
Machine Learning, 38, 109–131, 2000.
c© 2000 Kluwer Academic Publishers. Printed in The Netherlands.

Refining Numerical Constants in First Order
Logic Theories

MARCO BOTTA botta@di.unito.it
ROBERTO PIOLA piola@di.unito.it
Dipartimento di Informatica, Università di Torino, Corso Svizzera 185, 10149 Torino, Italy

Editor: Floriana Esposito, Ryszard Michalski, & Lorenza Saitta

Abstract. This paper proposes a method for refining numerical constants occurring in rules of a knowledge base
expressed in a first order logic language. The method consists in tuning numerical parameters by performing error
gradient descent. The knowledge base to be refined can be manually handcrafted or automatically acquired by a
symbolic relational learner, able to deal with numerical features. The results of an experimental analysis performed
on four case studies show that the refinement step can be effective in improving classification performances.

Keywords: theory refinement, first order logics, numerical terms

1. Introduction

Learning classification theories expressed in First Order Logic (FOL) is a hard task, and
becomes even harder when dealing with numerical terms. Nevertheless, FOL is appealing
because it allows one to face problems that cannot be reduced to propositional logics,
such as learning from structured data of finite but unconstrained size, or handling recurrent
structures. Moreover, even when a problem could be solved in a propositional setting,
the solutions found in FOL are often more abstract and simpler. A serious problem to be
faced in real world applications is represented by the presence of numerical terms, such as
continuous-valued thresholds or parameters, which are difficult to estimate for an expert.

In the propositional setting, many induction algorithms belonging to the symbolic (e.g.,
Quinlan 1993; Breiman et al., 1984) and the connectionist paradigms (e.g., Rumelhart &
McClelland, 1986; Jang, 1993; Moody & Darken, 1988) are capable of effectively learning
numerical constants from data.

In FOL, the problem of learning “numerical” knowledge is receiving an increasing atten-
tion. In the framework of Inductive Logic Programming (ILP), a number of techniques have
been devised to tackle the problem: transformation of relational problems into equivalent
propositional ones, as it is done by LINUS (Lavraˇc & Dz̆eroski, 1994); use of a priori “nu-
merical knowledge” either in a procedural form, as in FOIL (Quinlan, 1990) and SMART+
(Botta & Giordana, 1993), or in a declarative form as in Progol (Muggleton, 1995); exten-
sion of TDIDT techniques (Quinlan, 1983) to FOL, as in TILDE (Blockeel & De Raedt,
1998) and STRUCT (Watanabe & Rendell, 1991); integration of numerical regression into
ILP, as in FORS (Karaliˇc & Bratko, 1997); use of constraint logic programming, as in STILL

110 BOTTA & PIOLA

(Sebag & Rouveirol, 1995). All these approaches are based on some form of on-line dis-
cretization or regression technique, but, in order to keep the computational complexity of the
whole learning process manageable, they do not allow the fine tuning of numerical knowl-
edge. Moreover, numerical constants are learned one at a time, as it happens in decision
trees.

In a recent paper (Botta, Giordana, & Piola, 1997a), we presented a hybrid method
for globally refining numerical constants occurring in FOL classification theories, using
a connectionist learning scheme. The approach consists in transforming a flat classifica-
tion theory into a network of elementary continuous-valued functions, corresponding to
predicates and logical connectives, which can be refined by using an error gradient descent
algorithm (Rumelhar & McClelland, 1986). Such a network, called First Order logic Neural
Network (FONN), can be seen as an extension to FOL of KBANN (Towel & Shavlik, 1994)
and of analogous methods, developed for propositional logic (Baroglio et al., 1996; Tresp,
Hollatz, & Ahmed, 1993), based on Radial Basis Function Networks (RBFNs) (Poggio
& Girosi, 1990; Moody & Darken, 1988), or on other paradigms (Fu, 1993; Mahoney &
Mooney, 1994).

The introduction of a refinement step as a post-processing after the learning phase may
have some advantages: first of all, simpler and more efficient discretization algorithms can
be used in the learning phase, since the assignment of values to numerical constants can be
optimized later in the refinement step. Secondly, a purely symbolic learning algorithm can
be used to acquire the initial knowledge base, provided that numerical data are discretized.
Moreover, if a knowledge base is elicited from an expert, he/she is not required to be very
precise about numerical values, as they can be automatically adjusted later. A disadvantage
is the greater total running time of the entire process.

In this paper we propose a new formulation of the FONN approach, realized in the system
NTR (Numerical Term Refiner), which naturally fits the logic programming paradigm and
allows one to deal with a class of theories that are more general than the flat theories
considered in FONN (Botta, Giordana, & Piola, 1997a). The main advantage of NTR is
that it preserves the classical logic semantics of the theories to be refined, without the need
of translation between different formalisms, as was the case in FONN.

A major difference between NTR (or FONN) and all the above mentioned learning
systems, which are able to deal with numerical data, is that the used error gradient descent
algorithm performs a global optimization of the constants inside a clause, in contrast to the
local optimization performed when literals are added one at a time.

NTR has been tested on four complex datasets, containing structured data with numeric
attributes, in order to assess whether the method can actually improve performances of a
knowledge base by refining its numerical constants.

In most case studies, the refinement procedure has been applied to a knowledge base
previously induced from a dataset by a FOL learner (we used SMART+ (Botta & Giordana,
1993) and FOIL (Quinlan, 1990), but any of the previously mentioned systems could have
been used). The acquired knowledge base contains rough estimates of numerical terms. In
one case, an approximate knowledge base, given by a human expert, has also been refined.
The results obtained in the refinement step show significant increases in performances on
the test sets.

REFINING NUMERICAL CONSTANTS IN FOL THEORIES 111

The paper is organized as follows: Section 2 introduces the knowledge representation
formalism along with the philosophy of the approach. Section 3 describes the basic error
gradient descent algorithm, whereas Section 4 extends the algorithm to multiple clauses
and multiple target concepts. The experimental settings and results obtained are discussed
in Section 5. Finally, Section 6 reports a discussion, and Section 7 concludes the paper.

2. Knowledge representation formalism

In this section we will briefly describe how the problem of refining numerical constants
inside logic expressions can be reduced to the problem of tuning the parameters of corre-
sponding continuous, numerical, and derivable functions, as required by the error gradient
descent algorithm (Rumelhart & McClelland, 1986).

