
Machine Learning, 40, 229–242, 2000
c© 2000 Kluwer Academic Publishers. Manufactured in The Netherlands.

Randomizing Outputs to Increase
Prediction Accuracy

LEO BREIMAN leo@stat.berkeley.edu
Statistics Department, University of California, Berkeley, CA 94720, USA

Editor: William W. Cohen

Abstract. Bagging and boosting reduce error by changing both the inputs and outputs to form perturbed training
sets, growing predictors on these perturbed training sets and combining them. An interesting question is whether it
is possible to get comparable performance by perturbing the outputs alone. Two methods of randomizing outputs
are experimented with. One is called output smearing and the other output flipping. Both are shown to consistently
do better than bagging.

Keywords: ensemble, randomization, output variability

1. Introduction

In recent research in combining predictors, it has been recognized that the success in com-
bining low-bias predictors such as trees and neural nets has been through methods that
reduce the variability in the predictor due to training set variability. Assume that the training
set consists ofN independent draws from the same underlying distribution. Conceptually,
training sets of sizeN can be drawn repeatedly and the same algorithm used to construct a
predictor on each training set. These predictors will vary, and the extent of the variability
is an important factor in the generalization prediction error.

Given training set{(yn, xn), n = 1, . . . , N} where they’s are either class labels or nu-
merical values, the most common way of reducing variability is by perturbing the training
set to produce alternative training sets, growing a predictor on each perturbed training
set, and either averaging the outcomes (regression) or letting them vote for the most pop-
ular class (classification). Examples are bagging (Breiman, 1996b) boosting (Freund &
Schapire, 1995, 1996) and arcing (Breiman, 1998a).

However, in work (Breiman, 1996b) on subset selection in linear regression, I found the
somewhat surprising result that adding noise to they’s while leaving the inputx-vectors
unchanged worked just as well as bagging. This paper extends those earlier results to
non-linear contexts in both regression and classification and also tries to understand why
perturbing outputs only works well. Although we use trees in the experimental results, the
ideas have more general validity.

In Section 2, we set up the general expressions for prediction error in regression and
classification. In these expressions, we try to isolate a component that measures the con-
tribution due to they-variability only holding the inputs constant, and another component
that measures the residual effect of input-variability. This can be done in a straightforward
way in regression, but more implicitly in classification.

230 L. BREIMAN

In Section 2 synthetic data is used in a manner that gives Monte Carlo estimates of the
variability in the decision tree learner CART (Breiman et al., 1984) caused by the separate
input and output components. The conclusions are that the output variability dominates the
input variability in regression but not in classification. However, introducing extra artificial
variability into the outputs reduces the error in classification considerably.

This suggests that if extra random variation is put into the outputs (given a single training
set), leaving the inputs fixed, producing a sequence of perturbed training sets, then the
predictors grown on these, averaged or voted, may be comparable in accuracy to methods
that perturb both inputs and outputs.

Section 3 discusses possible methods for perturbing outputs. In regression, the situation is
pretty clear. Adding Gaussian noise to the outputs works fairly well. Formulating aJ-class
classification problem in terms ofJ multiple outputs, where thej th output is one if the
output label isj , and the other outputs are zero, puts it into a regression-like multiple output
context. Now Gaussian noise can be added to each output independently of the others. We
refer to the adding of Gaussian noise to the outputs asOutput Smearing.

The most obvious way of perturbing the output in classification is to alter some of the class
labels. In this procedure, we have found that it is important to keep the class compositions
relatively invariant. Then the extent of the change is measured by a single real parameter
called the flip rate and we call the procedureOutput Flipping.

Section 4 gives the results of out experimental work with output smearing on a variety
of data sets. Generally, output smearing works better than bagging but not as well as the
Adaboost algorithm (Freund & Schapire, 1995, 1996). Section 5 gives the experimental
results on flipping. It’s error rates are comparable to output smearing. But unlike smearing
where “one size fits all”, it is sensitive to the size of the flip rate. Finally Section 6 contains
some conclusions and remarks.

