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Abstract. An important application of reinforcement learning (RL) is to finite-state control problems and one
of the most difficult problems in learning for control is balancing the exploration/exploitation tradeoff. Existing
theoretical results for RL give very little guidance on reasonable ways to perform exploration. In this paper, we
examine the convergence of single-step on-policy RL algorithms for control. On-policy algorithms cannot separate
exploration from learning and therefore must confront the exploration problem directly. We prove convergence
results for several related on-policy algorithms with both decaying exploration and persistent exploration. We also
provide examples of exploration strategies that can be followed during learning that result in convergence to both
optimal values and optimal policies.
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1. Introduction

Most reinforcement-learning (RL) algorithms (Kaelbling et al., 1996; Sutton & Barto, 1998)
for solving discrete optimal control problems use evaluationadue functions to cache
the results of experience. This is useful because close approximations to optimal value
functions lead directly to good control policies (Williams & Baird, 1993; Singh & Yee,
1994). Different RL algorithms combine new experience with old value functions to produce
new and statistically improved value functions in different ways. All such algorithms face
a tradeoff between exploitation and exploration (Thrun, 1992; Kumar & Varaiya, 1986;
Dayan & Sejnowski, 1996), i.e., between choosing actions that are best according to the
current state of knowledge, and actions that are not the current best but improve the state
of knowledge and potentially yield higher payoffs in the future.

Following Sutton and Barto (1998), we distinguish between two types of RL algorithms:
on-policy and off-policy. Off-policy algorithms may update estimated value functions on the
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basis of hypothetical actions, i.e., actions other than those actually executed—in this sense
Q-learning (Watkins & Dayan, 1992) is an off-policy algorithm. On-policy algorithms, on
the other hand, update value functions strictly on the basis of the experience gained from
executing some (possibly non-stationary) policy. This distinction is important because off-
policy algorithms can (at least conceptually) separate exploration from control while on-
policy algorithms cannot. More precisely, in the case of on-policy algorithms, a convergence
proof requires more details of the exploration to be specified than for off-policy algorithms,
since the update rule depends a great deal on the actions taken by the system.

On-policy algorithms may prove to be important for several reasons. The analogue of the
on-policy/off-policy distinction for RL prediction problemsiis the trajectory-based/trajectory-
free distinction. Trajectory-based algorithms appear superior to trajectory-free algorithms
for prediction when parameterized function approximators are used (Tsitsiklis & Van Roy,
1996). These results carry over empirically to the control case as well (Boyan & Moore,
1995; Sutton, 1996). In addition, multi-step prediction algorithms such g&)T{Sutton,

1988) are more flexible and data efficient than single-step algorithm@f},zand most
natural multi-step algorithms for control are on-policy.

Another motivation for studying on-policy algorithms is the consideration of the inter-
action between exploration and optimal actions, identified by Sutton and Barto (1998) and
John (1994). Consider a robot learning to maximize reward in a dangerous environment.
Throughout its existence, it will need to execute exploration actions to help it learn about
its options. However, some of these exploration actions will lead to bad outcomes. An on-
policy learner will factor in the costs of exploration, and tend to avoid entering parts of the
state space where exploration is more dangerous.

A suggestive example appears in figure 1. This 3-state determimistibas two actions:
| andr . For a discount factor of = 0.9, the optimal action choice from staydsr (value
75.8 as opposed to 74 for actionr). On the other hand, if exploratory actions are taken
50% of the time, the risk of picking “dangerous” actioim statez becomes too great. Now,
for a discount factor of = 0.9, the optimal action choice from stayas| (value 588 as
opposed to 58 for actionr). In other environments, the difference can be even greater,
necessitating the application of on-policy learning methods.

Inthis paper, we examine the convergence of single-step (value updates based on the value
of the “next” timestep only), on-policy RL algorithms for control. We do not address either

+0 +16

Figure 1 The optimal action to take in this small, deterministioP depends on the exploration strategy. If no
exploration actions are taken, the optimal action from sgas . If exploration actions are taken, costly action
will sometimes be chosen from statemakingl the best choice frony.
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function approximation or multi-step algorithms; this is the subject of our ongoing research.
Earlier work has shown that there are off-policy RL algorithms that converge to optimal

value functions (Watkins & Dayan, 1992; Dayan, 1992; Jaakkola et al., 1994; Tsitsiklis,

1994; Gullapalli & Barto, 1994; Littman & Szepemwv, 1996); we prove convergence results

for several related on-policy algorithms. We also provide examples of policies that can be
followed during learning that result in convergence to both optimal values and optimal

policies. These results generalize naturally to off-policy algorithms, such as Q-learning,
showing the convergence of many RL algorithms to optimal policies.

2. Solving Markov decision problems

Markov decision processemgps) are widely used to model controlled dynamical systems

in control theory, operations research and artificial intelligence (Puterman, 1994; Bertsekas,
1995; Barto et al., 1995; Sutton & Barto, 1998). It 1, 2, ..., N denote the discrete

set of states of the system, and febe the discrete set of actions available to the system.
The probability of making a transition from stetdo states’ on actiona is denotedPZ,

and the random payoff associated with that transition is deng®a). A policy maps

each state to a probability distribution over actions—this mapping can be invariant over
time (stationary) or change as a function of the interaction history (non-stationary). For any
policy 7, we define a value function

V() = En{ D y'rso = s},
t=0

which is the expected value of the infinite-horizon sum of the discounted payoffs when the
system is started in stateand the policyr is followed forever. Note that; ands are
the payoff and state respectively at timestepnd(r;, &) is a stochastic process, where
(rt, s+1) depends only oKs, a;) governed by the rules thatis distributed as (s, a;) and
the probability that 1 = sis PZ. Here,a is the action taken by the system at timestep
t. The discount factor, &< y < 1, makes payoffs in the future less valuable than more
immediate payoffs.

