Skip to main content
Log in

Electron affinities of p-benzoquinone, p-benzoquinone imine and p-benzoquinone diimine, and spin densities of their p-benzosemiq

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Restricted and unrestricted (U) Hartree–Fock (HF), second-order Møller–Plesset perturbation (MP2), density functional (DF), hybrid HF/DF and semiempirical (half-electron (HE) method) models have been used to calculate adiabatic electron affinities (EAad values) of p- benzoquinone (I), p-benzoquinone imine (VI) and p-benzoquinone diimine (XI), as well as expectation values (〈S2〉) and spin density distributions in the radical anions of I, VI and XI. The AM1/AM1-HE and ab initio calculated structures are found to be in accord with each other. The ROHF/6-31G(d) method gave the poorest EAad result. The UHF and UMP2 wave functions were found to be substantially spin contaminated (for the radicals) and the accuracies of the EAad values calculated were also poor. The use of molecular energies obtained after spin annihilation did not lead to significant improvement of the UHF and UMP2 results. In contrast to the ROHF, UHF and UMP2 results, the DF(USVWN, UBVWN, UBLYP) and hybrid HF/DF(UB3LYP) methods, as well as the AM1-HE, gave much better results. The calculated EAad values decreased, as predicted by most of the models, in the order EAad(I) > EAad(VI) > EAad(XI). The differences in the EAs, EAad(I) − EAad(VI) and EAad(I) − EAad(XI), were consistently predicted to be about 8–9 and 17–18 kcal/mol, respectively, by the DF, B3LYP and AM1-HE models. The performance of the PM3 and SAM1 models was not as good as the AM1 model. Of all the methods tested, the B3LYP/6-311G(d,p) model is concluded to give the most accurate quantitative trend (I(42.6) > VI(33.1) > XI(23.7)) in EAad. The predicted trend in EA can satisfactorily be rationalized by the calculated LUMO orbital energies, atomic charges and spin density distributions. Analysis of the spin density data predicts that phenoxyl- and anilino-type radical anions predominate in the p-benzosemiquinones of I and XI, respectively, while both phenoxyl- and anilino-type radicals contribute to the structure of the p-benzosemiquinone of VI, with the anilino-type predominating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Acton, E.M., In Priebe, W. (Ed.) Anthracycline Antibiotics, ACS Symposium Series Vol. 574, American Chemical Society, Washington, DC, U.S.A., 1995, pp. 1–13.

    Google Scholar 

  2. Myers, C.E., Muinda, J.R.F., Zweier, J. and Sinha, B.K., J. Biol. Chem., 262 (1987) 11571, and references cited therein.

    Google Scholar 

  3. Lown, J.W., Chen, H.H. and Plambeck, J.A., Biochem. Pharmacol., 28 (1979) 2563. b. Lown, J.W., Chen, H.H. and Plambeck, J.A., Biochem. Pharmacol., 31 (1982) 575. c. Vavies, K.J.A., Doroshow, J.H. and Hochstein, H.P., FEBS Lett., 153 (1983) 227. d. Mimnaugh, E.G., Trush, M.A., Ciarrocchi, E.G., Lestingi, M., Fontana, M., Spadasi, S. and Montecucco, A., Biochem. J., 279 (1991) 141. e. Nafzinger, J., Auclair, C., Florent, J.C., Guillosson, J.J. and Monneret, C., Lechemie Res., 15 (1991) 709. f. Mimnaugh, E.G., Trush, M.A., Ginsburg, E. and Gram, T.E., Cancer Res., 42 (1982) 3574.

    Google Scholar 

  4. Abdella, B.R.J. and Fisher, J., J. Environ. Health Perspect., 64 (1985) 3.

    Google Scholar 

  5. Davies, K.J.A. and Doroshow, J.H., J. Biol. Chem., 261 (1986) 3060. b. Davies, K.J.A. and Doroshow, J.H., J. Biol. Chem., 261 (1986) 3068.

    Google Scholar 

  6. Favandon, K., Biochemie, 64 (1982) 457. b. Lown, J.W., Acc. Chem. Res., 15 (1982) 381. c. Dodd, N.J.F. and Mucherjee, T., Biochem. Pharmacol., 33 (1984) 379. d. Nohland, H. and Jordan, W., Biochem. Biophys. Res. Commun., 114 (1983) 197.