2. Output variability and prediction error

Denote a training setT ={(yn, xn), n = 1, . . . , N}. Assume the(yn, xn) are independently
drawn from the same underlying probability distributionP and let(Y,X) be a random
vector having the distributionP and independent of the instances in the training set. Given
a training set, we assume that we have an algorithm that will operate on the training set
producing a functionf (x, T) whose value is the predicted output for input vectorx.

2.1. Regression

Take the mean-squared prediction error to be defined as

PE(f (·, T)) = EY,X(Y− f (X, T))2 (1)

where the subscriptsY,X denote expectation with respect toY,X holding everything
else fixed. To briefly review the work in Geman, Bienenstock, and Doursat (1992) and
Breiman (1996a), we can always decomposeY as

Y = f ∗(X)+ ε (2)

RANDOMIZING OUTPUTS 231

where we refer tof ∗(X) as the structural part ofY andε, the noise component, has the
property thatE(ε |X) ≡ 0. Substituting (2) into (1) gives

PE(f (·, T)) = Eε2+ EX(f ∗(X)− f (X, T))2

We are interested in the average performance of the algorithm over replicated training sets
of sizeN. Define

P̄E(f) = ETPE(f (·, T))

and

f̄ (x) = ET f (x, T)

Then some algebra results in:

ET,X(f ∗(X)− f (X, T))2 = EX(f ∗(X)− f̄ (X))2+ ET,X(f (X, T)− f̄ (X))2 (3)

The first term is a bias term denoted byB2(f). It measures how much the average off (x, T)
over learning sets differs from the structural part ofy given by f ∗(x). The second is the
variance termV(f) which is a measure of the fluctuation off (x, T) around its average
f̄ (x). So (3) gives the decomposition

P̄E(f) = σ 2+ B2(f)+ V(f) (4)

whereσ 2 is the noise variance. Now, denote the training set by(Y′,X′) whereY′ is the
N-long vector of outputs, andX′ the N-long array of input vectors, and let

f̄ (x,X′) = EY(f (x,Y′,X′)) (5)

That is, f̄ (x,X′) is gotten by holding the inputs constant and integrating over the output
distribution. In the identity

V(f) = ET,X(f (X, T)− f̄ (X,X′))2+ EX,X′(f̄ (X,X′)− f̄ (X))2 (6)

we identify the first term as the variability due to the outputs and the 2nd as the residual
variance due to the inputs and write

V(f) = VO(f)+ VI(f). (7)

The output variability term can be thought of this way: fix the inputsX′ and compute the
variation around the mean as outputsY′ vary over their conditional distribution givenX′.
Then average this variation over the distribution ofX′.

232 L. BREIMAN

2.2. Classification

The prediction error is defined as the misclassification rate:

PE(f (·, T)) = PY,X(Y 6= f (X, T)) (8)

The right hand side of (8) can be written as

EX PY(Y 6= f (X, T) |X) (9)

Writing

PY(Y= f (X, T) |X = x) =
∑

j

P(Y = j | x)I (f (x, T) = j) (10)

where I (·) is the 0-1 indicator function and taking expectation of (10) with respect toT
gives

PT,Y(Y= f (X, T) |X = x) =
∑

j

P(Y = j | x)PT (f (x, T) = j). (11)

To simplify notation, write

P(j | x) = P(Y = j | x), P(j | f, x) = PT (f (x, T) = j)

and let j ∗(x) = arg maxP(j | x). Then

PT,Y(Y 6= f (X, T) |X = x) = 1− P(j ∗ | x)+
∑

j

(P(j ∗ | x)− P(j | x))P(j | f, x)

(12)

leading to:

P̄E(f) = PE∗ + EX

(∑
j

(P(j ∗ |X)− P(j |X))P(j | f,X)

)
(13)

wherePE∗ is the Bayes rate and the second term, which is non-negative, is the excess
over the Bayes rate resulting from the use of the non-optimal classifierf . Let ĵ (x) =
arg maxP(j | f, x). That is, if the classifiers based on a large set of replicate training sets
voted, the plurality of votes at inputx would go to ĵ (x). Then, the second term in (13) can
be written as the sum of