We assume the reader is familiar with standard logic programming terminology (Lloyd,
1987) and only recall here a few notions.

Examples processed by NTR are represented by specifying their elementary components,
calledobjects, plus a set of theirpropertiessuch as “color” or “length”, and relationships,
such as “relative position”. This representation is close to the one adopted in object oriented
databases (see (Giordana et al., 1997) for a more detailed description).

Theories consists of sets of clauses with the following format:

Head← literal1 ∧ · · · ∧ literaln

whereHeadis a positive predicate andliterali is a positive or negated predicate. Theories can
be stratified (Apt, Blair, & Walker, 1988): stratification determines priority levels (strata) of
a set of predicates, and guarantees that a predicate is not dependent on its negation. Clauses
arerange-restricted, i.e., variables in the head of a clause must also appear in its body. In
the following, the last letters of the English alphabet (such as v,x,y,z) will denote variables,
whereas numerical constants will be denoted by the first letters of the alphabet (a,b,c,d).
Functors can only appear in the special predicateInside, that is used to represent constraints
on the values of numeric features. The syntactic form of this predicate is the following:

Inside(f (x1, . . . , xs), [a, b]),

where f (x1, . . . , xs) is a real-valued function that computes the value of a numerical feature
defined on objectsx1, . . . , xs, and [a, b] is a closed interval in the real domain. Occasionally,
f may simply be the value of a property. The semantics of predicateInsideis defined as
usual:

Inside(f (x1 . . . , xs), [a, b]) is

{
true if f (x1, . . . , xs) ∈ [a, b]
false otherwise.

(1)

Predicates like “greater than” and “less than” have been translated into closed intervals with
one extreme outside the range of interest of the feature.

Let us now introduce a simple example that will be used throughout this section for
the sake of illustration. Suppose we want to define the concept “deluxe suite” in terms of

112 BOTTA & PIOLA

“expensive” and “deluxe room”, in turn defined over cost and size of the rooms. A possible
theory encoding these concepts is the following:

DeluxeSuite(x)← Suite(x) ∧ Expensive(x) ∧ contains(x, y)∧
∧DeluxeRoom(y)

Expensive(x)← Inside(rate(x), [a, b])
DeluxeRoom(x)← ElegantlyFurnished(x)∧

∧ Inside(length(x) · width(x), [c, d])

(2)

A learning problem can be defined as follows:

• Given a theory T (clauses in (2)) and a learning setL (examples and counterexamples of
conceptDeluxeSuite)
• Determine an assignment of values for the numeric constants in T (a, b, c andd in (2))

in such a way to minimize the prediction error of T on the setL.

By referring to example (2), it is immediate to verify that the following operational
definition1 of the conceptDeluxeSuite(x)can be deduced in a few resolution steps (Mitchell,
Keller, & Kedar-Cabelli, 1986):

DeluxeSuite(x)←
Suite(x) ∧ Inside(rate(x), [a, b]) ∧ contains(x, y)∧
∧ElegantlyFurnished(y)∧
∧ Inside(length(y) · width(y), [c, d])

(3)

It should be pointed out that, if the theory contains recursive clauses, an unfolding process
must be applied; this process, however, always terminates, because finite domains are
considered. Moreover, all operational definitions must be supported by the provided data,
i.e., they must be true of at least one example.

In general, a suite has several rooms; then, for every suite described inL, many substitu-
tions forx, y potentially satisfying definition (3) may exist, depending on the values chosen
for constantsa, b, c andd. Specifically, all substitutions satisfying sub-formula:

Suite(x) ∧ contains(x, y) ∧ ElegantlyFurnished(y) (4)

are potential candidates to satisfy definition (3). Constantsa, b, c andd shall be chosen
in such a way that, for every deluxe suite, at least one substitution exists that satisfies the
numerical constraints stated by the twoInsidepredicates. At the same time, no non-deluxe
suite should satisfy those constraints. Considering that featuresrateandarea(length·width)
define a two-dimensional space, the learning problem can be described as in figure 1, where
points represent substitutions forx, y, and the intervals [a, b] and [c, d] define a rectangle
R(a, b, c, d).

The semantics ofInside, defined by (1), has the drawback of being discontinuous and
hence not derivable. In order to apply a gradient descent algorithm, we need to approximate

REFINING NUMERICAL CONSTANTS IN FOL THEORIES 113

Figure 1. Representation of the learning problem in the two-dimensional space defined by the numeric values
of room rate and area. The area is the product of room length and width.

Figure 2. Approximation of a rectangular activation functionInside(f (x1, . . . , xs), [a, b]) by means of a bell-
shaped functioninside(f (x1, . . . , xs), [a, b]).

(1) with a continuous function. In this paper, we use the following bell-shaped function:

inside(f (x1, . . . xs), [a, b]) = 1(
1+

∣∣∣(f (x1,... xs)−µ1

µ2

)r ∣∣∣) (5)

being f (x1, . . . xs) a real-valued function as before,µ1 = (a + b)/2, µ2 = (b − a)/2
andr a positive real number (see figure 2). Function (5) has been used in (Jang, 1993) for
implementing continuous-valued semantics in fuzzy logic controllers. It is worth noticing
that the intersection betweeninside(f (x1, . . . , xs), [a, b]) and the straight liney = 0.5
corresponds to the segment [a, b]. Then, the conditionsinside(f (x1, . . . , xs), [a, b]) ≥ 0.5
andInside(f (x1, . . . , xs), [a, b]) are semantically equivalent. Moreover, a conjunction of

114 BOTTA & PIOLA

the type:Inside(f (x1, . . . , xs), [a, b])∧inside(g(y1, . . . , ym), [c, d]) can be translated into:

α(inside(f (x1, . . . , xs), [a, b]), inside(g(y1, . . . , ym), [c, d])) ≥ 0.5 (6)

where the symbolα denotes a combination function.
Let us consider now the logical expression:

DeluxeSuite(x)←
Suite(x) ∧ contains(x, y) ∧ ElegantlyFurnished(y)
∧α(inside(rate(x), [a, b]), inside(length(y) · width(y), [c, d])) ≥ ø.5

(7)

Formula (7) is semantically equivalent to formula (3) only ifα(f, g) ≥ 0.5 implies f ≥ 0.5
and g ≥ 0.5, and viceversa. We assume in the following that functionα satisfies this
condition.

