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Abstract. An important application of reinforcement learning (RL) is to finite-state control problems and one
of the most difficult problems in learning for control is balancing the exploration/exploitation tradeoff. Existing
theoretical results for RL give very little guidance on reasonable ways to perform exploration. In this paper, we
examine the convergence of single-step on-policy RL algorithms for control. On-policy algorithms cannot separate
exploration from learning and therefore must confront the exploration problem directly. We prove convergence
results for several related on-policy algorithms with both decaying exploration and persistent exploration. We also
provide examples of exploration strategies that can be followed during learning that result in convergence to both
optimal values and optimal policies.
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1. Introduction

Most reinforcement-learning (RL) algorithms (Kaelbling et al., 1996; Sutton & Barto, 1998)
for solving discrete optimal control problems use evaluation orvalue functions to cache
the results of experience. This is useful because close approximations to optimal value
functions lead directly to good control policies (Williams & Baird, 1993; Singh & Yee,
1994). Different RL algorithms combine new experience with old value functions to produce
new and statistically improved value functions in different ways. All such algorithms face
a tradeoff between exploitation and exploration (Thrun, 1992; Kumar & Varaiya, 1986;
Dayan & Sejnowski, 1996), i.e., between choosing actions that are best according to the
current state of knowledge, and actions that are not the current best but improve the state
of knowledge and potentially yield higher payoffs in the future.

Following Sutton and Barto (1998), we distinguish between two types of RL algorithms:
on-policy and off-policy. Off-policy algorithms may update estimated value functions on the
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basis of hypothetical actions, i.e., actions other than those actually executed—in this sense
Q-learning (Watkins & Dayan, 1992) is an off-policy algorithm. On-policy algorithms, on
the other hand, update value functions strictly on the basis of the experience gained from
executing some (possibly non-stationary) policy. This distinction is important because off-
policy algorithms can (at least conceptually) separate exploration from control while on-
policy algorithms cannot. More precisely, in the case of on-policy algorithms, a convergence
proof requires more details of the exploration to be specified than for off-policy algorithms,
since the update rule depends a great deal on the actions taken by the system.

On-policy algorithms may prove to be important for several reasons. The analogue of the
on-policy/off-policy distinction for RL prediction problems is the trajectory-based/trajectory-
free distinction. Trajectory-based algorithms appear superior to trajectory-free algorithms
for prediction when parameterized function approximators are used (Tsitsiklis & Van Roy,
1996). These results carry over empirically to the control case as well (Boyan & Moore,
1995; Sutton, 1996). In addition, multi-step prediction algorithms such as TD(λ) (Sutton,
1988) are more flexible and data efficient than single-step algorithms (TD(0)), and most
natural multi-step algorithms for control are on-policy.

Another motivation for studying on-policy algorithms is the consideration of the inter-
action between exploration and optimal actions, identified by Sutton and Barto (1998) and
John (1994). Consider a robot learning to maximize reward in a dangerous environment.
Throughout its existence, it will need to execute exploration actions to help it learn about
its options. However, some of these exploration actions will lead to bad outcomes. An on-
policy learner will factor in the costs of exploration, and tend to avoid entering parts of the
state space where exploration is more dangerous.

A suggestive example appears in figure 1. This 3-state deterministicMDP has two actions:
l andr . For a discount factor ofγ = 0.9, the optimal action choice from statey is r (value
75.8 as opposed to 74.9 for actionr ). On the other hand, if exploratory actions are taken
50% of the time, the risk of picking “dangerous” actionr in statezbecomes too great. Now,
for a discount factor ofγ = 0.9, the optimal action choice from statey is l (value 58.8 as
opposed to 58.6 for actionr ). In other environments, the difference can be even greater,
necessitating the application of on-policy learning methods.

In this paper, we examine the convergence of single-step (value updates based on the value
of the “next” timestep only), on-policy RL algorithms for control. We do not address either

Figure 1. The optimal action to take in this small, deterministicMDP depends on the exploration strategy. If no
exploration actions are taken, the optimal action from statey is r . If exploration actions are taken, costly actionr
will sometimes be chosen from statez, makingl the best choice fromy.
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function approximation or multi-step algorithms; this is the subject of our ongoing research.
Earlier work has shown that there are off-policy RL algorithms that converge to optimal
value functions (Watkins & Dayan, 1992; Dayan, 1992; Jaakkola et al., 1994; Tsitsiklis,
1994; Gullapalli & Barto, 1994; Littman & Szepesv´ari, 1996); we prove convergence results
for several related on-policy algorithms. We also provide examples of policies that can be
followed during learning that result in convergence to both optimal values and optimal
policies. These results generalize naturally to off-policy algorithms, such as Q-learning,
showing the convergence of many RL algorithms to optimal policies.

2. Solving Markov decision problems

Markov decision processes (MDPs) are widely used to model controlled dynamical systems
in control theory, operations research and artificial intelligence (Puterman, 1994; Bertsekas,
1995; Barto et al., 1995; Sutton & Barto, 1998). LetS= 1, 2, . . . , N denote the discrete
set of states of the system, and letA be the discrete set of actions available to the system.
The probability of making a transition from states to states′ on actiona is denotedPa

ss′

and the random payoff associated with that transition is denotedr (s,a). A policy maps
each state to a probability distribution over actions—this mapping can be invariant over
time (stationary) or change as a function of the interaction history (non-stationary). For any
policy π , we define a value function

Vπ (s) = Eπ

{ ∞∑
t=0

γ t r t

∣∣∣∣∣s0 = s

}
,

which is the expected value of the infinite-horizon sum of the discounted payoffs when the
system is started in states and the policyπ is followed forever. Note thatrt andst are
the payoff and state respectively at timestept , and(rt , st ) is a stochastic process, where
(rt , st+1) depends only on(st ,at ) governed by the rules thatrt is distributed asr (st ,at ) and
the probability thatst+1 = s is Pat

st s. Here,at is the action taken by the system at timestep
t . The discount factor, 0≤ γ < 1, makes payoffs in the future less valuable than more
immediate payoffs.

