the domain
V; = {0, 1}', where the components; are taken ag (x)h,(x) for the variousp € Rand
the truth value of the disjunction is taken@s). More formally:
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Algorithm Y.

Initialize h, for eachp € R.
Initialize h for Algorithm B.
For each examplg:
Letv, = p(x)h,(x) for eachp.
Output the value of on{v,} as the predicted value.
For eachp such thafo(x) = 1 updateh, according
to A givenx and labelc(x).
For eachp letv, = p(X)h,(X).
Updateh according toB given{v, | p € R}
and labek(x).

We now prove the following, where we extend the notations#foandv to have two
parameters;, andn, to describe the total numbers of variables, and two moendk, to
describe the numbers of the relevant ones, instead of just one parameter each.

Theorem 4.1. Suppose that Algorithm A and B have respective mistake bounds,
g, andvg. Then for learning projective disjunctions ou&, R) where there are at most m
disjuncts out of = |R| projections and in each cat most k of the n variables are relevant
Algorithm Y has mistake bounds

ay(r,n; m,K; 0; 0) < g (r; m;m-va(n; k; 0; 0); m- wa(n; k; 0; 0)),
and
vy (r,n; m, k; 0; 0) < vg(r; m; m-va(n; k; 0; 0); m- wa(n; k; 0; 0)).

Proof: In the course of running Algorithnt we regardh, for p = pj (1 <i < m) as
learningc; from the domainX, restricted topo = 1. Then calls of AlgorithmA never get
false labellings, since, by definition,4f (X) = 1 thenc(x) is the correct labelling fog; (x).
Hence for eachp the hypothesi$, produces at modp=ma(n; k; O; 0) false positives,
and at mosftn=va(n; k; 0; 0) false negatives.

Let S be the decisive set consisting of thg corresponding tg = pi(1 <i < m).
We regard AlgorithmB as learning the disjunction of this set. Calls of AlgoritfBrmay
get false labellings. While for eachthe supplied labed(x) is correct, the supplied input
v(x) will be corrupted if some of th, are incorrect. As long ds, is correct foro € S
the labellingc(x) remains correct for calls d8. Hence iffp, fn are upper bounds on the
mistakes for each, there will be at mosin - fp examples where a decisive bitwis a false
positive, and at mosh - fn examples where a decisive bitwis a false negative. The former
may cause false negative labellings and the latter false positive labellings of the disjunction
being learned by AlgorithnB. They contribute tofnimg and tofpl respectively. Note that
the values ob, for p ¢ Sare irrelevant in this calculation. In other words, the behavior of
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these otheh, may be arbitrarily noisy, adversarial or inconsistent without ill effect! Hence
y(r,n;m, k; 0; 0) < wg(r; m;m-va(n; k; 0; 0); m- wa(n; k; 0; 0)),

and
vy (r,n; m, k; 0; 0) < vg(r; m; m-va(n; k; 0; 0); m- wa(n; k; 0; 0)). O

Corollary 4.1. If both of Algorithms A and B have the mistake bounds given in
TheorenB.1 for Algorithm W, then

v (r,n; m, k; 0; 0) < 6mklog, n + 2mlog,r + 4m+ 2,

vy (r, n; m, k; 0; 0) < 2mklog, n + mlog, r + 2m.
Proof: From Theorem 3.1,

wa(n; k; 0; 0) < 2klog, n + 2,
and

va(n; k; 0; 0) = va(n; k; 0; 0) < klog, n.
Applying Theorem 3.1 again to AlgorithiB:

mg(r; m;m-va(n; k; 0; 0); m- wa(n; k; 0; 0))

<2(mlog,r + m(2klog, n + 2) + mklog, n + 1),
and
vg(r; mym-va(n; k; 0; 0); m- a(n; k; 0; 0)) < mlog,r + m(2klog,n+2). O

Corollary 4.2. If Algorithms A and B have the mistake bounds of Corolla and
TheorenB.1 respectivelythen

my (r, n; m, k; 0; 0) < 6mklog, n + 2mlog,r + 4m+ 2,

vy (r, n; m, k; 0; 0) < mklog, n + mlog,r.