Notice thatα, in (7), can be interpreted as a measure of how close a substitution is
to the center of the rectangleR(a, b, c, d) in the numerical feature space. Therefore, by
matching formula (7) and recording the value ofα for each alternative substitution, we
obtain a measure of the distance of each potential substitution from the center of rectangle
R(a, b, c, d). This measure can be used to guide the refinement algorithm, as described in
the next section.

We still have to discuss the choice of the combination functionα. In principle, function
α may seem superfluous, since formula (6) can be rewritten as:

inside(f (x1, . . . , xs), [a, b]) ≥ 0.5∧ inside(g(y1, . . . , ym), [c, d]) ≥ 0.5 (8)

However, expression (6) is more concise and allows a continuous unique activation value
to be assigned to formula (7). Several combination functions forα can be used: in FONN,
α was equated to thearithmetic product, because it is the function used in RBFNs (which
FONN is inspired by) to implement logical AND, whereasα is themin function in NTR,
which is the standard way to implement logical AND. The reason is that we want to preserve
as much as possible the classical logic semantics; furthermore, expressions (6) and (8) are
equivalent w.r.t. this choice, as mentioned earlier.

3. The basic learning algorithm

In this section, we describe the algorithm for refining numerical constants, starting from the
case of a single unfolded clause. To this aim, the notions introduced in the previous section
need to be put in a more general form. The extension to multiple clauses and multiple target
concepts will be given in the next section.

Let us consider an unfolded clause in a theory T defining a concept C. It can be written
in the following way:

C← ϕ ∧ ψ (9)

REFINING NUMERICAL CONSTANTS IN FOL THEORIES 115

whereϕ denotes a conjunction of literals not containing any numerical constant andψ is
an assertion of type (6), containing numerical constants only. Letµ denote the set of all
such constants. Formulaϕ may be empty as a special case (clauses with emptyψ are not
refined).

Given a setL of examples, a positive instance ofC, e+ ∈ L, must verify formula (9),
whereas no negative instancee− ∈ L should. An instancee ∈ L verifies a formulaϕ ∧ ψ
if there exists a substitutionθ(e) of objects ine for the variables occurring inϕ, such that
numerical constraintsψ are satisfied.

For every instancee ∈ L, subformulaϕ in (9) may have a non empty set2(e) of
substitutions that make it true. Then, learning consists in finding a proper assignment for
the constants inψ such that for every positive instancee+ ∈ L,2(e+) contains at least one
substitution that satisfiesψ , and, for every negative instancee− no substitution belonging to
2(e−) satisfiesψ . In other words, for every positive instancee+ the functionα in ψ must
assume a value greater than or equal to 0.5 for at least one substitution in2(e+), whereas,
for every negative instancee− the value ofα must be less than 0.5 for all substitutions in
2(e−).

By computing the difference between 1 and the value ofα for a given substitution for
the positive instances, and simply takingα for the negative ones, an error measure can be
defined as follows:

E = Fθ(e)(α, τ) (10)

whereτ ≥ 0 is a threshold used to improve learning speed and classification accuracy by
avoiding overtraining. By settingτ = 0, standard error descent algorithm is performed.
Two different expressions forFθ(e) have been experimented, namely, the quadratic error:

Fθ(e)(α, τ) =


0 if α ≥ 1− τ ande denotes a positive instance

(1− α)2 if α < 1− τ ande denotes a positive instance
0 if α ≤ τ ande denotes a negative instance
α2 if α > τ ande denotes a negative instance

(11)

and a thresholded cross-entropy error:

Fθ(e)(α, τ) =


0 if α ≥ 1− τ ande denotes a positive instance

− log(α) if α < 1− τ ande denotes a positive instance
0 if α ≤ τ andedenotes a negative instance

log(1− α) if α > τ ande denotes a negative instance

(12)

Error function (12) allows faster learning, but may have a negative impact on the stability
of the gradient descent algorithm (Botta, Giordana, & Piola, 1997c).

Having defined an error function, the gradient descent on the error surface is performed
proceeding by epochs, according to the classical off-line learning scheme, as in feed-forward
neural networks (Rumelhart & McClelland, 1986). At every epoch, the whole learning set
L is classified and for every parameterµk ∈ µ, a correction is computed as the partial

116 BOTTA & PIOLA

derivative of the error function with respect toµk and accumulated in a temporary variable
1µk, according to the following rule:

1µk =
∑
e∈L

−η ∂E

∂µk
(13)

being 0< η < 1 the learning rate.2

Afterwards, numerical constants inψ are updated using corrections1µk.
In order to compute formula (13), two problems are still to be solved: the first one

concerns the existence of derivatives of the functionα, which is not continuous in NTR.
The second problem concerns the selection of a particular substitution in2(e), which is,
as well, a non-continuous operator.

The first problem can be circumvented in several ways. The one we followed consists in
approximating theminfunction with a continuous one: botharithmetic productandsoft-min
are good candidates (see (Botta, Giordana, & Piola, 1997a) for a deeper discussion). This
is a standard procedure in connectionist learning, and is justified by the fact that both the
approximation and themin function tend to 0 when minimized and to 1 when maximized.
The results presented in Section 5 have been obtained by approximatingαwith thearithmetic
product, but only when computing the derivatives, and not in the classification phase.

For what concerns the selection of a substitution, letθMAX(e) be the one that produced
the largest value forα. In the case there are more than one such substitutions, the first one
found is chosen, without loosing generality. The gradient descent is applied to the formula
instantiated withθMAX(e). The intuition behind this choice is that for a positive instance the
corrections suggested byθMAX(e+) tend to increase the value ofα, whereas for a negative
instance the corrections suggested byθMAX(e−) tend to decrease the value ofα. In fact, it
can be proved that the direction of the gradient cannot be inverted by considering all possible
substitutions, at least along the dimension corresponding to substitutionθMAX(e), i.e., the
derivative with respect to the parameter that receives the largest update do not change sign
(Piola, 1998).

4. Extension to multiple clauses and target concepts

The basic algorithm, described in the previous section, optimizes numerical constants in
the context of a single clause. Several aspects need to be discussed when generalizing this
algorithm to multiple clauses and target concepts in a stratified theory.