The solution of anMDP is an optimal policyπ∗ that simultaneously maximizes the value
of every states ∈ S. It is known that a stationary deterministic optimal policy exists for every
MDP (c.f. Bertsekas (1995)). Hereafter, unless explicitly noted, all policies are assumed to
be stationary. The value function associated withπ∗ is denotedV∗. Often it is convenient
to associate values not with states but with state-action pairs, called Q values as in Watkins’
Q-learning (Watkins, 1989):

Qπ (s,a) = R(s,a)+ γ E{Vπ (s′)},

and

Q∗(s,a) = R(s,a)+ γ E{V∗(s′)},
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wheres′ is the random next state on executing actiona in states, andR(s,a) is expected
value of r (s,a). Clearly,π∗(s) = argmaxa Q∗(s,a), andV∗(s) = maxa Q∗(s,a). The
optimal Q values satisfy the recursive Bellman optimality equations (Bellman, 1957),

Q∗(s,a) = R(s,a)+ γ
∑

s′
Pa

ss′ max
b

Q∗(s′, b), ∀s,a. (1)

In reinforcement learning, the quantities that define theMDP, P andR, are not known in
advance. An RL algorithm must find an optimal policy by interacting with theMDP directly;
because effective learning typically requires the algorithm to revisit every state many times,
we assume theMDP is “communicating” (every state can be reached from every other state).

2.1. Off-policy and on-policy algorithms

Most RL algorithms for solvingMDPs are iterative, producing a sequence of estimates of
either the optimal (Q-)value function or the optimal policy or both by repeatedly combining
old estimates with the results of a new trial to produce new estimates.

An RL algorithm can be decomposed into two components. Thelearning policyis a non-
stationary policy that maps experience (states visited, actions chosen, rewards received)
into a current choice of action. Theupdate ruleis how the algorithm uses experience to
change its estimate of the optimal value function.

In an off-policy algorithm, the update rule need not have any relation to the learning
policy. Q-learning (Watkins, 1989) is an off-policy algorithm that estimates the optimal
Q-value function as follows:

Qt+1(st ,at ) = (1− αt (st ,at ))Qt (st ,at )

+αt (st ,at )
[
rt + γ max

b
(Qt (st+1, b))

]
, (2)

where Qt is the estimate at the beginning of thet th timestep, andst , at , rt , andαt are
the state, action, reward, and step size (learning rate) at timestept . Equation (2) is an off-
policy algorithm as the update ofQt (st ,at ) depends on maxb(Qt (st+1, b)), which relies on
comparing various “hypothetical” actionsb. The convergence of the Q-learning algorithm
does not put any strong requirements on the learning policy other than that every action is
experienced in every state infinitely often. This can be accomplished, for example, using
the random-walk learning policy, which chooses actions uniformly at random. Later, we
describe several other learning policies that result in convergence when combined with the
Q-learning update rule.

The update rule forSARSA(0) (Rummery, 1994; also see, Rummery & Niranjan, 1994;
John, 1994, 1995; Singh & Sutton, 1995; Sutton, 1996):

Qt+1(st ,at ) = (1− αt (st ,at ))Qt (st ,at )

+αt (st ,at )[rt + γQt (st+1,at+1)], (3)
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a special case ofSARSA(λ) with λ = 0, is quite similar to the update rule for Q-learning.
The main difference is that Q-learning makes an update based on the greedy Q value
of the successor state,st+1, while SARSA(0)1 uses the Q value of the actionat+1 actually
chosen by the learning policy. This makesSARSA(0)an on-policy algorithm, and therefore its
conditions for convergence depend a great deal on the learning policy. In particular, because
SARSA(0) learns the value of its own actions, the Q values can converge to optimality in the
limit only if the learning policy chooses actions optimally in the limit. Section 3 provides
some positive convergence results for two significant classes of learning policies.

Under a greedy learning policy (i.e., always select the action that is best according
to the current estimate), the update rules for Q-learning andSARSA(0) are identical. The
resulting RL algorithm would not converge to optimal solutions, in general, because the
need for infinite exploration would not be satisfied. This helps illustrate the tension between
adequate exploration and exploitation with regard to convergence to optimality.

It is worth noting, however, that the approach of using a greedy learning policy has
yielded some impressive successes, including the world’s finest backgammon-playing pro-
gram (Tesauro, 1995), and state-of-the-art systems for space shuttle scheduling (Zhang &
Dietterich, 1995), elevator control (Crites & Barto, 1996), and cellular telephone resource
allocation (Singh & Bertsekas, 1997). All these applications can be viewed as exploiting
on-policy algorithms, although the on-policy versus off-policy distinction is not meaningful
when no explicit exploration is used.

2.2. Learning policies

A learning policy selects an action at timestept as a function of the history of states, actions,
and rewards experienced so far. In this paper, we consider several learning policies that make
decisions based on a summary of history consisting of the current timestept , the current
states, the current estimateQ of the optimal Q-value function, and the number of times
states has been visited before timet , nt (s). Such a learning policy can be expressed as the
probabilities Pr(a|s, t, Q, nt (s)), the probability that actiona is selected given the history.

We divide learning policies forMDPs into two broad categories: adecaying exploration
learning policy that becomes more and more like the greedy learning policy over time, and a
persistent explorationlearning policy that does not. The advantage of decaying exploration
policies is that the actions taken by the system may converge to the optimal ones eventually,
but with the price that their ability to adapt slows down. In contrast to this, persistent
exploration learning policies can retain their adaptivity forever, but with the price that the
actions of the system will not converge to optimality in the standard sense. We prove the
convergence ofSARSA(0) to optimal policies in the standard sense for a class of decaying
exploration learning policies, and to optimal policies in a special sense defined below for a
class of persistent exploration learning policies.

Consider the class of decaying exploration learning policies characterized by the follow-
ing two properties:

1. each action is executed infinitely often in every state that is visited infinitely often, and
2. in the limit, the learning policy is greedy with respect to the Q-value function with

probability 1.
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We label learning policies satisfying the above conditions asGLIE, which stands for “greedy
in the limit with infinite exploration.” An example of such a learning policy is a form of
Boltzmann exploration:

Pr(a|s, t, Q) = eβt (s)Q(s,a)∑
b∈A eβt (s)Q(s,b)

,

whereβt (s) is the state-specific exploration coefficient for timet , which controls the rate of
exploration in the learning policy. To meet Condition 2 above, we would likeβt to be infinite
in the limit, while to meet Condition 1 above we would likeβt to not approach infinity too
fast. In Appendix B, we show thatβt (s) = ln nt (s)/Ct (s) satisfies the above requirements
(wherent (s) ≤ t is the number of times states has been visited int timesteps, andCt (s) is
defined in Appendix B). Another example of a GLIE learning policy is a form ofε-greedy
exploration (Sutton, 1996), which at timestept in states picks a random exploration action
with probabilityεt (s) and the greedy action with probability 1− εt (s). In Appendix B, we
show that ifεt (s) = c/nt (s) for 0< c < 1, thenε-greedy exploration is GLIE.