EX(P(j ∗ |X)− P(ĵ |X))P(ĵ | f,X)) (14)

RANDOMIZING OUTPUTS 233

and

EX

∑
j 6= ĵ

(P(j ∗ |X)− P(j |X))P(j | f,X))

 (15)

The first term (14) we call thebias (B). If j ∗ 6= ĵ then the class that got the most votes at
x is not the optimal choice. Thus, atx the classifier is systematically wrong. The second
term we call thespread(S) rather than variance, since it does not have the properties usually
associated with the variance in regression.

Classifiers that have a large range of models to fit to the data usually have small bias.
Their error comes from the spread. That is, at an inputx, while j ∗ = ĵ , there are too many
votes for classes other thanĵ . Thus, for low bias classifiers, the key to increasing accuracy
is in reducing the spread while keeping the bias low.

The idea behind reducing the spread is this—consider the classifierf (x)= j ′(x). That
is, we assume we can generate endless replicate training sets of sizeN and definef (x) to
be the class getting the plurality vote atx. Then f (x) has zero spread, and its bias increases
to EX(P(j ∗ |X) − P(ĵ |X)). But if j ∗ = ĵ for mostx, than the bias term remains small.
So if we could generate a large number of replicate training sets, then we could drive the
spread to zero.

But generating a large number of replicate data sets is difficult. Bagging tries to imitate
this, but the bootstrapped training sets are a rough approximation. Suppose that instead, the
inputs are held fixed and replicate sets of outputs are generated. The resulting classifier is

j̃ (x,X ′) = arg max
j

PY′(f (x, (Y′,X′)) = j). (16)

Using this classifier will cut down on the spread, although not as much as usingj ′(x). Denote
by1P̄E the decrease in̄PEgotten by usingj ′(x) instead of the original classifier, byB the
bias of this predictor, by1OP̄E the reduction using̃j (x,X′), and let the residual change
due to input variability be1I P̄E = 1P̄E−1oP̄E. Therefore, we have the decomposition:

P̄E = PE∗ + B+1OP̄E+1I P̄E (17)

where1OP̄E and1I P̄E are measures of the relative importance of the output and input
variability.

3. Output variability in synthetic data

The contribution of output variability to the prediction error is difficult to measure unless
the underlying structure of the data is known. With synthetic data many replications are
possible, either of the training set or of the outputs. We define and use synthetic data to give
estimates of the output and input contributions and use unpruned CART as our prediction
algorithm.

234 L. BREIMAN

Table 1. Contributions toPE (%).

Data set Noise var. Bias Output var. Input var.

Friedman #1 8.3 25.3 47.8 18.7

Friedman #2 48.0 0.0 51.2 0.5

Friedman #3 24.4 10.7 49.1 15.5

3.1. Regression

Three synthetic data sets were used in this experiment. The structure of these three data sets
was introduced in Friedman (1991). They are also used and described in Breiman (1996a)
and referred to as Friedman #1, #2, #3. All use 200 instances in the training set. Friedman
#1 has 10 inputs. The other two have 4.

From Section 2, we have

P̄E = Ee2+ B2+ VO+ VI

In the present Monte Carlo experiments which generated all entries in Table 1, a 15000
member evaluation set was generated to estimate theY,X expectations. The training sets
are of size 200 and 50 of them were generated and averaged over in the computations for
each data set. Table 1 gives the percentage of the contributions to the total prediction error.

In the first and third data sets, the output variance was about 75% of the total variance.
In the second it was 99%.

3.2. Classification

Recall that

P̄E = PE∗ + B+1OP̄E+1I P̄E

Using three synthetic two-class data sets defined in Breiman (1998) and called twonorm,
threenorm, and ringnorm, a Monte Carlo experiment was carried out on each of these data
sets to evaluate the components of the prediction error.