The solution of ambp is an optimal policyr* that simultaneously maximizes the value
of every stats € S. Itis known that a stationary deterministic optimal policy exists for every
MDP (c.f. Bertsekas (1995)). Hereatfter, unless explicitly noted, all policies are assumed to
be stationary. The value function associated withs denotedv*. Often it is convenient
to associate values not with states but with state-action pairs, called Q values as in Watkins’
Q-learning (Watkins, 1989):

Q"(s,a) = R(s,a) + yE{V"(s)},
and

Q*(s,a) = R(s,a) + y E{V*(s)},
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wheres' is the random next state on executing act@an states, andR(s, a) is expected
value ofr (s, a). Clearly, 7*(s) = argmax Q*(s, a), andV*(S) = maxq Q*(s, a). The
optimal Q values satisfy the recursive Bellman optimality equations (Bellman, 1957),

Q*(s,a) = R(s,a) + y ZS: P& maxQ*(s.b). vs.a. (1)

In reinforcement learning, the quantities that definembe, P andR, are not known in
advance. An RL algorithm must find an optimal policy by interacting withmbe directly;
because effective learning typically requires the algorithm to revisit every state many times,
we assume theDP is “communicating” (every state can be reached from every other state).

2.1. Off-policy and on-policy algorithms

Most RL algorithms for solvingiDps are iterative, producing a sequence of estimates of
either the optimal (Q-)value function or the optimal policy or both by repeatedly combining
old estimates with the results of a new trial to produce new estimates.

An RL algorithm can be decomposed into two components |&&ming policyis a non-
stationary policy that maps experience (states visited, actions chosen, rewards received)
into a current choice of action. Thepdate ruleis how the algorithm uses experience to
change its estimate of the optimal value function.

In an off-policy algorithm, the update rule need not have any relation to the learning
policy. Q-learning (Watkins, 1989) is an off-policy algorithm that estimates the optimal
Q-value function as follows:

Qiri(s, &) = (1 — (s, @) Qe (s, &)
+ ot (s, at)[rt +y ml?X(Qt (St+1, b))} )

where Q; is the estimate at the beginning of thtth timestep, and, &, ry, ando; are
the state, action, reward, and step size (learning rate) at timedtejpation (2) is an off-
policy algorithm as the update J; (s, &) depends on maxQ; (s1, b)), which relies on
comparing various “hypothetical” actiots The convergence of the Q-learning algorithm
does not put any strong requirements on the learning policy other than that every action is
experienced in every state infinitely often. This can be accomplished, for example, using
the random-walk learning policy, which chooses actions uniformly at random. Later, we
describe several other learning policies that result in convergence when combined with the
Q-learning update rule.

The update rule fosARSA(O) (Rummery, 1994; also see, Rummery & Niranjan, 1994;
John, 1994, 1995; Singh & Sutton, 1995; Sutton, 1996):

Qus1(s, @) = (1 — (s, @) Qu(s, &)
+ oo (s, a)[re + v Qe (S, @11)], (3)
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a special case &fARSA(L) with A = 0, is quite similar to the update rule for Q-learning.

The main difference is that Q-learning makes an update based on the greedy Q value
of the successor statg,.;, while SARSA0)! uses the Q value of the acti@g,; actually
chosen by the learning policy. This malsaRsA(0) an on-policy algorithm, and therefore its
conditions for convergence depend a great deal on the learning policy. In particular, because
SARSA(O) learns the value of its own actions, the Q values can converge to optimality in the
limit only if the learning policy chooses actions optimally in the limit. Section 3 provides
some positive convergence results for two significant classes of learning policies.

Under a greedy learning policy (i.e., always select the action that is best according
to the current estimate), the update rules for Q-learningsams$A(0) are identical. The
resulting RL algorithm would not converge to optimal solutions, in general, because the
need for infinite exploration would not be satisfied. This helps illustrate the tension between
adequate exploration and exploitation with regard to convergence to optimality.

It is worth noting, however, that the approach of using a greedy learning policy has
yielded some impressive successes, including the world’s finest backgammon-playing pro-
gram (Tesauro, 1995), and state-of-the-art systems for space shuttle scheduling (Zhang &
Dietterich, 1995), elevator control (Crites & Barto, 1996), and cellular telephone resource
allocation (Singh & Bertsekas, 1997). All these applications can be viewed as exploiting
on-policy algorithms, although the on-policy versus off-policy distinction is not meaningful
when no explicit exploration is used.

2.2. Learning policies

Alearning policy selects an action at timesteys a function of the history of states, actions,

and rewards experienced so far. In this paper, we consider several learning policies that make
decisions based on a summary of history consisting of the current timggtepcurrent

states, the current estimat® of the optimal Q-value function, and the number of times
states has been visited before tinben; (s). Such a learning policy can be expressed as the
probabilities Pals, t, Q, n¢(s)), the probability that actioa is selected given the history.

We divide learning policies fomDpPs into two broad categories:decaying exploration
learning policy that becomes more and more like the greedy learning policy over time, and a
persistent exploratiotearning policy that does not. The advantage of decaying exploration
policies is that the actions taken by the system may converge to the optimal ones eventually,
but with the price that their ability to adapt slows down. In contrast to this, persistent
exploration learning policies can retain their adaptivity forever, but with the price that the
actions of the system will not converge to optimality in the standard sense. We prove the
convergence o$ARSA(0) to optimal policies in the standard sense for a class of decaying
exploration learning policies, and to optimal policies in a special sense defined below for a
class of persistent exploration learning policies.