We also analyze “restricted rank-based randomized” (RRR) learning policies, a class of
persistent exploration learning policies commonly used in practice. An RRR learning policy
selects actions probabilistically according to the ranks of their Q values, choosing the greedy
action with the highest probability and the action with the lowest Q value with the lowest
probability. Different learning policies can be specified by different choices of the function
T : {1, . . . ,m} → < that maps action ranks to probabilities. Here,m is the number of
actions. For consistency, we require thatT(1) ≥ T(2) ≥ · · · ≥ T(m) and

∑m
i=1 T(i ) = 1.

At timestept , the RRR learning policy chooses an action by first ranking the available actions
according to the Q values assigned by the current Q-value functionQt for the current state
st . We use the notationρ(Q, s,a) to be the rank of actiona in states based onQ(s, ·) (e.g.,
if ρ(Q, s,a) = 1 thena = argmaxb Q(s, b)), with ties broken arbitrarily. Once the actions
are ranked, thei th ranked action is chosen with probabilityT(i ); that is, actiona is chosen
with probabilityT(ρ(Q, s,a)). The RRR learning policy is “restricted” in that it does not
directly choose actions—it simply assigns probabilities to actions according to their ranks.
Therefore, an RRR learning policy has the form Pr(a|s, t, Q) = T(ρ(Qt , s,a)).

To illustrate the use of theT function, we specify three well-known learning policies as
RRR learning policies by the appropriate definition ofT . The random-walk learning policy
chooses actiona in states with probability 1/m. To achieve this behavior with the RRR
learning policy, simply defineT(i ) = 1/m for all i ; actions will be chosen uniformly at
random regardless of their rank. The greedy learning policy can be specified byT(1) = 1,
T(i ) = 0 when 1< i ≤ m; it deterministically selects the action with the highest Q
value. Similarly,ε-greedy exploration can be specified by definingT(1) = 1− ε + ε/m,
T(i ) = ε/m, 1 < i ≤ m. This policy takes the greedy action with probability 1− ε and
a random action otherwise. To satisfy the condition thatT(1) ≥ T(2) ≥ · · · ≥ T(m), we
require that 0≤ ε ≤ 1.

Another commonly used persistent exploration learning policy is Boltzmann exploration
with a fixed exploration parameter. Note there is no choice ofT that specifies Boltzmann ex-
ploration; Boltzmann exploration is not an RRR learning policy as the probability of choos-
ing an action depends on the actual Q values and not only on the ranks of actions inQ(·).
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3. Results

Below we prove results on the convergence ofSARSA(0) under the two separate cases of
GLIE and RRR learning policies.

3.1. Convergence ofSARSA(0) under GLIE learning policies

To ensure the convergence ofSARSA(0), we require a lookup-table representation for the Q
values and infinite visits to every state-action pair, just as for Q-learning. Unlike Q-learning,
however,SARSA(0) is an on-policy algorithm and, in order to achieve its convergence to
optimality, we have to further assume that the learning policy becomes greedy in the limit.

To state these assumptions and the resulting convergence more formally, we note first
that due to the dependence on the learning policy,SARSA(0) does not directly fall under
the previously published convergence theorems (Dayan & Sejnowski, 1994; Jaakkola et al.,
1994; Tsitsiklis, 1994; Szepesv´ari & Littman, 1996). Only a slight extension is needed,
however, and this is presented in the form of Lemma 1 below (extending Theorem 1 of
Jaakkola et al., 1994, and Lemma 12 of Szepesv´ari & Littman (1996)). For clarity, we will
not present the lemma in full generality.

Lemma 1. Consider a stochastic process(αt ,1t , Ft ), t ≥ 0, whereαt ,1t , Ft : X→ <
satisfy the equations

1t+1(x) = (1− αt (x))1t (x)+ αt (x)Ft (x), x ∈ X, t = 0, 1, 2, . . . .

Let Pt be a sequence of increasingσ -fields such thatα0 and10 are P0-measurable and
αt ,1t and Ft−1 are Pt -measurable, t = 1, 2, . . . . Assume that the following hold:

1. the set X is finite.
2. 0≤ αt (x) ≤ 1,

∑
t αt (x) = ∞,

∑
t α

2
t (x) <∞ w.p.1.

3. ‖E{Ft (·)|Pt }‖W ≤ κ‖1t‖W + ct , whereκ ∈ [0, 1) and ct converges to zero w.p.1.2

4. Var{Ft (x)|Pt } ≤ K (1+ ‖1t‖W)2, where K is some constant.
Then, 1t converges to zero with probability one(w.p.1).

Let us first clarify how this lemma relates to the learning algorithms that are the focus
of this paper. We can capture the sequence of visited statesst and selected actionsat in the
definition of the learning ratesαt as follows: definext = (st ,at ) and further require that
αt (x) = 0 wheneverx 6= xt . With these definitions, the iterative process reduces to

1t+1(st ,at ) = (1− αt (st ,at ))1t (st ,at )+ αt (st ,at )Ft (st ,at ),

which resembles more closely the updates of the on-line algorithms such asSARSA(0)
(Eq. (3)). Also, note that the lemma shows the convergence of1 to zero rather than to some
non-zero optimal values. The intended meaning of1 is Qt−Q∗, i.e., the difference between
the current Q values,Qt , and the target Q values,Q∗, that are attained asymptotically.
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The extension provided by our formulation of the lemma is the fact that the contraction
property (the third condition) need not be strict; strict contraction is now required to hold
only asymptotically. This relaxation makes the theorem more widely applicable.

Proof: While we have stated that the lemma extends previous results such as the Theo-
rem 1 of Jaakkola et al. (1994) and Lemma 12 of Szepesv´ari & Littman (1996), the proof
of our lemma is, however, already almost fully contained in the proofs of these results
(requiring only minor, largely notational changes). Moreover, the lemma also follows from
Proposition 4.5 of Bertsekas (1995), and in Appendix A we present a proof based on this
proposition. 2

We can now use Lemma 1 to show the convergence ofSARSA(0).

Theorem 1. Consider a finite state-actionMDP and fix a GLIE learning policyπ given as
a set of probabilitiesPr(a | s, t, nt (s), Q). Assume that at is chosen according toπ and at
time step t, π uses Q= Qt , where the Qt values are computed by theSARSA(0) rule (see
Eq.(3)). Then Qt converges to Q∗ and the learning policyπt converges to an optimal policy
π∗ provided that the conditions on the immediate rewards, state transitions and learning
rates listed in Section2 hold and if the following additional conditions are satisfied:

1. The Q values are stored in a lookup table.
2. The learning rates satisfy0 ≤ αt (s,a) ≤ 1,

∑
t αt (s,a) = ∞ and

∑
t α

2
t (s,a) < ∞

andαt (s,a) = 0 unless(s,a) = (st ,at ).
3. Var{r (s,a)} <∞.