First of all, let us consider the case of multiple clauses, but only one target concept C.
This corresponds to the case of a multimodal target concept, where each clause describes
one of its modality.

An extension of the learning algorithm is straightforward: clauses are unfolded and
numerical constants are refined as previously described. In this way, every clause will have
its own private values for the numerical constants; as a result the number of occurrences of
literals increases with respect to the original theory, as well as the computational complexity
of the refinement process. If closeness to the original theory is not a concern, this is an
affordable solution, provided that enough instances are available for training, because the
number of constants to tune may become large.

REFINING NUMERICAL CONSTANTS IN FOL THEORIES 117

An additional difficulty, w.r.t. the single clause case is that an instance in the learning
set may satisfy several clauses: in FONN, all satisfied clauses were taken into account,
and their activations were combined through a perceptron function and an update value
backpropagated to all the clauses. For reasons analogous to those of Section 3, only the
clause with the highest activation valueα is refined, in NTR. For what concerns a negative
instance, the most activated clause is the one responsible for misclassification and, hence,
the one that needs to be refined the most. Since the refinement phase consists of many
repetitions (epochs), this strategy is consistent and converges to a minimum of the error.

If, on the contrary, the refined theory must be kept as close as possible to the original
one, clause unfolding is performed as before, but numerical literals (predicates “Inside”)
deriving from the same clause are marked as shared. Analogously to what happens in
multi-layer perceptrons, shared predicates receive and mediate updates from all the clauses
that use them, so that refined clauses can be refolded to their original structure. NTR can
operate by refining either independent clauses or clauses with shared predicates, depending
on the way clauses are unfolded.

The extension to multiple target concepts is, again, straightforward, when concepts are
independent: it is sufficient to consider one target concept at a time, to unfold its clauses,
and refine them separately.

When target concepts are dependent one another (not mutually), it is always possible
to define an order among them, and refine them one at a time according to the given
ordering. Nonetheless, since in NTR numerical literals deriving from the same clause are
shared, there is a form of hidden dependency among target concepts. As the result of
the refinement process may depend upon the order of processing of the target concepts,
refining a concept at a time may lead to a non optimal solution. Therefore, in NTR, as well
as in FONN, multiple target concepts are learned simultaneously. To this aim, NTR uses a
technique similar to that employed in multiple-output neural nets, where errors computed
at every output node are backpropagated. In particular, given an instanceeof a conceptCi ,
the best substitutionθMAX(e) for each clause in the theory is considered. Then, for every
target conceptCj only the most activated clause is kept. At this point, for each concept
Cj an error value is computed, according to function (11) or (12), remembering thate is a
positive example ofCi and a negative example of anyCj 6= Ci . The accumulated error is
used to update the parametersµ, mediating contributions in shared predicates, as before.

In the current implementation, NTR cannot deal with (mutually) recursive target concept
definitions. A possible way to face this problem, might be the adaptation of the solution
used in recurrent networks (Omlin & Giles, 1996; Frasconi et al., 1996), where output
signals are fed back as delayed inputs.

5. Experimental results

In order to test the effectiveness of the approach, we used four datasets containing struc-
tured instances, i.e., composed of a number of elements, each described by numerical and
categorical features, whose classification depends upon both types of features. The first two
are artificial datasets, purposefully designed to test the approach in a controlled environ-
ment; the other two are real-world datasets. We report results obtained by running SMART+

118 BOTTA & PIOLA

(Botta & Giordana, 1993) and FOIL (Quinlan, 1990) (wherever possible) to initially acquire
a knowledge base, which is then refined by NTR and FONN (for comparison).

The first dataset allows us to define three typical two-class learning problems, in which
either the definition for the positive or for the negative class is sufficient to perform a
classification. The other three datasets are multi-class problems (10, 8 and 10 classes,
respectively) and definitions for every class have to be learned. While in the first dataset
the classification strategy is straightforward (instances verifying the learned definitions are
considered positive), the other problems require a more sophisticated classification policy.
In particular, both SMART+ and FOIL, using a crisp semantics, may classify unseen instances
ambiguously, if they verify rules concluding different classes, or not classify them at all, if
no rules are satisfied. The classification strategy we adopted in FONN and NTR slightly
differs from the one above: since clauses have continuous activation values, we considered
all clauses with an activation value≥0.5, and assigned an instance to the concept defined
by the clause with the greatest value. If all clauses have activation values<0.5, the instance
is not classified.

5.1. The train check-out case study

In order to analyze the behaviour of a learning algorithm, artificial datasets offer the advan-
tage that the learning task can be made arbitrarily complex by chosing the size of the data,
the distribution of the attribute values and the rule for partitioning the learning events into
positive and negative ones.

Starting from the well-knowntrain-going-eastproblem defined by (Michalski, 1983) we
extended the dataset by introducing continuous features. A car is described by a vector of
four continuous and five discrete attributes: width, length, height and weight, the presence
of lights and brakes, the load type (no load, passengers, normal/special materials), the type
of a car (engine or not) and the number of car axles (2, 3, 4, or 6). The first car of a train is
always an engine, but on long trains there is often another engine at the end, and perhaps
one in the middle. An engine has a different minimum weight than standard car, and always
has lights and brakes. A procedure randomly generates instances of trains, each composed
by 2 to M cars, being M a parameter of the procedure.

The problem consists in deciding whether a train must not be allowed to transit on a given
line (check-out procedure followed by a railway inspector), depending on the characteristics
of the line (for instance, if there are bridges on the railway the train must not weigh more than
the bridge can bear). Three different instances of the problem, of increasing complexity,
have been created by varying the number of cars (from 1 to 3) and the kind of attributes
(numerical and discrete) involved in the decision rule.

The rule used inTask 1 is based on the value of a numerical attribute of a single car:

A train is not allowed to go if it contains at least one car whose weight, or height, or
length or width exceeds a given threshold

This task is simple because it can be easily translated into a propositional setting. However,
the ability to handle structured data simplifies the learned knowledge base, by reducing the
number of rules.