Proof: From Corollary 3.2
7a(n; k; 0; 0) < klog, n,
and

va(n; k; 0; 0) = v"(n; k; 0; 0) < 2klog, n + 2.
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Applying Theorem 3.1 to Algorithni,

7g(r; m;m-va(n; k; 0; 0); m- wa(n; k; 0; 0)
<2(mlog,r + m(2klog, n + 2) + mklog, n + 1)

vg(r; m;m-va(n; k; 0; 0); m- wa(n; k; 0; 0)) < mlog,r + mklog, n. U

From the above statements we can deduce attribute efficient learnability for a variety of
projectiveclasses. We can considBrto contain only conjunctive constraints (exgx; =
1). ThenifC is conjunctions then the resulting class is a clagg@jectiveDNF, a subclass
of disjunctive normal form. We can equally consider frthe class of disjunctions or
the class of Boolean functions that are separable by linear inequalities with small integer
coefficients. Also in either case the cld&san be broadened beyond conjunctions to, among
others, disjunctions or threshold functions. Finally, our composition construction can be
iterated more than once.

5. Sequential structures

Production systems, or sequences of condition-action rules have been frequently suggested
as appropriate for representing cognitive computations (Newell & Simon, 1972). These can
be formalized skeletally as decision lists (Rivest, 1987; Khardon, 1996). No polynomial
time learning algorithm is known that can learn decision lists attribute efficiently in the
strong sense so far considered here, that the computation time is polynomial in all the
parameters, and sample complexity is polynomiahithe number of relevant variables,
and logarithmic i, the number of irrelevant ones. If this sense is relaxeddakattribute
efficiency, where the dependence of the sample complexityisallowed to be exponential
while the dependence anis still logarithmic, then a positive result holds: It is easy to
write a decision list o relevant variables as a linear inequalityrawariables with integer
coefficients whose magnitudes sum t& Further, variants of Winnow (Littlestone, 1988)
can learn linear threshold functions with integer coefficients oveariables, with the
number of mistakes growing proportionally to log times the square of the sum of the
magnitudes of the coefficients.

We can define decision-lists ové€E, R), in analogy with the disjunctions we defined
earlier (cf. Bshouty, Tamon, & Wilson, 1996), as

C = p1C1 V P102C2 V p10203C3 V -+ V 0102 - * * Pm—1PmCm

and attempt to understand their learnability. Note that if the learner knows the identities
of p1, p2, ..., pm ahead of time then the task would be equivalent to learning projective
disjunctions, since the projectiofig; - - - pi_10i | 1 < i < m} are mutually exclusive and
could be chosen aB. Attribute-efficient learning even in the weak sense is of interest here
since it is plausible that in cognitive computations the daptbf the list is some small
number.

For completeness we shall describe here some positive results for restricted cases that
follow from known methods. They are similar to ones referred to by Blum and Singh (1990)
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and also discussed by Kivinen, Mannila and Ukkonen (1992) and by Dhagat and Hellerstein
(1994).

We consider decision lists ové€, R), whereC = {0, 1} is the class consisting of the
two constant functions zero and one. In other words we have standard decision-lists with
conditionsp € R at the nodes, and constants O or 1 at the leaves. We defirieginee
of a decision list oim decision points (i.e. internal nodes) to théf d of the leaves have
value 1, and the remainder have value 0. We say that it Alisrnationsif the sequence of
constants at the leaves can be partitioned into no more thdnsubsequences, where each
subsequence is all 0 or all 1. Thus, for example, a decision list of deghes at most
2d alternations. We note also that, by convention, the last internal node always leads to
two leaves with distinct labels, and hence the last sequence of leaves having the same label
consists always of just a single leaf.

Theorem 5.1 gives an improved result for this class in the casd ietis significantly
smaller thaim. One motivation for considering the small degree case comes from decision-
list systems where the leaves are labelled from a larger set{thdn, and each label
recommends an action. We may have a large decision list lgfaves where each label
occurs a small numbet of times. Then each label can be considered to define its own
degred decision list.

For the purposes of the proof below it is convenient to reverse the ordering af ted
to denote byji, jo, ..., jq the indices of the; such that; = 1. Then a degred decision
list can be written as:

if (o =1 foranyi > jg)c=0;
elseif (pj, =1 c=1,
else if (o = 1 for anyi such thatjg_; <i < jg)c=0;
elseif (pj,, =D c=1;
else if (oj = 1 for anyi such thatjg_o <i < jg_1)c=0;

elseif(pj, =1 c=1;
elsec = 0.

We can show the following, which implies polynomial time learnability with mistake
bounds depending on the relevant variable@ay'd)? and 2 (m/t)! rather than the general
2™ bound mentioned earlier. (We note that respective boun@of’) andO(m') can be
obtained more simply.)