Proof: The correspondence to Lemma 1 follows from associatingX with the set of state-
action pairs(s,a), αt (x) with αt (s,a) and1t (s,a) with Qt (s,a) − Q∗(s,a). It follows
that

1t+1(st ,at ) = (1− αt (st ,at ))1t (st ,at )+ αt (st ,at )Ft (st ,at ),

where

Ft (st ,at ) = rt + γ max
b∈A

Qt (st+1, b)− Q∗(st ,at )

+ γ
[
Qt (st+1,at+1)−max

b∈A
Qt (st+1, b)

]
def= rt + γ max

b∈A
Qt (st+1, b)− Q∗(st ,at )+ Ct (Q)

def= F Q
t (st ,at )+ Ct (st ,at ),

whereF Q
t would be the correspondingFt in Lemma 1 if the algorithm under consideration

were Q-learning. We defineFt (s,a) = F Q
t (s,a) = Ct (s,a) = 0 if (s,a) 6= (st ,at )

(so Ft (s,a) = F Q
t (s,a) + Ct (s,a) for all (s,a)) and denote theσ -field generated by the
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random variables{st , αt ,at , rt−1, . . . , s1, α1,a1, Q0}by Pt . Note thatQt , Qt−1, . . . , Q0 are
Pt -measurable and, thus, both1t andFt−1 arePt -measurable, satisfying the measurability
conditions of Lemma 1.

It is well-known that for Q-learning‖E{F Q
t (·, ·) | Pt }‖ ≤ γ ‖1t‖ for all t , where‖ · ‖ is

the maximum norm. In other words, the expected update operator is a contraction mapping.
The only difference between the currentFt and F Q

t for Q-learning is the presence ofCt .
Therefore,

‖E{Ft (·, ·)|Pt }‖ ≤
∥∥E
{
F Q

t (·, ·) | Pt
}∥∥+ ‖E{Ct (·, ·) | Pt }‖ (4)

≤ γ ‖1t‖ + ‖E{Ct (·, ·) | Pt }‖. (5)

Identifyingct = ‖E{Ct (·, ·) | Pt }‖ in Lemma 1, we are left with showing thatct converges
to zero w.p.1. This, however, follows (a) from our assumption of a GLIE policy (i.e., that non-
greedy actions are chosen with vanishing probabilities), (b) the assumption of finiteness
of the MDP, and (c) the fact thatQt (s,a) stays bounded during learning. To verify the
boundedness property, we note that theSARSA(0) Q values can beupperbounded by the
Q values of a Q-learning process that updates exactly the same state-action pairs in the
same order as theSARSA(0) process. Similarly, theSARSA(0) Q values arelower bounded
by the Q values of a Q-learning process that uses a min instead of a max in the update
rule (c.f. Eq. (2)) and updates exactly the same state-action pairs in the same order as the
SARSA(0) process. Both the lower-bounding and the upper-bounding Q-learning processes
are convergent and have bounded Q values.

The condition on the variance ofFt follows from the similar property ofF Q
t . 2

Note that if a GLIE learning policy is used with the Q-learning update rule, one gets
convergence to both the optimal Q-value function and an optimal policy. This begins to
address a significant outstanding question in the theory of reinforcement learning: How do
you a learn a policy that achieves high reward in the limitand during learning? Previous
convergence results for Q-learning guarantee that the optimal Q-value function is reached
in the limit; this is important because the longer the learning process goes on, the closer to
optimal the greedy policy with respect to the learned Q-value function will be. However, this
provides no useful guidance for selecting actions during learning. Our results, in contrast,
show that it is possible to follow a policyduring learningthat approaches optimality over
time.

The properties of GLIE policies imply that for any RL algorithm that converges to the
optimal value function and whose estimates stay bounded (e.g., Q-learning, and ARTDP of
Barto et al. (1995)), using GLIE learning policies will ensure a concurrent convergence to
an optimal policy. However, to get an implementable RL algorithm, one still has to specify a
suitable learning policy that guarantees that every action is attempted in every state infinitely
often (i.e.,

∑
t αt (s,a) = ∞). In Appendix B, we prove that, if the probability of choosing

any particular action in any given state sums up to infinity, then the above condition is
indeed satisfied. To illustrate this, in Appendix B we derive two learning strategies that are
GLIE.
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3.2. Convergence ofSARSA(0) under RRR learning policies

This section proves two separate results concerning a class of persistent exploration learning
policies: (1) theSARSA(0) update rule combined with an RRR learning policy converges
to a well-defined Q-value function and policy, and (2) the resulting policy is optimal, in a
sense we will define.

As mentioned earlier, an RRR learning policy chooses actions probabilistically by their
ranking according to the current Q-value function; a specific learning policy is specified
by the functionT , a probability distribution over action ranks. Arestricted policyπ̄ :
S→ 5(A, {1, . . . ,m}) ranks actions in each state (recall thatm denotes the number of
actions), i.e.,π̄(s) is a bijection betweenA and{1, . . . ,m}. For convenience, we use the
notationπ̄(s,a) to denote the assigned rank of actiona in states, i.e., to denotēπ(s)(a).
The mappingπ̄ represents a policy in the sense that an agent following restricted policyπ̄

from states chooses actiona with probability T(π̄(s,a)), the probability assigned to the
rank,π̄(s,a), of actiona in states.

Consider what happens when theSARSA(0) update rule is used to learn the value of a
fixed restricted policȳπ . Standard convergence results for Q-learning can easily be used to
show that theQt values will converge to the Q-value function ofπ̄ . Specifically,Qt will
converge toQπ̄ , defined as the unique solution to

Qπ̄ (s,a) = R(s,a)+ γ
∑
s′∈S

Pa
ss′
∑
a′∈A

T(π̄(s′,a′))Qπ̄ (s′,a′), (s,a) ∈ S× A. (6)

When an RRR learning policy is followed, the situation becomes a bit more complex.
Upon entering states, the probability that the learning policy will choose, for example, the
rank 1 action is fixed atT(1); however, the identity of that action changes according to
the current Q-value function estimateQt (·, ·). The natural extension of Eq. (6) to an RRR
learning policy would be for the target of convergence ofQt in SARSA(0) to be

Q̄(s,a) = R(s,a)+ γ
∑
s′∈S

Pa
ss′
∑
a′∈A

T(ρ(Q̄, s′,a′))Q̄(s′,a′), (s,a) ∈ S× A. (7)

Recall thatρ(Q̄, s′,a′) represents the rank of actiona′ according to the Q values̄Q of state
s′. The only change between Eqs. (6) and (7) is that the latter uses an assignment of ranks
that is based upon the recursively defined Q-value functionQ̄, whereas the former uses a
fixed assignment of ranks. Using the theory of generalizedMDPs (Szepesv´ari & Littman,
1996), we can show that this difference is not important from the perspective of proving the
existence and uniqueness of the solution to Eq. (7).