REFINING NUMERICAL CONSTANTS IN FOL THEORIES 119

In Task 2 trains are classified using rules based on numerical attributes of two or three
adjacent cars:

A train is not allowed to go if it contains two cars that are near each other and whose
weights exceed a thresholdw1 or if it contains three cars that are near one another, whose
weights are in an interval [w2, w3]

Two cars are considered near each other if they are at most three positions apart. This task
is more complex than the previous one, because correct classification depends upon two
or three cars. The first order theory learned is as compact as in the previous task, whereas
a propositional counterpart turned out to be much more complicated (Botta, Giordana, &
Piola, 1997b).

In Task 3 trains are classified by a rule based on both numerical and discrete attributes
of two cars:

A train is not allowed to go if it contains two near cars, both without brakes and heavier
than a thresholdw4 or if it contains two near cars carrying an unstable load (special
material) and heavier than a thresholdw5 < w4

In order to test NTR’s ability to generalize well over the number of seen objects (in this
case, cars) that constitute a learning instance (a train), we generated three series of learning
setsL1, L2 andL3 containing 100, 200 and 500 trains, respectively, about 50% positive,
whose lengths were randomly chosen between 2 and 8 cars. Two test sets have then been
generated: test setA contains 10000 trains, whose number of cars was randomly chosen
between 2 and 8, as for the learning sets; test setB also contains 10000 trains, but with a
number of cars up to 153.

We ran SMART+ and FOIL on the three problems, averaging the results on five different
learning sets, generated from different random seeds, and refined the theories so acquired for
1000 epochs by using FONN and NTR. Moreover, we refined three “handcrafted knowledge
bases” (one per task) containing structurally correct rules, but with all the numerical terms
perturbed by∼30% with respect to their correct values.

Figures 3 through 5 show the percentages of correct classification, before and after the
refinement step. On Tasks 1 and 2, since results obtained learning from 200 and 500
instances were quite similar, we only reported those obtained from 500 instances.

As expected, the refinement step is quite effective on the handcrafted knowledge bases, as
it helps adjusting the wrong numerical terms in the theories, reaching on all tasks more than
98% correct classification. It should be pointed out that NTR is slightly better than FONN
on most tasks, even though FONN combines continuous evaluation functions and some
form of evidential reasoning (particularly, weighted rules and sigmoidal output activation
functions). This might be due to the fact that NTR converges faster than FONN to a local
minimum of the error. This is particularly evident in Task 1, where performances of NTR
on the handcrafted knowledge base before refinement are significantly worse than FONN’s,
but after the same number of epochs performances are almost the same.

On Task 1, both SMART+ and FOIL learn quite accurate knowledge bases that cannot be
improved any further by the refinement step. On Tasks 2 and 3, instead, theories learned by
SMART+ are significantly improved by both FONN and NTR, whereas theories learned by

120 BOTTA & PIOLA

Figure 3. Recognition rate on Task 1. The graphs show the recognition rate of various knowledge bases before
and after refinement. In particular, h.KB denotes a handcrafted knowledge base. This knowledge base has been
applied using the classifiers embedded in FONN and in NTR, respectively, which explains the difference between
the first and third columns in (a) and (b). (a) Knowledge base learned fromL1 (100 instances). (b) Knowledge
base learned fromL3 (500 instances).

FOIL conatin many erroneous constraint literals and are only slightly improved by FONN
(in this case, NTR consistently overfits the data decreasing performances). Furthermore,
performances increase with the number of instances in the learning set, as expected: this is
particularly evident for SMART+ in Task 3.

Another important observation concerns the ability to generalize well over the number
of objects in an instance: in 36 out of 54 cases, performances after refinement improve
moving from test setA to test setB, and in 10 out of 54 cases performances are the same
on both test sets.

Table 1 reports the execution times on Task 3: the computation time needed for refining the
rules produced by SMART+ is always a small fraction of the total learning time. Moreover,
NTR is faster than FONN, as it requires fewer floating point operations.

REFINING NUMERICAL CONSTANTS IN FOL THEORIES 121

Table 1. Execution times of a single run on Task 3, for various sytems (CPU time on a SparcStation 20).

System Learning set size Knowledge base refined CPU time [seconds]

SMART+ 100 2140

FOIL 100 47.5

FONN (1000 epochs) 100 SMART+ (4 rules) 832

FONN (1000 epochs) 100 FOIL (5 rules) 526

FONN (1000 epochs) 100 Handcrafted (2 rules) 66.5

NTR (1000 epochs) 100 SMART+ (4 rules) 309.2

NTR (1000 epochs) 100 FOIL (5 rules) 304.2

NTR (1000 epochs) 100 Handcrafted (2 rules) 37.0

SMART+ 200 8282

FOIL 200 53.8

FONN (1000 epochs) 200 SMART+ (3 rules) 1456

FONN (1000 epochs) 200 FOIL (7 rules) 856

FONN (1000 epochs) 200 Handcrafted (2 rules) 132.6

NTR (1000 epochs) 200 SMART+ (3 rules) 881.2

NTR (1000 epochs) 200 FOIL (7 rules) 444.4

NTR (1000 epochs) 200 Handcrafted (2 rules) 72.9

SMART+ 500 8514

FOIL 500 354

FONN (1000 epochs) 500 SMART+ (3 rules) 879

FONN (1000 epochs) 500 FOIL (14 rules) 4205

FONN (1000 epochs) 500 Handcrafted (2 rules) 381

NTR (1000 epochs) 500 SMART+ (3 rules) 387.6

NTR (1000 epochs) 500 FOIL (14 rules) 1632

NTR (1000 epochs) 500 Handcrafted (2 rules) 181.9

As expected, FOIL (a C program) is much faster than SMART+ (a LISP program), which
also uses a more sophisticated search strategy and learns more compact knowledge bases.
It should be noted that the computation time of the refinement step strongly depends on the
complexity of the knowledge bases (number of variables, number of rules), rather than on
the number of training instances.

Finally, we ran on Task 3 SMART+ provided with a partial domain theory describing the
correct constraints, but leaving the system free of learningInsidepredicates as nedeed, and
then refined for 1000 epochs the theories so acquired.

As shown in figure 6, the use of background knowledge in the learning phase helps
building more correct theories, which can be further improved by the refinement step.

A conclusion from these experiments is that the proposed approach is particularly effec-
tive when knowledge bases do not need a large amount of structural refinement; nonetheless,
even when the knowledge to be refined contains many erroneous constraints, performances
can still be improved a little.