Each of these data sets was used to produce 100 training sets of 300 with equal probability
of each class. To get the predictor based on voting only over the outputs, for each input
vectorx in the training set, the probabilityp(x) of class #1 was computed. In the iterations
with that training set, each time a coin was flipped with probabilityp(x) of heads. If it came
up heads, class label #1 was assigned, otherwise class label #2. Then after 100 iterations
with a training set, holding the inputs fixed, a vote was taken and the most popular class
assigned as the predictor.

An evaluation set of 15,000 was generated to estimate the components. Table 2 gives the
estimates of the components ofP̄E.

RANDOMIZING OUTPUTS 235

Table 2. Components of̄PE× 100.

Data set P̄E PE∗ Bias 1O P̄E 1I P̄E

twonorm 23.1 2.2 2.0 7.5 11.5

threenorm 34.7 10.7 2.6 13.7 7.6

ringnorm 25.0 1.4 4.0 4.6 14.9

Table 3. Percent of probabilities less than th.

Data sets th= .1 th= .01 th= .001

twonorm 92.5 79.3 60.3

threenorm 64.4 33.8 7.3

ringnorm 96.0 86.2 64.9

This table shows that for the 1st and 3rd data sets the output variability has about half
of the effect of the input variability. To illustrate the reason, the percent of instances in the
training set such that min(p(x), 1− p(x)) < th was computed for each data set for th= .1,
.01, .001 and given in Table 3 (averaged over 10 training sets).

The large percentages of small values of min(p(x), 1−p(x)) in data sets #1 and #3 reduces
the output variability. For instance, the outputs such that min(p(x), 1− p(x)) < .01 will
rarely get changed in 100 iterations. Only the instances not in the first column will have
appreciable variability. In ringnorm this is only 4% of the instances.

To push the point to the extreme, it’s possible to have data sets where the classes are
perfectly separated so that the Bayes rate is zero. Then output variability will be zero.
But, surprisingly, this does not have the consequence that randomizing outputs will not
significantly reduce prediction error. To illustrate, instead of flipping outputs on the basis
of their true probability, they are flipped with a constant probability .25 irrespective of the
input value.

More specifically, in each iteration, a training set is generated from the underlying prob-
ability for the synthetic data. From this training set, 100 new training sets of size 300 are
generated by randomly flipping outputs with probability .25. Each of these training sets is
used to grow a classifier. The 100 classifiers grown this way will have a different structure
than the classifiers grown using training sets drawn from the true underlying probability.

We can compute the components of error of these new classifiers in terms of prediction
for the original input-output relationship by using a large test set generated from the true
underlying input-output distribution.

There are some interesting changes from the results in Table 2. The first column is the
average prediction error of the individual trees. These are higher in Table 4 because they
have been trained on data with substantial noise added to the outputs. The next change is
that the bias has been significantly reduced. The biggest effect is in the 4th column which
measures the decrease in error due to voting over the 100 classifier outputs. This is the

236 L. BREIMAN

Table 4. Components of̄PE× 100 (new flipping scheme).

Data set P̄E PE∗ Bias 1O P̄E 1I P̄E

twonorm 33.1 2.2 0.6 27.7 2.6

threenorm 40.6 10.8 0.3 20.8 6.0

ringnorm 34.1 1.4 1.4 28.3 3.8

largest component in Table 4, but had moderate to minor effect in Table 2. Finally, the 5th
column shows that the effect of input variability has dropped considerably.

These results raise the interesting possibility that although the errors in the individual
classifiers may be raised by introducing noise into the output variables, voting over the
ensemble of classifiers produced this way may produce substantial increases in accuracy.
In fact, introducing an appreciable amount of artificial output variability produces, as we
will see in the following sections, as large or larger reduction in error rate than is given by
bagging, which works on both inputs and outputs.

4. Experimental results from output smearing

We ran output smearing on a variety of data sets, both regression and classification. In both
situations, a simple method was used to provide extra output variability. Yet the results were
generally better than bagging.