Define⊗
a

Q(s,a) =
∑
a∈A

T(ρ(Q, s,a))Q(s,a); (8)

now Eq. (7) can be rewritten

Q̄(s,a) = R(s,a)+ γ
∑
s′∈S

Pa
ss′
⊗

a′
Q̄(s′,a′), (s,a) ∈ S× A. (9)
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As long as
⊗

satisfies the non-expansion property that∣∣∣∣⊗
a

Q(s,a)−
⊗

a

Q′(s,a)
∣∣∣∣ ≤ max

a
|Q(s,a)− Q′(s,a)|

for all Q-value functionsQ and Q′ and all statess, then Eq. (9) has a solution and it is
unique (Szepesv´ari & Littman, 1996); this is proven in Appendix C. The non-expansion
property of

⊗
can be verified by the following argument.

• Consider a family of operators
⊗

a
i Q(s,a) = i th largest value ofQ(s,a) for each

1≤ i ≤ m. These are all non-expansions (see Appendix C).
• Define

⊗′
a Q(s,a) =∑i T(i )

⊗
a

i Q(s,a); it is a non-expansion as long as every
⊗

a
i

is andT is a fixed probability distribution (see Appendix C).
• It is clear that

⊗′
aQ(s,a) =⊗a Q(s,a) as defined in Eq. (8), so

⊗
is a non-expansion

also.

Therefore,Q̄ exists and is unique. We next show thatQ̄ is, in fact, the target of convergence
for SARSA(0).

Theorem 2. In finite state-actionMDPs, the Qt values computed by theSARSA(0) rule (see
Eq.(3)) converge toQ̄ if the learning policy is RRR, the conditions on the immediate rewards
and state transitions listed in Section2 hold, and if the following additional conditions are
satisfied:

1. Pr(at+1 = a | Qt , st+1) = T(ρ(Qt , st+1,at+1)).
2. The Q values are stored in a lookup table.
3. The learning rates satisfy0 ≤ αt (s,a) ≤ 1,

∑
t αt (s,a) = ∞,

∑
t α

2
t (s,a) < ∞, and

αt (s,a) = 0 unless(s,a) = (st ,at ).
4. Var{r (s,a)} <∞.

Proof: The result readily follows from Lemma 1 (or Theorem 1 of Jaakkola et al. (1994))
and the proof follows nearly identical lines as that of Theorem 1. First, we associateX (of
Lemma 1) with the set of state-action pairs(s,a) andαt (x) with αt (s,a), but here we set
1t (s,a) = Qt (s,a)− Q̄(s,a). Again, it follows that

1t+1(st ,at ) = (1− αt (st ,at ))1t (st ,at )+ αt (st ,at )Ft (st ,at ),

where now

Ft (st ,at ) = rt + γQt (st+1,at+1)− Q̄(st ,at ).

Further, we defineFt (s,a) = Ct (s,a) = 0 if (s,a) 6= (st ,at ) and denote theσ -field
generated by the random variables{st , αt ,at , rt−1, . . . , s1, α1,a1, Q0} by Pt . Note that
Qt , Qt−1, . . . , Q0 arePt -measurable and, thus, both1t andFt−1 arePt -measurable, satis-
fying the measurability conditions of Lemma 1.
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Substituting the right-hand side of Eq. (7) forQ̄(st ,at ) in the definition ofFt together
with the properties of samplingrt , st+1 andat+1 yields that

E{Ft (st ,at ) | Pt }

= γ

(
E{Qt (st+1,at+1) | Pt }−

∑
s′∈S

Pat
st s′
∑
a′∈A

T(ρ(Q̄, s′,a′))Q̄(s′,a′)

)

= γ

(∑
s′∈S

Pat
st s′
∑
a′∈A

T(ρ(Qt , s
′,a′))Qt (s

′,a′)

−
∑
s′∈S

Pat
st s′
∑
a′∈A

T(ρ(Q̄, s′,a′))Q̄(s′,a′)

)
≤ γ ‖Qt − Q̄‖
= γ ‖1t‖,

where in the first equation we have exploited the fact that

E{rt | st ,at } = R(st ,at ),

in the second equation that

Pr(st+1 | st ,at ) = Pat
st st+1

and that

Pr(at+1 = a | Qt , st+1) = T(ρ(Qt , st+1,a)) (Condition 1),

whereas the inequality comes from the properties of rank-based averaging (see Lemma 7
and Theorems 9 and 10 of Szepesv´ari & Littman (1996), also Appendix C). Finally, it is not
hard to prove that the variance ofFt given the pastPt satisfies Condition 4 and, therefore,
we do not include it here. 2

We have shown thatSARSA(0) with an RRR learning policy converges tōQ. Next, we
show thatQ̄ is, in a sense, an optimal Q-value function.

An optimal restricted policyis one that has the highest expected total discounted reward
of all restricted policies. Thegreedy restricted policyfor a Q-value functionQ is π̄(s,a) =
ρ(Q, s,a); it assigns each action the rank of its corresponding Q value. Note that this is the
policy dictated by the RRR learning policy for a fixed Q-value functionQ.

The greedy restricted policy forQ∗ (the optimal Q-value function of theMDP) is not
an optimal restricted policy in general, so the Q-learning rule in Eq. (2) does not find an
optimal restricted policy. However, the next theorem shows that the greedy restricted policy
for Q̄ (Eq. (7)) is an optimal restricted policy. This̄Q function is very similar toQ∗, except
that actions are weighted according to the greedy restricted policy instead of the standard
greedy policy.
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Theorem 3. The greedy restricted policy with respect toQ̄ is an optimal restricted policy.