122 BOTTA & PIOLA

Figure 4. Recognition rate on Task 2. The notation is the same as in figure 3. (a) Knowledge base learned from
L1 (100 instances). (b) Knowledge base learned fromL3 (500 instances).

The main reason for this impasse is due to the symbolic nature of current first order
learning systems that, being unable to properly deal with numerical data, are misled by
irrelevant categorical features. As can be noted from figure 7, rules found by SMART+ and
FOIL are structurally incorrect, as they contain erroneous constraints, and sometimes also
contain wrong numerical terms, when compared with the ones provided by the expert. The
refinement process in this case can only improve to a limited extent these knowledge bases.

5.2. Character recognition

The second learning problem concerns an artificial dataset that bears many resemblances to
a real-world one: ten capital letters of the English alphabet have been chosen and described
in terms of segments, as though acquired from a tablet. Each segment is described by the

REFINING NUMERICAL CONSTANTS IN FOL THEORIES 123

Figure 5. Recognition rate on Task 3. The notation is the same as in figure 3. (a) Knowledge base learned from
L1 (100 instances). (b) Knowledge base learned fromL2 (200 instances). (c) Knowledge base learned fromL3

(500 instances).

124 BOTTA & PIOLA

Figure 6. The effects of adding some background knowledge to the symbolic learner SMART+: performances
on Task 3 of a knowledge base acquired from 200 instances. Results are averaged over five runs.

Figure 7. Examples of learned definitions for Task 3.

REFINING NUMERICAL CONSTANTS IN FOL THEORIES 125

Figure 8. Performances obtained on artificial characters dataset by SMART+, FONN and NTR before and after
refinement.

initial and final coordinates (x, y) in a Cartesian plane. From these basic features, other
features can be extracted, such as the length of a segment, its orientation, its preceding and
following segments, and so on. Some of these features are numerical by nature, whereas
others are categorical. This dataset has been used to extensively test the capabilities of
SMART+ (Botta & Giordana, 1993) running with several configurations. Here, we took
the original dataset of 6000 instances4 and split it into 6 folds of 1000 instances each (100
instances per class). We ran SMART+ on every fold using a default configuration (Botta
& Giordana, 1993), and refined the learned knowledge from each fold for 200 epochs and
tested on the remaining 5 folds, averaging the results, reported in figure 8. Moreover, we
built up a new independent test set of 10000 instances (1000 per class), tested the knowledge
bases and averaged the results, also reported in figure 8. The knowledge bases so acquired
contain on average 98 rules, 203 literals and 118 numerical terms.

The refinement step is very effective on this learning problem, as it significantly increases
performances. Moreover, moving from continuous (FONN) to boolean semantics (NTR),
performances still improve a bit.

We cannot report results from FOIL, since we have not been able to configure FOIL to
run on this large dataset: in some cases, it exhausted the available memory, while in other
runs it found unuseful definitions, such asA(x) ← ¬H(x) (x is a capitol A if it is not a
capitol H).

5.3. Document classification

The third learning problem we addressed is a natural dataset derived from a real-world
application of digitized office document classification (Esposito, Malerba, & Semeraro,
1992). In particular, single page documents containing a related collection of printed ob-
jects, such as characters, paragraphs, titles, or pictures, have been considered. An optically
scanned single page document must be classified using only information about the page

126 BOTTA & PIOLA

layout structure, i.e., the invariant geometrical characteristics shared by documents belong-
ing to the same class, due to the underlying printing standards or writing styles. Once
a document has been digitized, its page layout is produced by segmenting it through a
run-length smoothing algorithm, and by grouping together some segments (or blocks) that
satisfy predetermined requirements such as closeness, same type, and so on. Blocks and
segments are described by categorical attributes, such as the frame type (text, line, graph-
ics, and so on), by numerical attributes, such as width, length and positions of blocks, and
relational properties, such as alignment of blocks (two blocks are aligned at left or right,
bottom or top, etc.). Instances are classified into 8 classes, four corresponding to printed
letters from the same company, three to magazine indexes, and the last one to a reject class
representing “the rest of the world”. The knowledge bases have been initially acquired by
running SMART+ and FOIL on a learning set of 121 instances and refined for 500 epochs.
The knowledge base learned by SMART+ contains 25 rules, 133 literals and 60 numerical
terms, whereas the one learned by FOIL contains 8 rules, 37 literals and 10 numerical terms.
Example of rules acquired by SMART+ are the following:

letter2(x)← document(x) ∧ part-of(x, y) ∧ north-west(y)∧
∧ part-of(x, z) ∧ Inside(width(z), [280, 330]) ∧ ontop(z, y)

spec6(x)← document(x) ∧ part-of(x, y)∧
∧ Inside(width(y), [480, 570]) ∧ Inside(height(y), [550, 725])∧
∧ part-of(x, z) ∧ ¬Inside(width(z), [480, 540])

(14)

Figure 9 reports performances on a test set of 110 documents, before and after performing
the refinement. From figure 9, it is evident that the refinement step is effective both in FONN
and in NTR on the theory acquired by SMART+. Also on the knowledge base obtained with
FOIL the refinement procedure improves performances, but starting from an incomplete
theory, it can not reach the same levels of performances. Nevertheless it is surprising
that, dealing with numeric attributes, the boolean semantic framework provided by NTR

Figure 9. Performances obtained on Office Documents dataset by SMART+, FOIL, FONN and NTR before and
after refinement.

REFINING NUMERICAL CONSTANTS IN FOL THEORIES 127

Figure 10. Performances obtained on Speech Recognition dataset by SMART+, FOIL, FONN and NTR before
and after refinement.

can perform even slightly better than the flexible evidential reasoning architecture used by
FONN.

Finally, we point out that the refinement procedure turned out to be very effective, because
it already reached maximum performances after only 100 epochs.

5.4. Speech recognition

The fourth learning problem concerns the recognition of the ten digits spoken in Italian
(Bergadano, Giordana, & Saitta, 1988) as isolated words, starting from the time evolution
of two rough features, i.e., the zero-crossing and the total energy of the signal. The problem
was chosen because it is sufficiently realistic to be a good test-bed, it is a really hard instance
of such a kind of problems and has been previously treated by the authors. The features are
extracted from the signal using classical signal processing algorithms and are then described
using a set of primitives, as proposed by (DeMori et al., 1984). The theories to be refined
have been learned by SMART+ and FOIL from a dataset of 219 instances.