4.1. Regression

The procedure used here was to first compute the sample standard deviation of the outputs in
the data set. A more robust estimate was formed by doing a second pass which rejected from
the standard deviation computation any output more than 2.5 original standard deviations
from the original mean. Then new outputs were generated as:

y′n = yn + zn · sd, n = 1, . . . , N

where sd is the standard deviation estimate and the{zn} are independent unit normals. A
maximal tree is grown using the new set of outputs. This is repeated 100 times. Then, for
any test instance the predicted output is given by the average over the predictions of these
100 trees. The data sets we used in the experiment are briefly described in Table 5.

For the first three data sets, we estimated generalization error by leaving out a randomly
selected 10% of the instances, constructing the 100 trees on the remaining 90% and using
the left-out 10% as a test set. This was repeated 100 times and the test set mean-squared
errors averaged.

The robotarm data (supplied by Michael Jordan) has a separate test set of 5000 instances.
The 100 trees were constructed on the 15000 member training set and the error estimated
using the test set. For the last three synthetic data sets, in each run a 200 instance training

RANDOMIZING OUTPUTS 237

Table 5. Data set summaries.

Data set Size No. inputs

Ozone 330 8

Housing 506 12

Servo 167 4

Robotarm 15000 12

Friedman #1 200 10

Friedman #2 200 4

Friedman #3 200 4

Table 6. Mean-square error estimates.

Data set Bagging Smearing

Ozone 18.1 17.4

Housing 10.6 10.3

Servo 98.3 89.7

Robotarm 4.72 4.64

Friedman #1 6.23 5.01

Friedman #2 21.4e3 22.2e3

Friedman #3 25.1e-3 23.3e-3

set and 2000 instance test set were generated. The 100 trees were built on the training set
and evaluated using the test set. This was repeated 50 times and the results averaged. The
error estimates are given in Table 6 and compared with the use of bagging using the same
procedures for error estimation and 100 bagged trees per run. Except for one synthetic data
set, smearing produces lower error rates than bagging. The reduction is not spectacular, but
consistent.

4.2. Classification

To emulate output variability in classification, classification was turned into a multiple
output regression problem. If there wereJ classes, there areJ outputs. If the class of the
nth instance wasj , then thej th output is one with zeroes in the other outputs. The splits
were based on minimizing the total sum-of-squares. For class label 0-1 outputs this reduces
to the Gini criterion.

Given J-class data, a standard deviation measure is computed for each class. Ifpj is the
proportion of the instances in classj , then define

sdj = 2
√

pj (1− pj).

238 L. BREIMAN

Table 7. Data set summaries.

Data set Size No. inputs No. classes Test set

sonar 208 60 2 10%

glass 214 9 6 10%

breast (Wis) 699 9 2 10%

ionosphere 351 34 2 10%

soybean 683 35 19 10%

vehicle 846 18 4 10%

vowel 990 10 11 10%

letters 15000 16 26 5000

dna 2000 60 3 1186

satellite 4435 36 6 2000

digit 7291 256 10 2007

wave 300 21 3 3000

twonorm 300 20 2 3000

threenorm 300 20 2 3000

ringnorm 300 20 2 3000

The new outputs are given by

y′j,n = yj,n + zj,n · sdj j = 1, . . . , J n= 1, . . . , N

where the{zj,n} are independent unit normals. The predictions of the trees built using
smeared outputs are no longer 0-1. A class prediction is made based on which output is the
largest.

As in regression, 100 trees are built based on 100 sets of smeared outputs. Given a new
test instance, these trees vote and the predicted class is the one having the plurality of the
votes. The data set summarized in Table 7 were used in the experiment:

For the first 8 data sets, 10% was left out in each run generating 100 trees and used as a
test set. The results were averaged over 100 runs. For the next 4 data sets, there were only
one run generating 100 trees. The test set was then used to get the error estimate. The last
four data sets are synthetic, with equal probabilities of each class. For these, a training set
of 300 and test set of 3000 were newly generated for each run. The error was averaged over
50 runs. The results are given in Table 8 and compared with bagging whose error estimates
are derived using the same procedure as for smearing.