Theorem5.1. Adecision listove({0, 1}, R) with m leaves and degree d can be expressed
as a linear inequality)_"w; pi > t wheret and every coefficient; is an integer and the
sum of the magnitudes of the; | is less thari2m/d)¢. If the decision list has t alternations
then the sum of the magnitudes of the| is less thar2(m/t + 1)t.

Proof: We shall show the first upper bound by inductionan Let Lq-1(p) > O be
a linear inequality for expressing the condition tisat= 1 in the decision list obtained
by deletingpm, pm-1, - - ., pjs+1 Pjs» from the decision list. We shall derive from this a
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linear inequalityL 4 (o) for the original decision list in two stages. First we add bagk
and second we add back the remaining noggsom—1, . . ., pj;+1. For the first stage we
consider the inequality§(p) > 0 where

Li(p) = La-1(p) — pj, - [ mMin rpnslp {La-1(p)},0p —1 (7)

Pig=1

Clearly if pj, = 0 then for all suctp Lj(p) = Lg-1(p), as desired, and j§;, = 1 then
5(p) > 0 for all p with that constraint, again as needed. (Note that we may minimize
over {0, 1} values of thep; for vectorsp consistent with the domaiX;, from which the
examples are drawn. Some choiceXgimay yield better bounds than the general case that
we analyze here. Note also that if the minimal valué gf; is positive, then the value zero
is used instead of it.) For the second stage we consider the inequgljty > 0 where

La(p) = Lg(p) — Z pi - (maX{rEg?({Lé(g)ho}) . 8

i=jg+1 =1
Thenifp; = 0foralli(jg+ 1 <i < m)thenforall suchp Lq(p) = Lj(p). If pi =1
for some such, thenL4(p) < 0. In both cases this is as needed. (Note that here we are
assuming similarly that if the maximum valuelof is negative, then the value zero is used
instead of it.)
Now let |L| denote the sum of the magnitudes of the coefficients of the linear form
Then the two stages of the construction imply respectively that

LGl < 2|Lg-al + 1,
and
[Lal < (M— jg+DILGI

For the basis of the induction I&t; (p) > 0 where

Li(e) =pj, — Y Ai-

ji<i<jz

Then clearly ifp; = 1 foranyi(j. <i < j») thenLy(p) < 0, while otherwise ifoj, =1
thenL(p) > 0. If all thesep values are zero, then,(p) < 0 also as required. This gives
the basis inequalityL1| < j> — js. N

Putting together these inequalities givesdor 1 that|Lq| is upper bounded by a qua-
ntity |4 satisfying

li < (jiqs— D@1+ 1)
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ford > i > 2wherejg; = m+ 1andl; = j, — j1. In other words there exist quantities
X1, ..., Xd Wherex; = jiy1 — ji = 1, suchthad_ x = jgp1 — j1 < m,

i <x@i_1+1) fori=2,...,d, andl; =x;
Multiplying out gives:

lg < Xd(2Xg-1(2Xg—2- - 2%2(2X1 + 1) ---) + 1)

d .
sz"xd s X
i=1

< 2%g X

IA

IA

(2m/d)? by the arithmetic-geometric mean inequality.

We can analyze the more general castalfernations by the same method. We use (8)
above for sequences of 0-leaves, and an adaptation of (7) for sequences of 1-leaves. Suppose
that thekth sequence of identical leaves correspongitg 11, ..., pj, wherejo = 0 and
jtx1 = m+ 1. We define the linear inqualititd& } inductively. If thetth such sequence
consists of 0-leaves we have

m

Li(p) = Liap) = D o |maximaxLea(p)). O

i=ji+1 =1

and it consists of 1-leaves we have

m

Li(p) = Liap) = D~ | minymin{Le-a(p)}. O 1

i=j+1 oi=1

The last sequence is always a single leaf. If it is a O-leaf then it can be ignored. Hence
the worst case is a 1-leaf, which gives a base equation of

Li(p) = 1.

Hence ifl; 1 is the sum of the magnitudes of the coefficients (but excluding the constant
term) fori alternations, thehh < (x + 1)(li_1 + 1) fori =2,...,t+ 1, andl; = 0O, for
somexy, ..., X1 such that, + - - - + X1 < m. Puttingy;, = X; + 1 gives the recurrence

li <vyi(li_1+ 1) where nowy, +---+ yty1 < m+t. Hence

t+1 t+1

ltv1 < ZHYI

k=2 i=k

Using the fact thay;, > 2 for alli and the arithmetic-geometric mean inequality gives the
claimed bound. O
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A number of concept classes that are natural applications of our Algorithm Y and
Theorem 4.1 can be learned more simply by appropriately recoding the input represen-
tation and applying Winnow and Theorem 5.1. We shall consider the class of projective
disjunctions overC, R), for variousC, R and apply the following corollary of Theorem 9
and Example 6 of Littlestone (1989):

Theorem 5.2. (Littlestong: For some constant a variant of Winnow can learn any
inequalityZi”:l wiX > 1, wherews, ..., w, are integral and the sum of the magnitudes
of thew; equals Z with mistake bound no more tharz?logn.