Proof: We construct an alternateMDP so that every restricted policy in the originalMDP

is in one-to-one correspondence with (and has the same value as) a deterministic stationary
policy in the alternateMDP. Note that, as a result of the equality of value functions, the
optimal policy of the alternateMDP will correspond to an optimal restricted policy of the
original MDP (the restricted policy that achieves the best values for each of the states)
and, thus, the theorem will follow if we show that the optimal policy in the alternateMDP

corresponds to the greedy restricted policy with respect toQ̄.
The alternateMDP is defined by〈S, Ā, R̄, P̄, γ 〉. Its action space,̄A, is the set of all

bijections fromA to {1, . . . ,m}, i.e., Ā = 5(A, {1, . . . ,m}). The rewards are

R̄(s, µ) =
∑
a∈A

T(µ(a))R(s,a),

and the transition probabilities are given byP̄µ

ss′ =
∑

a∈A T(µ(a))Pa
ss′ . Here,µ is an element

of Ā. One can readily check that the value of a restricted policyπ̄ is just the value of̄π in
the alternateMDP.

The value of the greedy restricted policy with respect toQ̄ in the originalMDP is

V̄(s) =
∑
a∈A

T(ρ(Q̄, s,a))Q̄(s,a). (10)

Substituting the definition of̄Q from Eq. (7) into Eq. (10) results in

V̄(s) =
∑
a∈A

T(ρ(Q̄, s,a))

(
R(s,a)+ γ

∑
s′∈S

Pa
ss′
∑
a′∈A

T(ρ(Q̄, s′,a′))Q̄(s′,a′)

)
.

Using Eq. (10) once again, we find thatV̄ satisfies the recurrence equation

V̄(s) =
∑
a∈A

T(ρ(Q̄, s,a))

(
R(s,a)+ γ

∑
s′∈S

Pa
ss′ V̄(s

′)

)
. (11)

Meanwhile, the optimum value of the alternateMDP satisfies

V̄∗(s) = max
µ∈Ā

(
R̄(s, µ)+ γ

∑
s′∈S

P̄µ

ss′ V̄
∗(s′)

)

= max
µ∈Ā

(∑
a∈A

T(µ(a))R(s,a)+ γ
∑
s′∈S

(∑
a∈A

T(µ(a))Pa
ss′

)
V̄∗(s′)

)

= max
µ∈Ā

∑
a∈A

T(µ(a))

(
R(s,a)+ γ

∑
s′∈S

Pa
ss′ V̄

∗(s′)

)
. (12)
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The highest value permutation is the one that assigns the highest probabilities to the actions
with the highest Q values and the lowest probabilities to the actions with the lowest Q values.
Therefore, the recurrence in Eq. (12) is the same as that in Eq. (11), so, by uniqueness,
V̄∗ = V̄ . This means the greedy restricted policy with respect toQ̄ is the optimal restricted
policy. 2

As a corollary of Theorem 2, given a communicatingMDP and an RL algorithm that
follows an RRR learning policy specified byT where T(i ) > 0 for all 1 ≤ i ≤ m,
SARSA(0) converges to an optimal restricted policy.3

The results of this section show that RRR learning policies with theSARSA(0) update rule
converge to optimal restricted policies. In contrast to Q-learning, this means that the learner
can adopt its asymptotic policy at any time during learning and still converge to optimality
in this modified sense. However, the fact that convergence depends on decaying the learning
rate to zero means that this approach is somewhat self-contradictory; in the limit, the learner
is still exploring, but it is not able to learn anything new from its discoveries.

4. Conclusion

In this paper, we have provided convergence results forSARSA(0) under two different
learning policy classes; one ensures optimal behavior in the limit and the other ensures
behavior optimal with respect to constraints imposed by the exploration strategy. To the
best of our knowledge, these constitute the first convergence results for any on-policy
algorithm. However, these are very basic results because they apply only to the lookup-
table case, and more importantly because they do not seem to extend naturally to general
multi-step on-policy algorithms.

Appendix A: proof of Lemma 1

For completeness we present Proposition 4.5 of Bertsekas (1995).

Lemma 2. Let

rt+1(i ) = (1− γt (i ))rt (i )+ γt (i ){(Htrt )(i )+ wt (i )+ ut (i )},

where i = 1, 2, . . . ,n and t= 0, 1, 2, . . . , let Ft be an increasing sequence ofσ -fields,
and assume the following:

1. γt ≥ 0,
∑∞

t=0 γt (i ) = ∞,
∑∞

t=0 γ
2
t (i ) <∞ (a.s.);

2. (A) for all i , t : E[wt (i )|Ft ] = 0;
3. (B) there exist A, B ∈ < s.t. for all i, t : E[w2

t (i ) | Ft ] ≤ A+ B‖rt‖2;
4. there exists an r∗ ∈ <n, a positive vectorξ, and a scalarβ ∈ [0, 1) s.t. for all t ≥ 0
‖Htrt − r ∗‖ξ ≤ β‖rt − r ∗‖ξ ;

5. there existsθt ≥ 0, θt → 0 w.p.1 and for all i, t : |ut (i )| ≤ θt (‖rt‖ξ + 1).
Then rt → r ∗ w.p.1.

For convenience, we repeat Lemma 1.
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Lemma 1. Consider a stochastic process(αt ,1t , Ft ), t ≥ 0, whereαt ,1t , Ft : X→ <,
which satisfies the equations

1t+1(x) = (1− αt (x))1t (x)+ αt (x)Ft (x), x ∈ X, t = 0, 1, 2, . . . .

Let Pt be a sequence of increasingσ -fields such thatα0,10 are P0-measurable andαt ,1t

and Ft−1 are Pt -measurable, t = 1, 2, . . . . Assume that the following hold:

1. the set of possible states X is finite.
2. 0≤ αt (x) ≤ 1,

∑
t αt (x) = ∞,

∑
t α

2
t (x) <∞ w.p.1.

3. ‖E{Ft (·)|Pt }‖W ≤ κ‖1t‖W + ct , whereκ ∈ [0, 1) and ct converges to zero w.p.1.
4. Var{Ft (x)|Pt } ≤ K (1+ ‖1t‖W)2, where K is some constant.
Then, 1t converges to zero with probability one(w.p.1).

Proof: We apply Lemma 2. For simplicity, we present the proof for the case whenW =
(1, 1, . . . ,1). Let

F̃t =
{

Ft , if |E[Ft |Pt ]| ≤ κ‖1t‖;
sign(E[Ft |Pt ])κ‖1t‖, otherwise.