Consider the class of decaying exploration learning policies characterized by the follow-
ing two properties:

1. each action is executed infinitely often in every state that is visited infinitely often, and
2. in the limit, the learning policy is greedy with respect to the Q-value function with
probability 1.
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We label learning policies satisfying the above conditiorGlake, which stands for “greedy
in the limit with infinite exploration.” An example of such a learning policy is a form of
Boltzmann exploration:

e (9Q(s.)

Pr@@als, t, Q) = S oA € ORED

wherep (s) is the state-specific exploration coefficient for timevhich controls the rate of
exploration in the learning policy. To meet Condition 2 above, we woulddike be infinite

in the limit, while to meet Condition 1 above we would ligeto not approach infinity too
fast. In Appendix B, we show thg (s) = Inn;(s)/C;(s) satisfies the above requirements
(wheren;(s) <t isthe number of times stagehas been visited ihtimesteps, an@; (s) is
defined in Appendix B). Another example of a GLIE learning policy is a forra-gfeedy
exploration (Sutton, 1996), which at timesteip states picks a random exploration action
with probability¢; (s) and the greedy action with probability-1e; (s). In Appendix B, we
show that ife; (s) = ¢/n;(s) for 0 < ¢ < 1, thene-greedy exploration is GLIE.

We also analyze “restricted rank-based randomiz&RHK learning policies, a class of
persistent exploration learning policies commonly used in practice. An RRR learning policy
selects actions probabilistically according to the ranks of their Q values, choosing the greedy
action with the highest probability and the action with the lowest Q value with the lowest
probability. Different learning policies can be specified by different choices of the function
T :{1,...,m} - R that maps action ranks to probabilities. Hamejs the number of
actions. For consistency, we require thgl) > T(2) > --- > T(m) andZim:lT(i) = 1.
Attimesteg, the RRR learning policy chooses an action by first ranking the available actions
according to the Q values assigned by the current Q-value fun@idar the current state
s. We use the notation(Q, s, a) to be the rank of actioa in states based orQ(s, -) (e.g.,
if p(Q, s, a) = 1thena = argmay, Q(s, b)), with ties broken arbitrarily. Once the actions
are ranked, theth ranked action is chosen with probabilify(i); that is, actiora is chosen
with probability T (0 (Q, s, @)). The RRR learning policy is “restricted” in that it does not
directly choose actions—it simply assigns probabilities to actions according to their ranks.
Therefore, an RRR learning policy has the forngaPs, t, Q) = T (0(Qt, S, @)).

To illustrate the use of th€é function, we specify three well-known learning policies as
RRR learning policies by the appropriate definitiorTofThe random-walk learning policy
chooses actioa in states with probability I/m. To achieve this behavior with the RRR
learning policy, simply defind (i) = 1/m for all i; actions will be chosen uniformly at
random regardless of their rank. The greedy learning policy can be specifiedlpy 1,

T(@{) = 0when 1< i < m; it deterministically selects the action with the highest Q
value. Similarly,e-greedy exploration can be specified by definind) = 1 — ¢ + ¢/m,
T(@) =€/m, 1 <i < m. This policy takes the greedy action with probability-le and

a random action otherwise. To satisfy the condition thét) > T(2) > --- > T(m), we
require that O< € < 1.

Another commonly used persistent exploration learning policy is Boltzmann exploration
with a fixed exploration parameter. Note there is no choicethfat specifies Boltzmann ex-
ploration; Boltzmann exploration is not an RRR learning policy as the probability of choos-
ing an action depends on the actual Q values and not only on the ranks of acti@as.in
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3. Results

Below we prove results on the convergencesaRsA(0) under the two separate cases of
GLIE and RRR learning policies.

3.1. Convergence @ARSA(0) under GLIE learning policies

To ensure the convergences®RsA(0), we require a lookup-table representation for the Q
values and infinite visits to every state-action pair, just as for Q-learning. Unlike Q-learning,
however,saARsSA(0) is an on-policy algorithm and, in order to achieve its convergence to
optimality, we have to further assume that the learning policy becomes greedy in the limit.
To state these assumptions and the resulting convergence more formally, we note first
that due to the dependence on the learning potisrsA(0) does not directly fall under
the previously published convergence theorems (Dayan & Sejnowski, 1994; Jaakkola et al.,
1994; Tsitsiklis, 1994; Szepeani'& Littman, 1996). Only a slight extension is needed,
however, and this is presented in the form of Lemma 1 below (extending Theorem 1 of
Jaakkola et al., 1994, and Lemma 12 of Szepas¥ Littman (1996)). For clarity, we will
not present the lemma in full generality.

Lemma 1. Consider a stochastic proceés, A¢, Ft), t > 0, wherea;, A¢, Ft : X — R
satisfy the equations

Atr1(X) = 1 — i OO)A(X) + ot (O F (X)), xe X, t=0,1,2,....

Let R be a sequence of increasimgfields such thatyy and Ay are R-measurable and
at, Ay and k_; are R-measurablet =1, 2, . ... Assume that the following hald

1. the set X is finite.

2. 0<a(X) <L, Y on(X) = 00, >, @(X) < cow.pl.

3. |E{RO)|P}w < k| Atllw + ¢, wherex € [0, 1) and g converges to zero wh?
4. Var{F(x)|P} < K(1+ ||A¢]lw)?, where K is some constant.

Then A converges to zero with probability ore.pl1).