Suppose first thaf can be expressed as a class of linear separators that are learnable
by Winnow attribute efficiently, and thaR = {ps,..., o} is a set of restrictions that
aredisjoint (i.e. Yx € X, 0i1(X) = pj(X) =1 =1 = ). Thenitis easy to see that if
we definey, = p102---pi_1pipiv1---or for 1 < i < r then replacingo; by y; in any
expressionf being learned leaves$ invariant onX;. We now introduce a new set off
variables{z; |1 <i <n,1 < j <r}wherez; = xy;j. Itis easy to see that a linear
inequality suffices where the coefficients of #ievariables are equal to thosefc; when
these are learned separately.

Second, let us consider the case fiads the set of conjunctions. Corollary 4.1 gives a
mistake bound oD (mklog(rn)) for learning a projective disjunction @h conjunctions
underr projections where at mo&tvariables out of th& appear in any conjunction. The
question arises whether this bound can be obtained more directly, even in the nonprojec-
tive case. In particular as a referee of this paper has observed, a projective disjunction
Viloi A\ j Xi;) can be expressed as a decision list with two alternations as follows: starting
from the root there is a sequence of internal nodes represemtindor all i, j that lead
to O-labelled leaves when these conditions are satisfied. Then come a sequence of internal
nodes representing for all i, that lead to 1-labelled leaves. Finally there is a O-labelled
leaf. It appears, however, that applying to this construction any of the known algorithms
mentioned for learning decision lists with a fixed number of alternations yields worse bounds
than Corollary 4.1. For example, a direct application of Theorems 5.1 and 5.2 would give
a larger bound oD ((mKk)*log(rn)).

Finally, for this same concept class an alternative coding is to have a new variable for
each of theQ (n*) possiblek-conjunctions of variables and then use Winnow. However, if
k > 2 this introduces an unacceptably high dependence, as compared with Alg¥tithm
of the computational cost am

6. Conclusion

If a concept cannot be learned satisfactorily because it does not approximate a function
in any class for which a learning algorithm is available, it is natural to do the following.

One tries a variety of restrictions of the function to various subdomains in the hope that the
functions on some of these restrictions will be simple, and will become accessible to the
available algorithms. If such favorable restrictions cover most cases then it remains to put
together into a single hypothesis the hypotheses for the various restrictions, in order to
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derive a hypothesis for the whole function. This general methodology we call projection
learning.

In this paper we described an algorithm for this that exhibits the desired properties in
a certain context. In particular we showed some conditions under which attribute-efficient
learnability of the subdomains was sufficient to guarantee attribute-efficient learning over
the whole domain. Mistake-bounded analysis was found to be effective, though these phe-
nomena may also be amenable to analysis directly in the PAC model.

The algorithm described suggests a broader variety of algorithms that might be tried as
a heuristics for difficult learning problems. For example, if the variable set is very large,
as may be the case in cognitive or computational biology applications, it may be more
practicable to use as the set of projections a much smaller set of carefully preselected
restrictions, and not fully exploit attribute-efficiency at the level of the projections.

We expect that projection learning might find a use within a broader toolkit of methods.
As observed in the previous section, several classes of functions that can be learned by
the basic algorithm described can also be learned by Winnow itself, though sometimes
with quantitatively inferior bounds, after the variable set has been recoded to an appropriate
larger set. We have not been able to usefully characterize the domains in which our methods
outperform others. However, Winnow appears to be particularly useful in practice in noisy
environments where linear inequalities with moderate size integer coefficients provide ade-
quate approximations to the function being learned. Hence applications having projections
with these properties look the most promising.

The development of efficient learning algorithms for particular representations can be
expected to influence the representations of choice used in computer systems that perform
cognitive computations. While sequential structures such as production systems and deci-
sion lists have been advocated for their expressiveness, itis possible, though not proven, that
there are fundamental impediments to their attribute-efficient learnability. If these apparent
impediments remain insurmountable, then it would appear that in the context of cognitive
computations attention will need to be redirected to the flatter, possibly projective, structures
suggested by this paper.
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