For comparison, the results for CART are also listed. These were gotten by leaving
out 10% in the first 8 data sets, using 10-fold cross-validation to determine the size of
the tree grown on all of the data (except for the 10% test set) and then running the
test set down the designated tree. This was repeated 100 times and the results averaged.
Thus, 1100 trees were grown for each of the first 8 data sets. For the next 4 data sets
a single CART tree was selected using 10-fold cross-validation and the test set used to

RANDOMIZING OUTPUTS 239

Table 8. Misclassification error (%).

Data set Bagging Smearing CART

sonar 20.1 16.3 29.2

glass 23.2 22.6 29.8

breast (Wis) 4.1 3.4 5.7

ionosphere 7.9 6.9 14.5

soybean 6.8 5.6 9.3

vehicle 15.4 15.8 30.1

vowel 8.0 4.4 20.9

letters 6.4 5.2 13.2

dna 5.1 5.1 6.2

satellite 10.0 9.2 14.0

digit 10.5 9.9 16.5

waveform 19.5 18.6 29.8

twonorm 6.9 5.2 23.2

threenorm 19.5 18.1 33.9

ringnorm 9.9 7.0 22.1

estimate the error. For the synthetic data sets, the procedure used a 300 instance training
set and 3000 instance training set with a cross-validated tree selected using the training set
only.

Smearing is consistently better than bagging—sometimes significantly better.

5. Experimental results from flipping outputs

Flipping outputs refers to changing the class label of an input. In our experiments, it was
found that accuracy was improved by flipping outputs so that the class proportions remained
about the same. That is, if classj outputs had a certain probability of being changed, then
the changes of the other class outputs into classj would keep the proportion of classj
instances in the training set about equal to the original proportion of classj instances.

To do this, the following random flipping regime was used: letc(k) be the proportion of
classk labels in the training set, and denote byp(j | k) the probability that if the class label
of an instance isk, we will flip it into label j . Then set the value of a parameterw and let

p(j | k) = w∗c(j), j 6= k

p(k | k) = 1− w(1− c(k)).

Some algebra shows that the only invariant probability distribution under these transitions
is {c(k)}. If the flip rate fr is defined to be the proportion of instances that have their output

240 L. BREIMAN

Table 9. Misclassification error (%).

Data set Smearing Flipping Flip rate

sonar 16.3 17.3 .20

glass 22.6 23.1 .25

breast(Wis) 3.4 3.7 .15

ionosphere 6.9 7.5 .20

soybean 5.6 6.2 .25

vehicle 15.8 15.5 .25

vowel 4.4 4.0 .50

letters 5.2 4.7 .45

dna 5.1 4.9 .40

satellite 9.2 9.3 .30

digit 9.9 8.9 .40

waveform 18.6 18.5 .30

twonorm 5.2 5.2 .25

threenorm 18.1 18.3 .20

ringnorm 7.0 5.7 .25

flipped, then

w = fr

(1− sq)
(18)

wheresq=∑ j c(j)2. To see this, note that the proportion of classk labels that get flipped
isw(1− c(k)). The total proportion that get flipped is the sum ofw(1− c(k))c(k). Putting
this sum equal to fr and solving forw gives (18).

Unlike smearing outputs where one size fits all (more or less) the success of flipping
outputs depends on the value of the flip rate selected. We tried values of the flip rate going
from .10 to .50 in increments of .05 and report the lowest error rate over 100 iterations
of leave out 10% or test set evaluations. This is done in Table 9 which also compares the
results to smearing and gives the value of the flip rate used.

It’s pretty much a dead heat between smearing and flipping. There are some interesting
error decreases with flipping on the vowel, letters, digit, and ringnorm data sets. But having
to choose the optimum value of the flip rate makes flipping less attractive.

6. Remarks

Since the advent of bagging there have been questions as to whether similar results could
be gotten from just randomizing the outputs—in particular, by flipping the outputs. Freund
and Schapire (1998) list this as an interesting unsolved problem in combining predictors.