Let us first clarify how this lemma relates to the learning algorithms that are the focus
of this paper. We can capture the sequence of visited Sad@sl selected actiors in the
definition of the learning rateg; as follows: define = (s, &) and further require that
ot (X) = 0 whenevex # x;. With these definitions, the iterative process reduces to

App1(s, &) = (1 — o (S, &) A (S, &) + o (S, a) Fe (s, @),

which resembles more closely the updates of the on-line algorithms sughras(0)
(Edg. (3)). Also, note that the lemma shows the convergendetofzero rather than to some
non-zero optimal values. The intended meaning & Q; — Q*, i.e., the difference between
the current Q value€);, and the target Q valueQ*, that are attained asymptotically.
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The extension provided by our formulation of the lemma is the fact that the contraction
property (the third condition) need not be strict; strict contraction is now required to hold
only asymptotically. This relaxation makes the theorem more widely applicable.

Proof: While we have stated that the lemma extends previous results such as the Theo-
rem 1 of Jaakkola et al. (1994) and Lemma 12 of SzeguédyvLittman (1996), the proof

of our lemma is, however, already almost fully contained in the proofs of these results
(requiring only minor, largely notational changes). Moreover, the lemma also follows from
Proposition 4.5 of Bertsekas (1995), and in Appendix A we present a proof based on this
proposition. O

We can now use Lemma 1 to show the convergensarEA(0).

Theorem 1. Consider a finite state-actionbp and fix a GLIE learning policyr given as

a set of probabilitie®r(a | s, t, n;(s), Q). Assume thatids chosen according te and at

time step t 7 uses Q= Q¢, where the @values are computed by tlsarRsA(0) rule (see
Eq.(3)). Then Q converges to Qand the learning policyt; converges to an optimal policy

7* provided that the conditions on the immediate rewards, state transitions and learning
rates listed in Sectio hold and if the following additional conditions are satisfied

1. The Q values are stored in a lookup table.

2. The learning rates satisf§ < at(s,a) < 1, >, at(s,@) = oo and ), @2(s,a) < oo
andoy (s, a) = 0unless(s, a) = (s, &).

3. Var{r(s,a)} < oc.

Proof: The correspondence to Lemma 1 follows from associatimgth the set of state-

action pairs(s, a), a(X) with a¢(s, @) and A¢(s, a) with Q;(s, a) — Q*(s, a). It follows
that

Arra(s, &) = (L — oy (s, @) Ad(s, &) + o (S, a) F(s, &),
where
Fe(s.a) = ro+y maxQu(s, b) — Q*(s, &)
+ J/[Qt(SH-L &41) — rgleaAXQt(stHa b)]

ey MaxQ:(si+1.b) — Q*(s1.a) + Ci(Q)

def
2 FQs, &) + Ci(s @),

whereF2 would be the correspondirig in Lemma 1 if the algorithm under consideration
were Q-learning. We defing;(s,a) = FIQ(S, a) = Ci(s,a) =01if (s,a) # (5, &)
(soFi(s,a) = FtQ(s, a) + Ci(s, a) for all (s, a)) and denote the-field generated by the
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random variablegs, at, &, rt_1, ..., S1, @1, a1, Qo} by P;. Note thatQ;, Q_1, ..., Qoare
P.-measurable and, thus, bath andF;_; are P.-measurable, satisfying the measurability
conditions of Lemma 1.

It is well-known that for Q-learning E{FtQ(-, S P} < yllA¢| for all t, where]| - || is
the maximum norm. In other words, the expected update operator is a contraction mapping.
The only difference between the curréhtand FtQ for Q-learning is the presence Gf.
Therefore,

IE(FRC, OIPHE < [E{FSC O TR+ IE(CC, ) TR (4)

A

IA

Y IIAL+ ITE{C (. ) | P ®)

Identifyingc; = || E{C;(, -) | P:}|lin Lemma 1, we are left with showing thatconverges
tozerow.p.1. This, however, follows (a) from our assumption of a GLIE policy (i.e., that non-
greedy actions are chosen with vanishing probabilities), (b) the assumption of finiteness
of the MDP, and (c) the fact tha®; (s, a) stays bounded during learning. To verify the
boundedness property, we note that #h@sa(0) Q values can bepperbounded by the
Q values of a Q-learning process that updates exactly the same state-action pairs in the
same order as thearRsSA(0) process. Similarly, theARSA(0) Q values ardower bounded
by the Q values of a Q-learning process that uses a min instead of a max in the update
rule (c.f. EQ. (2)) and updates exactly the same state-action pairs in the same order as the
SARSA(O) process. Both the lower-bounding and the upper-bounding Q-learning processes
are convergent and have bounded Q values.

The condition on the variance & follows from the similar property oFtQ. O

Note that if a GLIE learning policy is used with the Q-learning update rule, one gets
convergence to both the optimal Q-value function and an optimal policy. This begins to
address a significant outstanding question in the theory of reinforcement learning: How do
you a learn a policy that achieves high reward in the liamitl during learning? Previous
convergence results for Q-learning guarantee that the optimal Q-value function is reached
in the limit; this is important because the longer the learning process goes on, the closer to
optimal the greedy policy with respect to the learned Q-value function will be. However, this
provides no useful guidance for selecting actions during learning. Our results, in contrast,
show that it is possible to follow a poliayuring learningthat approaches optimality over
time.

The properties of GLIE policies imply that for any RL algorithm that converges to the
optimal value function and whose estimates stay bounded (e.g., Q-learning, and ARTDP of
Barto et al. (1995)), using GLIE learning policies will ensure a concurrent convergence to
an optimal policy. However, to get an implementable RL algorithm, one still has to specify a
suitable learning policy that guarantees that every action is attempted in every state infinitely
often (i.e.,) , i (s, @) = 00). In Appendix B, we prove that, if the probability of choosing
any particular action in any given state sums up to infinity, then the above condition is
indeed satisfied. To illustrate this, in Appendix B we derive two learning strategies that are
GLIE.
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3.2. Convergence @ARSA(0) under RRR learning policies

This section proves two separate results concerning a class of persistent exploration learning
policies: (1) thesarRsA(0) update rule combined with an RRR learning policy converges

to a well-defined Q-value function and policy, and (2) the resulting policy is optimal, in a
sense we will define.