Figure 10 reports performances on a test set of 100 instances (10 per class) before and
after performing refinement for 1000 epochs. Also on this dataset the refinement step is
effective, as it significantly increases performances. In this case, moving from evidential
reasoning (FONN) to boolean semantics (NTR) does not increase performances. It should
be pointed out, that the results reported here are much better than those obtained on this
learning problem by (Bergadano, Giordana, & Saitta, 1988) (77% correct classifications),
where a previous version of SMART+ was configured with all the knowledge about the
domain the expert was able to provide.

6. Discussion

By globally analysing the reported experiments some lessons emerge. First of all, if the
knowledge base to be refined is structurally correct, (e.g., the handcrafted knowledge bases

128 BOTTA & PIOLA

on the trains tasks) the numerical refinement technique may provide substantial improve-
ments, except when the initial theory is already preforming well (e.g., in Task 1 of the trains
problems); in this case, in fact, the refinement step is left with little room for improvement,
and performances may occasionally decrease. Finally, when the initial theory contains
structurally incorrect knowledge, very modest, but statistically significant improvements in
performances are observed. It is worth noting that on the multi-class learning problems,
SMART+ acquires a stratified theory, in contrast to the flat set of clauses learned by FOIL,
and this may partially explain the better performances obtained by these theories.

When dealing with numerical constants in first order logics, the search space becomes so
huge that heuristic search strategies, such as the ones that guide the learning systems we used,
are too greedy and do not allow local minima to be escaped from. The resulting knowledge
bases contain erroneous constraints, and even wrong numerical literals, which cannot be
fruitfully refined, neither by NTR nor by FONN. We expect that better performances can
be obtained in those domains where a qualitative theory is available (both NTR and FONN
were able to reach maximum performance on expert provided knowledge bases), or by
combining stochastic search strategies (Burns & Danyluk, 1999) with numerical refinement.
This point suggests to introduce some form of structural refinement of the theory, and
provides stimuli to continue investigating the approach.

Actually, to say that NTR (and FONN) cannot change the structure of the original theory
is not totally true. In fact, two kinds of structural refinement are a by-product of the
refinement strategy, namely, the elimination of a numerical literal from a clause, and the
elimination of a clause from the theory. The former corresponds to set numerical constants
in a predicate in such a way that it is always true, whereas the latter results from setting
numerical constants in such a way a predicate is always false (and so, we cannot conclude
the head of the clause).

Finally, a comment about the systems chosen for the experimentation: before deciding
to use FOIL for acquiring the initial knowledge bases, we also made some preliminary
experiments with Progol (Muggleton, 1995) (specifically, CProgol 4.4) on the trains tasks:
since the results obtained were worse than those by FOIL, as reported in Table 2, and the
running time much higher than that of FOIL, we preferred to use FOIL in the experiments.

The method described is framed into the classical logic semantics setting, and special
care has been devoted to the definition of a learning strategy that preserves the semantics
of logical formulas during learning. By relaxing this requirement, it is possible to design
slightly different learning algorithms that may produce more accurate classifiers but partially
loose the original symbolic meaning. This is what happens in FONN (Botta, Giordana, &
Piola, 1997a), where the outcome of the learning algorithm is a neural network that still

Table 2. Performances of Progol on the trains Tasks, averaged over five runs on a learning set containing 100
instances.

Test set Task 1 Task 2 Task 3

A 70.4 58.57 62.81

B 71.2 60.15 61.1

Running time [seconds] 2396.5 1871.25 1733.21

REFINING NUMERICAL CONSTANTS IN FOL THEORIES 129

exhibits a weak symbolic interpretability, but does not preserve the semantics of classical
logic.

In the logic programming framework adopted here it is also possible, if required, to
implement alternative forms of evidential reasoning, making use of certainty factors, or
other numerical weights. In this case, the learning method we described can manage to
learn certainty factors or rule weights, as well.

7. Conclusions

In this paper a method for learning numerical constants in classification theories, described
in a restricted form of First Order Logics, has been presented. The key aspect is the
translation of predicates containing numerical constants into continuous-valued functions,
which can be tuned by performing the error gradient descent algorithm.

The method is based on a previous work by the same authors (Botta, Giordana, & Piola,
1997a) where an extension of Radial Basis Function Networks (Poggio & Girosi, 1990;
Moody & Darken, 1988) called FONN, has been proposed in order to refine symbolic
knowledge bases containing numerical information. With respect to FONN, the method
presented here shows two fundamental advantages. First, it is totally embedded in the
logical framework, so that it can be easily integrated with other symbolic learning strategies,
whereas FONN is a totally different object that evolves independently from the original
knowledge base. Second, it preserves the classical logic semantics in the formulas, whereas
FONN does not.

The experimentation on several complex case studies, reported in the previous section,
shows that the current implementation of the learning algorithm is able to significantly
improve the classification accuracy of theories acquired by means of symbolic learners,
such as SMART+ or FOIL.

Moreover, the algorithm proved to be computationally efficient and easy to tune.

Acknowledgments

We are grateful to Prof. Attilio Giordana and to Cristina Baroglio for their helpful comments.

Notes

1. By operational definition we mean that all literals in a clause body are immediately verifiable on the instances,
i.e., no further resolution steps are needed to ground them, but variable substitution.

2. A momentum term has also been added in the experiments with FONN, turning (13) into1µt
k = −η ∂E

∂µk
+

α1µt−1
k ; this is a usual expedient to improve gradient descent methods in continuous networks.

3. All data are available onhttp://www.di.unito.it/~mluser/datasets.html and are fully described
in (Botta, Giordana, Piola, & 1997a).

4. Available in the ML repository at UCI.

130 BOTTA & PIOLA

References

Apt, K., Blair, H., & Walker, A. (1988). Towards a theory of declarative knowledge. In J. Minker (Ed.)Foundations
of deductive databases and logic programming(pp. 89–148) Los Altos, CA: Morgan Kaufmann.

Baroglio, C., Giordana, A., Kaiser, M., Nuttin, M., & Piola, R. (1996). Learning controllers for industrial robots.
Machine Learning, 23, 221–250.