Further, letbt = Ft − F̃t . Then, by the construction of̃Ft , ‖E[ F̃t |Pt ]‖ ≤ κ‖1t‖ and
‖E[bt |Pt ]‖ ≤ ct . Now, if we identify {1, 2, . . . ,n} with X, and defineFt = Pt , γt = αt ,
rt = 1t , Htrt = E[ F̃t |Pt ], wt = F̃t −E[ F̃t |Pt ]+bt −E[bt |Pt ], ut = E[bt |Pt ] andr ∗ = 0,
then we see that the conditions of Lemma 2 are satisfied and thusrt = 1t converges to
r ∗ = 0 w.p.1. 2

Appendix B: GLIE learning policies

Here, we present conditions on the exploration parameter in the commonly used Boltzmann
exploration andε-greedy exploration strategies to ensure that both infinite exploration and
greedy in the limit conditions are satisfied.

In a communicatingMDP, every state gets visited infinitely often as long as each action
is chosen infinitely often in each state (this is a consequence of the Borel-Cantelli Lemma
(Breiman, 1992); all we have to ensure is that in each state each action gets chosen infinitely
often in the limit. Consider some states. Let ts(i ) represent the timestep at which thei th visit
to states occurs. Consider some actiona. The probability with which actiona is executed
at thei th visit to states is denoted Pr(a | s, ts(i )) (i.e, Pr(a = at | st = s, ts(i ) = t)).

We would like to show that if the sum of the probabilities with which actiona is chosen
is infinite, i.e.,

∑∞
i=1 Pr(a | s, ts(i )) = ∞, then the number of times actiona gets executed

in states is infinite w.p.1. This would follow directly from the Borel-Cantelli Lemma if the
probabilities of selecting actiona at the differenti were independent. However, in our case
the random choice of action at thei th visit to states affects the probabilities at thei + 1st
visit to states (through the evolution of the Q-value function), so we need an extension of
the Borel-Cantelli Lemma (c.f. Corollary 5.29 of Breiman (1992)):
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Lemma 3 (Extended Borel-Cantelli Lemma). Let Fi be an increasing sequence of
σ -fields and let Ai be Fi -measurable. Then{

ω :
∞∑

i=0

Pr(Ai |Fi−1) = ∞
}
= {ω : ω ∈ Ai i.o.}

holds w.p.1.

We have the following:

Lemma 4. Consider a communicatingMDP and the reinforced decision process

(x0,a0, r0, . . . , xt ,at , rt , . . .).

Let nt (s) denote the number of visits to state s up to time t, nt (s,a) denote the number of
times action a has been chosen in state s during the first t timesteps(nt (s,a) ≤ nt (s)), and
ts(i ) denote the time when state s was visited the i th time. Assume that the action at time
step t, at , is selected purely on the basis of the statistics Dt:

Pr(at = a | Dt ,at−1, Dt−1, . . . ,a0, D0) = Pr(at = a | Dt ), (B.1)

where Dt is computed from the full t-step history(x0,a0, r0, . . . , xt ). Further, assume that
the action selection policyπ is such that

{
ω : lim

t→∞nt (s)(ω) = ∞
}
⊆
{
ω :

∞∑
i=0

Pr
(
ats(i ) = a | Dts(i )

)
(ω) = ∞

}
a.s. (B.2)

Then, for all (s,a) pairs nt (s)→∞ a.s. and nt (s,a)→∞ a.s.

The statisticsDt could be for example(st , t, nt (s), Qt ), whereQt is computed by the
SARSA(0) update rule (3).

Proof: Fix an arbitrary pair(s,a) and let Fi be the sigma field generated by the ran-
dom variables{Dts(i+1),ats(i ), Dts(i ), . . . ,ats(0), Dts(0)}. Let Ai = {ats(i ) = a}. Then Ai is
Fi -measurable. Further, by Eq. (B.1)

Pr(Ai |Fi−1) = Pr
(
ats(i ) = a

∣∣Dts(i ),ats(i−1), Dts(i−1), . . . ,ats(0), Dts(0)
)

= Pr
(
ats(i ) = a

∣∣Dts(i )
)
,



CONVERGENCE OF ON-POLICY RL ALGORITHMS 303

and thus, by Eq. (B.2) and Lemma 3, almost surely

{
ω : lim

t→∞nt (s)(ω) = ∞
}
⊆
{
ω :

∞∑
i=0

Pr
(
ats(i ) = a

∣∣Dts(i )
)
(ω) = ∞

}
= {ω : ω ∈ Ai for infinitely manyi s}
=
{
ω : lim

t→∞nt (s,a) = ∞
}
.

This proves that if states is visited infinitely often then actiona is also chosen infinitely often
in that state. Now letS∞ be the set of states visited i.o. byst , i.e., if S∞(ω) = S0 thenS0 is
the set of states which occur i.o. in the sequence{s0(ω), s1(ω), . . . , st (ω), . . .}. Clearly, the
events{S∞ = S0}, S0 ⊆ S form a complete event system. Thus,

∑
S0⊆S P(S∞ = S0) = 1.

Now let S0 6= ∅ be a nontrivial subset ofS. Then, since theMDP is communicating, there
exists a pair of statess, s′ and an actiona, such thats ∈ S0, s′ 6∈ S0 and Pa

ss′ > 0. Then,
Pr(S∞ = S0) = Pr(S∞ = S0, s′ ∈ S∞) + Pr(S∞ = S0, s′ 6∈ S∞). Here, both events are
impossible, so Pr(S∞ = S0) = 0. Since theMDP is finite, also Pr(S∞ = ∅) = 0 and so
Pr(S∞ = S) = 1. This yields that Pr(limt→∞ nt (s) = ∞) = 1 for all s, thus, finishing the
proof. 2

B.1. Boltzmann exploration

In Boltzmann exploration,

Pr(a | s, t, Q, nt (s)) = eβt (s)Q(s,a)∑
b∈A eβt (s)Q(s,b)

,

whereβt (s) is the state-specific exploration coefficient for timet . Let the number of visits
to states in timestept be denoted asnt (s) and assume thatr (s,a) has a finite range. We
know that

∑∞
i=1 c/ i = ∞; therefore, to meet the conditions of Lemma 4, we will ensure

that for all actionsa ∈ A, Pr(a|s, ts(i )) ≥ c/ i (with c ≤ 1). To do that we need for alla:

eβt (s)Qt (s,a)∑
b∈A eβt (s)Qt (s,b)

≥ c

nt (s)

nt (s)e
βt (s)Qt (s,a) ≥ c

∑
b∈A

eβt (s)Qt (s,b)

nt (s)e
βt (s)Qt (s,a) ≥ cmeβt (s)Qt (s,bmax)

nt (s)

cm
≥ eβt (s)(Qt (s,bmax)−Qt (s,a))

ln nt (s)− ln cm≥ βt (s)(Qt (s, bmax)− Qt (s,a)),

wherebmax = argmaxb∈A Qt (s, b) above andm is the number of actions. Further, let
c = 1/m. Taken together, this means that we wantβt (s) ≤ ln nt (s)/Ct (s) whereCt (s) =
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maxa |Qt (s, bmax) − Qt (s,a)|. Note thatCt (s) is bounded because the Q values remain
bounded (sincer (s,a) has a bounded range).