As mentioned earlier, an RRR learning policy chooses actions probabilistically by their
ranking according to the current Q-value function; a specific learning policy is specified
by the functionT, a probability distribution over action ranks. véstricted policyz :

S — II(A, {1,...,m}) ranks actions in each state (recall thatdenotes the number of
actions), i.e.jz(s) is a bijection betweem\ and{1, ..., m}. For convenience, we use the
notations (s, a) to denote the assigned rank of actm states, i.e., to denoter (s)(a).
The mappingr represents a policy in the sense that an agent following restricted golicy
from states chooses actioa with probability T (7 (s, @)), the probability assigned to the
rank, 7 (s, a), of actiona in states.

Consider what happens when thersA(0) update rule is used to learn the value of a
fixed restricted policyr. Standard convergence results for Q-learning can easily be used to
show that theQ; values will converge to the Q-value function @f Specifically,Q; will
converge toQ7, defined as the unique solution to

Q'sa)=Rsa+y Y PLY T(#(.a)Q7(s.a). (sa)e Sx A (6)

s'eS a'eA

When an RRR learning policy is followed, the situation becomes a bit more complex.
Upon entering statg, the probability that the learning policy will choose, for example, the
rank 1 action is fixed af (1); however, the identity of that action changes according to
the current Q-value function estimaf® (-, -). The natural extension of Eq. (6) to an RRR
learning policy would be for the target of convergenc&Xfin SARSA(O) to be

Qsa=Rsa+yY PLY T(p(Q.s,a)Qs.d), (sa)eSxA (7)

s'eS a’eA

Recall thato(Q, s, &) represents the rank of actiahaccording to the Q valued of state
s'. The only change between Egs. (6) and (7) is that the latter uses an assignment of ranks
that is based upon the recursively defined Q-value fundpwhereas the former uses a
fixed assignment of ranks. Using the theory of generalizegs (Szepesari & Littman,
1996), we can show that this difference is not important from the perspective of proving the
existence and uniqueness of the solution to Eq. (7).

Define

QR Qs a =) T(r(Q,s a)NQ(s aj; ®)

acA

now Eg. (7) can be rewritten

Qs.a)=Rs.a)+y Y PAE) Q. a). (s.a)e Sx A )

s'eS a
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As long asX) satisfies the non-expansion property that

Q) Qs.a) - Q) Qs a)

for all Q-value functionsQ and Q' and all states, then Eq. (9) has a solution and it is
unique (Szepesri & Littman, 1996); this is proven in Appendix C. The non-expansion
property of¢X) can be verified by the following argument.

< max|Q(s, &) — Q'(s, a)|

e Consider a family of operator®a' Q(s,a) = ith largest value 0ofQ(s, a) for each
1 <i < m. These are all non-expansions (see Appendix C). _

e Define®, Q(s,a) =Y, T() ®, Q(s, a); itis a non-expansion as long as evéxy,'
is andT is a fixed probability distribution (see Appendix C).

e Itis clear thatk), Q(s, a) = @, Q(s, a) as defined in Eq. (8), S®) is a non-expansion
also.

ThereforeQ exists and is unique. We next show tigats, in fact, the target of convergence
for sARsSA(0).

Theorem 2. Infinite state-actiompps, the Q values computed by tlsaRsA(0) rule (see
Eq.(3)) converge ta if the learning policy is RRRhe conditions on the immediate rewards
and state transitions listed in Secti@rold, and if the following additional conditions are
satisfied

1. Praga =a| Qu, Sst+1) = T(0(Qt, St41, &41))-
2. The Q values are stored in a lookup table.

3. The learning rates satisfyy < at(s,a) < 1, , «(s, @) = 00, Y, @2(S,a) < oo, and
ai(s,a) = Ounless(s, a) = (s, &)-
4. Var{r (s,a)} < oo.

Proof: The result readily follows from Lemma 1 (or Theorem 1 of Jaakkola et al. (1994))
and the proof follows nearly identical lines as that of Theorem 1. First, we associate
Lemma 1) with the set of state-action paissa) ando;(x) with o4 (s, @), but here we set

At(S,a) = Qi(s,a) — Q(s, a). Again, it follows that

App1(s, &) = (1 — o (S, ) A (S, &) + o (S, a) Fe (s, @),

where now

Fe(s, &) = e + ¥ Qu(Sti1, 1) — Q(s, ).

Further, we defing~(s,a) = Ci(s,a) = 0 if (s,a) # (s, a) and denote the-field
generated by the random variablgs, s, &, ri_1, . .., S1, @1, @1, Qo} by P:. Note that
Qt, Qt_1, ..., Qo areP,-measurable and, thus, bath andF;_, are P.-measurable, satis-
fying the measurability conditions of Lemma 1.
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Substituting the right-hand side of Eq. (7) faX(s, &) in the definition ofF, together
with the properties of sampling, s.1 anda;; yields that

E{Fi(s,a) | P}

v (E{Qt (8180 [ PY= D PR Y " T(0(Q.8,a))Q(s, a/))

seS a'ceA

= V(Z P Y T(p(Qr.s. @) Qs a)

s'eS a’eA

— Y P& Y T(p(Q.5.8)Q(s., a/))
seS a’eA

< 7IQ—Qll

= ylAdl,

where in the first equation we have exploited the fact that

Efri | s, &} = R(s, &),
in the second equation that
Prisei1l s &) = Pgy
and that
Pr(a+1 = al Qt, S+1) = T(0(Qt, S+1, @) (Condition 1)

whereas the inequality comes from the properties of rank-based averaging (see Lemma 7
and Theorems 9 and 10 of Szepas& Littman (1996), also Appendix C). Finally, itis not

hard to prove that the variance Bf given the pask; satisfies Condition 4 and, therefore,

we do not include it here. O

We have shown thaARsA(0) with an RRR learning policy converges @. Next, we
show thatQ is, in a sense, an optimal Q-value function.