RANDOMIZING OUTPUTS 241

I put this off for a while because it seemed that the selection of which outputs to flip
was a difficult problem and I couldn’t see a way around it. I would have rejected the idea
of giving each output a flip probability that depended only on the class proportions in
the training set as being too simplistic to work well. But using the synthetic data sets, I
investigated whether knowledge of the output probabilities could be combined with the flip
method used in Section 5 to further increase accuracy. I could find no combination that gave
improvement.

It’s interesting that while the true output variability may be small, adding substantial
output variability gives a decrease in error rates as large or larger than bagging. We do have
an clue as to why this works better than bagging. The theoretical and experimental results
concerning bagging show that while it reduces variance it has little effect on bias, and may
even increase it a little. In the experiments on synthetic data in Section 3, randomizing the
outputs by flipping gave significant decreases in bias. The bias-reduction capability may
explain the improvement.

A natural follow-up is to try and combine bagging and output randomization. I tried
combining flipping with bagging and got small unexciting improvements in most cases. The
essential problem in combining classifiers is in growing a suitably diverse ensemble on base
classifiers, and that there are many ways of doing this work. For instance Dietterich (1998)
found that randomizing split selections in growing trees gave results often better than
bagging.

None of the above methods give as small an error as does the Adaboost algorithm
(Freund & Schapire, 1995, 1996) or half&half bagging (Breiman, 1998b) whose reasons for
working still remains a bit of a mystery (see Breiman, 1997). For instance, Adaboost, run
on the 15 data sets used above, averages a 5% lower misclassification rate than smearing.

I have been pointed by a referee to two other studies that have looked at the effect of
adding noise to the outputs. One (An, 1996) is an analytic study of the effects of adding
noise when neural nets for regression are trained. He concludes that “zero-mean and constant
variance noise added to the desired output have no effect on generalization.” This conclusion
refers to the effect of small added output noise applied to the training of a single model.
The other (Grossman & Lapedes, 1993) uses flipping outputs on neural net classifiers to
develop diagnostics for overfitting-underfitting of a single model. The goal of this present
paper is considerably different than either.

References

An, G. (1996). The effects of adding noise during backpropagation training on generalization performance.Neural
Computation, 6, 643–674.

Breiman, L. (1996a). Bagging predictors.Machine Learning, 26(2), 123–140.
Breiman, L. (1996b). The heuristics of instability in model selection.Annals of Statistics, 24, 2350–2383.
Breiman, L. (1997). Prediction games and arcing algorithms. Technical Report 504, Statistics Department, Uni-

versity of California at Berkeley. Available at www.stat.berkeley.edu
Breiman, L. (1998a). Arcing classifiers (with discussion).Annals of Statistics, 26, 801–849.
Breiman, L. (1998b). Half and half bagging and hard boundary points. Technical Report 534, Statistics Dept. Univ.

of Calif. at Berkeley.
Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984).Classification and Regression Trees. Chapman and

Hall.

242 L. BREIMAN

Dietterich, T. (1998). An experimental comparison of three methods for constructing ensembles of decision trees:
Bagging, boosting and randomization.Machine Learning, 1–22.

Freund, Y. & Schapire, R. (1997). A decision-theoretic generalization of online learning and an application to
boosting.Journal of Computer and System Sciences, 55(1), 119–139.

Freund, Y. & Schapire, R. (1996). Experiments with a new boosting algorithm. InMachine Learning: Proceedings
of the Thirteenth International Conference(pp. 148–156).

Freund, Y. & Schapire, R. (in press). Discussion of “Arcing Classifiers” by L. Breiman.Annals of Statistics.
Friedman, J. (1991). Multivariate adaptive regression splines (with discussion).Annals of Statistics, 19, 1–141.
Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural networks and the bias/variance dilemma.Neural

Computation, 4, 1–58.
Grossamn, T. & Lapedes, A. (1993). Use of bad training data for better predictions.NIPS, 6, 343–350.

Received May 14, 1998
Accepted July 12, 1999
Final manuscript July 12, 1999