Since for everys, limt→∞ nt (s) = ∞, also

lim
t→∞βt (s) ≤ lim

t→∞
ln nt (s)

Ct (s)
= ∞;

this means that Boltzmann exploration withβt (s) = ln nt (s)/Ct (s) will be greedy in the
limit.

B.2. ε-greedy exploration

In ε-greedy exploration we pick a random exploration action with probabilityεt (s) and
the greedy action with probability 1− εt (s). Let εt (s) = c/nt (s) with 0 < c < 1. Then,
Pr(a|s, ts(i )) ≥ εt (s)/m, wherem is the number of actions. Therefore, Lemma 4 combined
with the fact that

∑∞
i=1 c/ i = ∞ implies that for alls,

∑∞
i=1 Pr(a|s, ts(i )) = ∞. Since

also by Lemma 4 for alls, limt→∞ nt (s) = ∞, and, therefore, limt→∞ εt (s) = 0, ensuring
that the learning policy is greedy in the limit. Therefore, ifεt (s) = c/nt (s) thenε-greedy
exploration is GLIE for 0< c < 1.

Appendix C: generalized Markov decision processes

In this section, we give proofs of several properties associated with generalizedMDPs, which
are described in more detail by Szepesv´ari & Littman (1996).

Define the Q-value function

Q(s,a) = R(s,a)+ γ
∑
s′∈S

Pa
ss′
⊗

a′
Q(s′,a′), (s,a) ∈ S× A. (C.1)

Here, we assume 0≤ γ < 1.
The important property for

⊗
to satisfy is thenon-expansion property:∣∣∣∣∣⊗

a

Q(s,a)−
⊗

a

Q′(s,a)

∣∣∣∣∣ ≤ max
a
|Q(s,a)− Q′(s,a)|

for all Q-value functionsQ andQ′ and all statess.
We begin by showing that an average over actions with a fixed set of weights satisfies the

non-expansion property.

Lemma 5. The function
⊗

Q(s,a) =∑ paQ(s,a) satisfies the non-expansion property,

where0≤ pa ≤ 1 and
∑

a pa = 1.
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Proof: This follows directly from definitions. IfQ andQ′ are Q-value functions, we have∣∣∣∣∣⊗
a

Q(s,a)−
⊗

a

Q′(s,a)

∣∣∣∣∣ =
∣∣∣∣∣∑

a

pa(Q(s,a)− Q′(s,a))

∣∣∣∣∣
≤
∑

a

pa|Q(s,a)− Q′(s,a)|

≤ max
a
|Q(s,a)− Q′(s,a)|. 2

A corollary is that a fixed-weight average of functions that satisfy the non-expansion
property also satisfies the non-expansion property.

We can use Lemma 5 to prove the existence and uniqueness of the Q-value function.

Lemma 6. As long as
⊗

satisfies the non-expansion property, Eq. (C.1) has a solution
and it is unique.

Proof: Define the operatorL on Q-value functions as

(L Q)(s,a) = R(s,a)+ γ
∑
s′∈S

Pa
ss′
⊗

a′
Q(s′,a′),

for all (s,a) ∈ S× A. We can rewrite Eq. (C.1) asQ(s,a) = (L Q)(s,a), which has a
unique solution ifL is contraction with respect to the max norm.

To see thatL is a contraction, consider two Q-value functionsQ and Q′. We have
|L Q− L Q′| ≤ γ maxs′ |

⊗
a′ Q(s

′,a′)−⊗a′ Q
′(s′,a′)| < |Q− Q′|, where we have used

Lemma 5, the fact thatγ < 1, and the non-expansion property of
⊗

. 2

Finally, define a family of rank-based operators:

⊗
a

i
Q(s,a) = i th largest value ofQ(s,a), for each 1≤ i ≤ m.

We show that these operators satisfy the non-expansion property.

Lemma 7. The
⊗i

a Q(s,a) operators satisfy the non-expansion property.

Proof: Let Q and Q′ be Q-value functions and fixs ∈ S. Without loss of generality,
assume

⊗i
a Q(s,a) ≥⊗i

a Q′(s,a). Let a∗ be thei th largest value ofQ(s,a): Q(s,a∗) =⊗i
a Q(s,a).
We examine two cases separately and show that the non-expansion property is satisfied

either way. IfQ′(s,a∗) ≤⊗i
a Q′(s,a), then
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∣∣∣∣∣⊗
a

i
Q(s,a)−

⊗
a

i
Q′(s,a)

∣∣∣∣∣ = Q(s,a∗)−
⊗

a

i
Q′(s,a)

≤ Q(s,a∗)− Q′(s,a∗)

≤ max
a
|Q(s,a)− Q′(s,a)|.

On the other hand, ifQ′(s,a∗) >
⊗i

a Q′(s,a), that means that the rank ofa∗ in Q′,
ρ(Q′, s,a∗) is smaller thani . This implies that there is somea′ such thatρ(Q, s,a′) < i
andρ(Q′, s,a′) ≥ i (otherwise there would bei actions with ranks less thani in Q′). For
thisa′,∣∣∣∣∣⊗

a

i
Q(s,a)−

⊗
a

i
Q′(s,a)

∣∣∣∣∣ = ⊗
a

i
Q(s,a)−

⊗
a

i
Q′(s,a)

≤ Q(s,a′)− Q′(s,a′)

≤ max
a
|Q(s,a)− Q′(s,a)|. 2
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Notes

1. The name is a reference to the fact that it is a single-step algorithm that makes updates on the basis of aState,
Action,Reward,State,Action 5-tuple.

2. Here‖ · ‖W denotes a weighted maximum norm with weightW = (w1, . . . , wn), wi > 0: if x ∈ <n then
‖x‖W = maxi (|xi |/wi ).

3. We conjecture that the same result does not hold for persistent Boltzmann exploration because related syn-
chronous algorithms do not have a unique target of convergence (Littman, 1996).
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