An optimal restricted policys one that has the highest expected total discounted reward
of all restricted policies. Thgreedy restricted policfor a Q-value functiorQ is 7 (s, a) =
p(Q, s, a); itassigns each action the rank of its corresponding Q value. Note that this is the
policy dictated by the RRR learning policy for a fixed Q-value functigpn

The greedy restricted policy fo@* (the optimal Q-value function of thebp) is not
an optimal restricted policy in general, so the Q-learning rule in Eq. (2) does not find an
optimal restricted policy. However, the next theorem shows that the greedy restricted policy
for Q (Eq. (7)) is an optimal restricted policy. Th@function is very similar taQ*, except
that actions are weighted according to the greedy restricted policy instead of the standard
greedy policy.
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Theorem 3. The greedy restricted policy with respect@ds an optimal restricted policy.

Proof: We construct an alternatepp so that every restricted policy in the originabp
is in one-to-one correspondence with (and has the same value as) a deterministic stationary
policy in the alternatambp. Note that, as a result of the equality of value functions, the
optimal policy of the alternat®pbp will correspond to an optimal restricted policy of the
original MDP (the restricted policy that achieves the best values for each of the states)
and, thus, the theorem will follow if we show that the optimal policy in the altermate
corresponds to the greedy restricted policy with respe@.to

The alternatevpp is defined by(S, A, R, P, y). Its action spaceA, is the set of all

bijections fromAto {1,..., m},i.e., A=TI(A, {1, ..., m}). The rewards are

R, 1) = ) T(u@)R(s, @),

acA

and the transition probabilities are given, = >",_, T(x(a)) P&,. Hereu is an element
of A. One can readily check that the value of a restricted patigy just the value oft in
the alternate/pp.

The value of the greedy restricted policy with respedtin the originalMDp is

V(s) =) T(p(Q,sa)Q(s, ). (10)

acA
Substituting the definition o from Eq. (7) into Eq. (10) results in
V() =) T(p(Q,s a) (R(s, a)+y ) Py T((Qs,a)Nqes, a/)>.
acA s'eS a’eA
Using Eq. (10) once again, we find thétsatisfies the recurrence equation

V() =) T(p(Q,s a) (R(s, a)+y ) P&V (s/)). (11)

acA seS
Meanwhile, the optimum value of the alternatep satisfies

V*(s) = ma_x(li(s, W +y Z f’é\?*(s’))

neh s'eS

= max( Z T(n@)R(s,a) +y Z ( Z T(n(@) P;g)\?*(s’)>

neA \ aeA seS \ acA

= max) T (u(@)) (R(s, y+yy. P;‘g\'/*(s/)). (12)

HeA A seS
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The highest value permutation is the one that assigns the highest probabilities to the actions
with the highest Q values and the lowest probabilities to the actions with the lowest Q values.
Therefore, the recurrence in Eqg. (12) is the same as that in Eq. (11), so, by uniqueness,
V* = V. This means the greedy restricted policy with respe@ ie the optimal restricted
policy. O

As a corollary of Theorem 2, given a communicatimgp and an RL algorithm that
follows an RRR learning policy specified bly whereT() > Oforall1 < i < m,
SARSA(0) converges to an optimal restricted polfcy.

The results of this section show that RRR learning policies witlsArsA(0) update rule
converge to optimal restricted policies. In contrast to Q-learning, this means that the learner
can adopt its asymptotic policy at any time during learning and still converge to optimality
in this modified sense. However, the fact that convergence depends on decaying the learning
rate to zero means that this approach is somewhat self-contradictory; in the limit, the learner
is still exploring, but it is not able to learn anything new from its discoveries.

4. Conclusion

In this paper, we have provided convergence resultssi®sa(0) under two different
learning policy classes; one ensures optimal behavior in the limit and the other ensures
behavior optimal with respect to constraints imposed by the exploration strategy. To the
best of our knowledge, these constitute the first convergence results for any on-policy
algorithm. However, these are very basic results because they apply only to the lookup-
table case, and more importantly because they do not seem to extend naturally to general
multi-step on-policy algorithms.

Appendix A: proof of Lemma 1

For completeness we present Proposition 4.5 of Bertsekas (1995).
Lemma 2. Let

re1() = 1= p@)re() + pO{HrO ) + weli) + ue ()},

wherei=1,2,...,nandt= 0,1, 2, ..., let 7; be an increasing sequence ®ffields
and assume the following

Lyt > 0, 2o n(i) =00, Y20 y3(0) < o0 (as);

2. (A) foralli,t: E[wi(i)|F] =0;

3. (B) there exist AB € % s.t. foralli, t : E[w?(i) | /] < A+ BJr||?;

4. there exists an’r € ", a positive vectok, and a scalar8 € [0,1) s.t. forallt > 0
[Hery —r*le < Blire —r*le;

5. there exist®; > 0,6; — Ow.pland foralli, t : |u (i) < O (|Irelle + D).

Theng — r* w.pl.

For convenience, we repeat Lemma 1.
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Lemmal. Consider a stochastic proce&s, A, Fy),t > 0, whereg;, A¢, F : X — 0,
which satisfies the equations

Atr1(X) = 1 — ot O))A(X) + ot (X F (X)), xe X, t=0,1,2,....

Let R be a sequence of increasingfields such thaty, Ag are R-measurable and;, A;
and k_; are R-measurablet =1, 2, .... Assume that the following hold

1. the set of possible states X is finite.