Bergadano, F., Giordana, A., & Saitta, L. (1988). Learning concepts in noisy environment.IEEE Transaction on
Pattern Analysis and Machine Intelligence, PAMI-10, 555–578.

Blockeel, H. & De Raedt, L. (1998). Top-down induction of first-order logical decision trees.Artificial Intelligence,
101, 285–297.

Botta, M. & Giordana, A. (1993). SMART+: A multi-strategy learning tool. InIJCAI-93, Proceedings of the
Thirteenth International Joint Conference on Artificial Intelligence(pp. 937–943) Chamb´ery, France.

Botta, M., Giordana, A., & Piola, R. (1997a). FONN: Combining first order logic with connectionist learning.
Proceedings of the 14th International Conference on Machine Learning ICML-97(pp. 48–56) Nashville, TN:
Morgan Kaufmann.

Botta, M., Giordana, A., & Piola, R. (1997b). Refining first order theories with neural networks. In Z. Ras &
A. Skowron. (Ed.),Proceedings of the International Symposium on Methodologies for Intelligent Systems
ISMIS-97, LNAI (Vol. 1325, pp. 84–93) Charlotte, NC: Springer-Verlag.

Botta, M., Giordana, A., & Piola, R. (1997c). Refining numerical terms in Horn clauses.Topics in Artificial
Intelligence, proceedings of the AI*IA Conference. LNAI (Vol. 1321, pp. 13–23) Rome, Italy: Springer-Verlag.

Breiman, L., Friedman, J., Ohlsen, R., & Stone, C. (1984).Classification And Regression Trees. Pacific Grove,
CA: Wadsworth & Brooks.

Burns, B. & Danyluk, A. (1999). Feature selection vs theory reformulation: a study of genetic refinement of
knowledge-based neural networks.Machine Learning, this issue.

DeMori, R., Giordana, A., Laface, P., & Saitta, L. (1984). An expert system for mapping acoustic cues into
phonetic features.Information Sciences, 33, 115–155.

Esposito, F., Malerba, D., & Semeraro, G. (1992). Classification in noisy environments using a distance measure
between structural symbolic descriptions.IEEE Transactions on Pattern Analisys and Machine Intelligence,
14(3), 390–402.

Frasconi, P., Gori, M., Maggini, M., & Soda, G. (1996). Representation of finite state automata in recurrent radial
basis function networks.Machine Learning, 23, 5–32.

Fu, L. (1993). Knowledge-based connectionism for revising domain theories.IEEE Transactions on Systems, Man
and Cybernetics, 23(1), 173–182.

Giordana, A., Neri, F., Saitta, L., & Botta, M. (1997). Integrating multiple learning strategies in first order logics.
Machine Learning, 27, 209–240.

Jang, J. (1993). ANFIS: Adaptive-Network-Based Fuzzy Inference System.IEEE Transactions on Systems, Men
and Cybernetics, 23(3), 665–687.

Karalic̆, A. & Bratko, I. (1997). First order regression.Machine Learning, 26, 147–176.
Lavrac̆, N. & Dz̆eroski, S. (1994).Inductive logic programming: techniques and applications. Chichester, UK:

Ellis Horwood.
Lloyd, J. W. (1987).Foundations of logic programming. Berlin, Germany: Springer.
Mahoney, J. & Mooney, R. (1994). Comparing methods for refining certainity-factor rule-bases.Proc. of the

Eleventh Internetional Workshop on Machine Learning ML-94, Rutgers University, NJ.
Michalski, R. (1983). A theory and methodology of inductive learning. In R. Michalski, J. Carbonell, & T. Mitchell,

(Eds),Machine learning: an artificial intelligence approach(pp. 83–134) Los Altos, CA: Morgan Kaufmann.
Mitchell, T., Keller, R., & Kedar-Cabelli, S. (1986). Explanation based generalization: an unifying view.Machine

Learning, 1, 47–80.
Moody, J. & Darken, C. (1988). Learning with localized receptive fields. In T. Sejnowski, D. Touretzky, &

G. Hinton (Eds.),Connectionist models summer school, Carnegie Mellon University.
Muggleton, S. (1995). Inverse entailment and Progol.New Generation Computing, 13, 245–286.
Omlin, C. & Giles, C. (1996). Constructing deterministic finite-state automata in recurrent neural networks.

Journal of the ACM, 43(6), 937–972.
Piola, R. (1998).Refinement of knowledge bases in first order logics by means of neural networks. Ph.D. Thesis,

REFINING NUMERICAL CONSTANTS IN FOL THEORIES 131

Università di Torino, Italy.
Poggio, T. & Girosi, F. (1990). Networks for approximation and learning.Proceedings of the IEEE, 78(9), 1481–

1497.
Quinlan, R. (1983). Efficient classification procedures. In J. Carbonell, R. Michalski, & T. Mitchell (Eds.),Machine

learning, an artificial intelligence approach. Morgan Kaufmann.
Quinlan, R. (1990). Learning logical definitions from relations.Machine Learning, 5, 239–266.
Quinlan, R. (1993).C4.5: Programs for machine learning. Morgan Kaufmann, San Mateo, CA.
Rumelhart, D. E. & McClelland, J. L. (1986).Parallel distributed processing: explorations in the microstructure

of cognition, Parts I & II . Cambridge, Massachusetts: MIT Press.
Sebag, M. & Rouveirol, C. (1995). Polynomial-time learning in logic programming and constraint logic program-

ming.Proc. of ILP-95(pp. 105–126) LNAI (Vol. 1297).
Towell, G. & Shavlik, J. (1994). Knowledge Based Artificial Neural Networks.Artficial Intelligence, 70(4),

119–166.
Tresp, V., Hollatz, J., & Ahmad, S. (1993). Network structuring and training using rule-based knowledge. In

S. Hanson, J. Cowan, & C. Giles (Eds.),Advances in neural information processing systems 5 (NIPS-5), (pp.
871–878) San Mateo, CA: Morgan Kaufmann.

Watanabe, L. & Rendell, L. (1991). Learning structural decision trees from examples.Proc. of the 12th International
Joint Conference on Artificial Intelligence, IJCAI-91(pp. 770–776), Sidney, Australia.

Received December 22, 1998

Accepted June 18, 1999

Final manuscript June 18, 1999