2. 0<a(X) <1, Y au(X) = 00, Y, @2(X) < oo w.pl.

3. IE{FRO)IP}Iw < k|l Atllw + ¢, wherex € [0, 1) and g converges to zero wh.
4. Var{F(x)|P} < K(1+ ||A¢]lw)?, where K is some constant.

Then A converges to zero with probability orfe.p1).

Proof: We apply Lemma 2. For simplicity, we present the proof for the case Wtien
(1,1,...,1). Let

E_|F if |[E[F|P]l < «llAtll;
Y= | sign(E[F /P« ||A¢ll, otherwise.

Further, lethy = F, — F;. Then, by the construction df, ||[E[R|P]Il < «||A¢]| and
IE[b| Pl < . Now, if we ideptify{1,~2, ..., n}with X, and definer; = P, 1 = a4,
o = Ay, Hiry = E[R|R], wy = R — E[F|P] + ¢ — E[b¢| P], uy = E[x|PJandr* =0,
then we see that the conditions of Lemma 2 are satisfied andthasA; converges to
r=0w.p.1. O

Appendix B: GLIE learning policies

Here, we present conditions on the exploration parameter in the commonly used Boltzmann
exploration and-greedy exploration strategies to ensure that both infinite exploration and
greedy in the limit conditions are satisfied.

In a communicating/DpP, every state gets visited infinitely often as long as each action
is chosen infinitely often in each state (this is a consequence of the Borel-Cantelli Lemma
(Breiman, 1992); all we have to ensure is that in each state each action gets chosen infinitely
oftenin the limit. Consider some statd_etts(i ) represent the timestep at which thievisit
to states occurs. Consider some actianThe probability with which actiom is executed
at thei th visit to states is denoted Ria | s, ts(i)) (i.e, Pla=a | & = S, ts(i) = 1)).

We would like to show that if the sum of the probabilities with which aceide chosen
is infinite, i.e.,Y 2, Pr(@a | s, ts(i)) = oo, then the number of times actiangets executed
in states is infinite w.p.1. This would follow directly from the Borel-Cantelli Lemma if the
probabilities of selecting acticaat the different were independent. However, in our case
the random choice of action at thih visit to states affects the probabilities at thiet 1st
visit to states (through the evolution of the Q-value function), so we need an extension of
the Borel-Cantelli Lemma (c.f. Corollary 5.29 of Breiman (1992)):
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Lemma 3 (Extended Borel-Cantelli Lemma Let F be an increasing sequence of
o-fields and let Abe F-measurable. Then

®: Y PHAIF_) =00t ={w:we Aio}
i=0

holds w.pl.
We have the following:
Lemma 4. Consider a communicatingDdp and the reinforced decision process

(X0, @0, To, -+ -, X, &, I't, .. 0).

Let n(s) denote the number of visits to state s up to time s, a) denote the number of
times action a has been chosen in state s during the first t time@tgpsa) < n;(s)), and

ts(i) denote the time when state s was visited the ith time. Assume that the action at time
stept &, is selected purely on the basis of the statistigs D

Pr(at =a | Dt» -1, thlv ..., a0, DO) = Pr(a{ =a | Dt)s (Bl)

where 03 is computed from the full t-step histofxo, ao, fo, . . ., X;). Further, assume that
the action selection policy is such that

o0
Pr(ayi =a| Dyi) (@) =cotas  (B.2)

{a) : tIl)rrgo N (s)(w) = oo} - {a): 2

Then for all (s, a) pairs n(s) — oo a.s. and (s, a) — oo a.s.

The statisticsD; could be for examplés;, t, ni(s), Qt), whereQ; is computed by the
SARSA(O) update rule (3).

Proof. Fix an arbitrary pair(s, a) and letF; be the sigma field generated by the ran-
dom Variableg Dts(i+1), A (i) Dts(i)’ ..o Bt (0)s DIS(O)}- Let A = {ats(i) = a}. ThenAi is
Fi-measurable. Further, by Eq. (B.1)

Pr(A|Fi_1) = Pr(ayi) = a|Dy). 8i-1 Disi-1): - - - » 30> Do)
= Pr(ayi) = a|Dya)).
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and thus, by Eq. (B.2) and Lemma 3, almost surely

{a) lim ne(s) () = oo} c {a) ; ; Pr(aw) = a|Dyg) (@) = oo}

= {w: w € A forinfinitely manyis}

{a) : tll[‘gc ne(s, a) = oo}.

This proves that if statgis visited infinitely often then actioais also chosen infinitely often
in that state. Now |eB>* be the set of states visited i.0. Byi.e., if S°(w) = S thenS is
the set of states which occur i.o. in the sequesg@), S;(w), . .., S (w), ...}. Clearly, the
events{S® = S}, € Sform a complete event system. ThlZs:,SogS P(S*=9%) =1.
Now let § # ¢ be a nontrivial subset db. Then, since th&bp is communicating, there
exists a pair of states ' and an actiora, such thas € &, 5 ¢ § andPZ, > 0. Then,
Pr(S* = §) = Pr(S*® = §,5 € S°) + Pr(S® = &, 5 ¢ S*). Here, both events are
impossible, so RE* = &) = 0. Since thevpp is finite, also P(S™ = ¢#) = 0 and so
Pr(S® = S) = 1. This yields that Rtim_, o, N;(S) = 00) = 1 for all s, thus, finishing the
proof. O

B.1. Boltzmann exploration

In Boltzmann exploration,

eh(9Q6)

Pra|s,t, Q,ni(s) = W,
beA ’

whereg; (s) is the state-specific exploration coefficient for timé.et the number of visits

to states in timestept be denoted as;(s) and assume thatfs, a) has a finite range. We
know that) 2, c/i = oo; therefore, to meet the conditions of Lemma 4, we will ensure
that for all actionsa € A, Pr(als, ts(i)) > c/i (with ¢ < 1). To do that we need for &

efi(9)Qi(s,) c
>
ZbeA efi(®9Qi(sb) — N (S)
Nt (s)eﬂt(S)Ql (s,@) > c Z Qs

beA
Nt (s)eﬂt(S)Qt(S,a) > Cmé‘t(S)Qt(S,bmax)

NS | ohS(Qsbmad-Qu(s.a)

cm
Inng(s) —Incm > B;(s)(Qi(S, bmax) — Q1 (S, @)),

wherebnax = argmax., Q:(s, b) above andm is the number of actions. Further, let
¢ = 1/m. Taken together, this means that we wars) < Inn;(s)/C;(s) whereC;(s) =
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maX, |Qt (S, bmay — Q1 (s, a)|. Note thatC;(s) is bounded because the Q values remain
bounded (since(s, a) has a bounded range).
Since for evens, lim;_, ., N (S) = oo, also

. . Inn(s) ]
t“—>ngo Pi(s) = t|l>n;o Ci(s) = oo

this means that Boltzmann exploration wggh(s) = Inn¢(s)/C;(s) will be greedy in the
limit.

B.2. e-greedy exploration

In e-greedy exploration we pick a random exploration action with probahility) and

the greedy action with probability & € (s). Let et (S) = ¢/n¢(s) with 0 < ¢ < 1. Then,
Pr(als, ts(i)) > € (s)/m, wherem s the number of actions. Therefore, Lemma 4 combined
with the fact that) 72, c/i = oo implies that for alls, 2, Pr(als, ts(i)) = oo. Since
also by Lemma 4 for ab, lim;_, ., n¢(S) = oo, and, therefore, lim, ., €(s) = 0, ensuring
that the learning policy is greedy in the limit. Therefores:ifs) = c¢/n(s) thene-greedy
exploration is GLIE for O< ¢ < 1.

Appendix C: generalized Markov decision processes
In this section, we give proofs of several properties associated with genematizepwhich

are described in more detail by Szepas$& Littman (1996).
Define the Q-value function

Q(s,a) = R(s,a) + ¥ Z P&, ® Q(s,a), (s,a) € Sx A. (C.1)

s'eS a’
Here, we assume 8 y < 1.

The important property fof<) to satisfy is thenon-expansion property

X Qc.a) - @ Q(s.a)| <maxiQs.a) — Qs a)

for all Q-value function®Q andQ’ and all states.
We begin by showing that an average over actions with a fixed set of weights satisfies the
non-expansion property.

Lemma5. The function) Q(s, a) = ) paQ(s, a) satisfies the non-expansion property
where0 < p, <land) , pa=1
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Proof: This follows directly from definitions. If) andQ’ are Q-value functions, we have

Q) Qs.a) - Q) Qs a)

> pa(Q(s.a) — Q'(s, @)

a

IA

Y palQ(s ) — Qs )l

IA

m§x|Q(s, a) — Q'(s, a)|. m]

A corollary is that a fixed-weight average of functions that satisfy the non-expansion
property also satisfies the non-expansion property.
We can use Lemma 5 to prove the existence and uniqueness of the Q-value function.

Lemma 6. As long as) satisfies the non-expansion properg. (C.1) has a solution
and it is unique.

Proof: Define the operatoc on Q-value functions as

LG a=Rsa+y Y PLR)QES. a).

s'eS a

for all (s,a) € S x A. We can rewrite Eq. (C.1) aQ(s,a) = (LQ)(s, a), which has a
unique solution ifL is contraction with respect to the max norm.

To see thatL is a contraction, consider two Q-value functio@sand Q'. We have
ILQ-LQ | <ymax |, QE.a)—-Q, Q(s,a)| < |Q— Q|, where we have used
Lemma 5, the fact that < 1, and the non-expansion propertyf. O

Finally, define a family of rank-based operators:

®i Q(s, a) = ith largest value 0of)(s, a), foreachl<i < m.
a

We show that these operators satisfy the non-expansion property.
Lemma?7. The®'a Q(s, a) operators satisfy the non-expansion property.

Proof: Let Q and Q' be Q-value functions and fig € S. Without loss of generality,
as‘sumeg)'a Q(s,a) > ®'a Q/(s, a). Leta* be theith largest value 00 (s, a): Q(s, a*) =
X5 Q(s, a).

We examine two cases separately and show that the non-expansion property is satisfied
either way. IfQ’(s, a*) < @, Q'(s, @), then
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Resa-R Usa = sa) - X Q6.

IA

Q(s,a") — Q'(s,a")

< max|Q(s, a) — Q'(s, a)|.

A

On the other hand, iQ'(s, a*) > ®ia Q/(s, @), that means that the rank af in Q’,
p(Q’, s, a*) is smaller than. This implies that there is son& such thatp(Q, s, @) < i
andp(Q’,s, @) > i (otherwise there would bieactions with ranks less tharin Q). For
thisa/,

Resa-R Qs =R esa - R Qs

Q(Sv a,) - Q/(Sv a,)
max|Q(s, a) — Q'(s, a)|. |

IA

A
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Notes

1. The name is a reference to the fact that it is a single-step algorithm that makes updates on the tais, of a
Action, Reward state,Action 5-tuple.

2. Here| - ||w denotes a weighted maximum norm with weidfit= (wq, ..., wp), wi > 0:if x € R" then
IXllw = max; (i /wi).

3. We conjecture that the same result does not hold for persistent Boltzmann exploration because related syn-
chronous algorithms do not have a unique target of convergence (Littman, 1996).
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