    Google Scholar 

  7. Mariam, Y.H. and Sawyer, A., J. Comput.-Aided Mol. Design, 10 (1996) 441.

    Google Scholar 

  8. Ziegler, T. and Gutsev, G.L., J. Comput. Chem., 13 (1992) 70.

    Google Scholar 

  9. Dewar, M.J.S., Hashmall, J.A. and Venier, C.G., J. Am. Chem. Soc., 90 (1968) 1953.

    Google Scholar 

  10. Dewar, M.J.S. and Rzepa, H.S., J. Am. Chem. Soc., 100 (1978) 784.

    Google Scholar 

  11. Cooper, C.D., Naft, W.T. and Compton, R.N., J. Chem. Phys., 63 (1975) 2752.

    Google Scholar 

  12. Heinis, T., Chowdhury, S., Scott, S.L. and Kebarle, P., J. Am. Chem. Soc., 110 (1988) 400. b. Chowdhury, S., Grimsrud, E.P. and Kebarle, P., J. Phys. Chem., 90 (1986) 2747.

    Google Scholar 

  13. Vosko, S.H., Wilk, L. and Nusair, M., Can. J. Phys., 58 (1980) 1200.

    Google Scholar 

  14. SPARTAN User's Guide, v. 4.0, Wavefunction, Irvine, CA, U.S.A., 1995.

  15. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Gill, P.M.W., Johnson, B.G., Robb, M.A., Cheeseman, J.R., Keith, T., Petersson, G.A., Montgomery, J.A., Raghavachari, K., Al-Laham, M.A., Zakrzewski, V.G., Ortiz, J.V., Foresman, J.B., Cioslowski, J., Stefanov, B.B., Nanayakkara, A., Challacombe, M., Peng, C.Y., Ayala, P.Y., Chen, W., Wong, M.W., Andres, J.L., Replogle, E.S., Gomperts, R., Martin, R.L., Fox, D.J., Binkley, J.S., Defrees, D.J., Baker, J., Stewart, J.P., Head-Gordon, M., Gonzalez, C. and Pople, J.A., GAUSSIAN, 94, Revision D.1, Gaussian Inc., Pittsburgh, PA, U.S.A., 1995.

    Google Scholar 

  16. Hehre, W.J., Radom, L., Schleyer, P.v.R. and Pople, J.A., Ab Initio Molecular Orbital Theory, Wiley, New York, NY, U.S.A., 1986. b. Levine, I.N., Quantum Chemistry, Prentice-Hall, Englewood Cliffs, NJ, U.S.A., 1993.

    Google Scholar 

  17. Møller, C. and Plesset, M.S., Phys. Rev., 46 (1934) 618. b. Pople, J.A., Binkley, J.S. and Seeger, R., Int. J. Quantum Chem. Quantum Chem. Symp., 10 (1976) 1.

    Google Scholar 

  18. Kohn, W. and Sham, L.J., Phys. Rev., A140 (1965) A1133. b. Pople, J.A., Gill, P.M.W. and Johnson, B.G., Chem. Phys. Lett., 199 (1992) 557.

    Google Scholar 

  19. GAUSSIAN94 User's Reference, Gaussian Inc., Pittsburgh, PA, U.S.A., 1994-1995.

  20. Becke, A.D., Phys. Rev., A38 (1988) 3098.

    Google Scholar 

  21. Lee, C., Yang, W. and Parr, R.G., Phys. Rev., B37 (1988) 785.

    Google Scholar 

  22. Becke, A.D., J. Chem. Phys., 98 (1993) 5648.

    Google Scholar 

  23. Slater, J.C., Quantum Theory of Molecules and Solids, Vol. 4, McGraw-Hill, New York, NY, U.S.A., 1974.

    Google Scholar 

  24. Boesch, S.E. and Wheeler, R.A., J. Phys. Chem., 99 (1995) 8125.

    Google Scholar 

  25. Gordon, A.R. and Ford, R.A., The Chemist's Companion, Wiley, New York, NY, U.S.A., 1972, pp. 105–108.

    Google Scholar 

  26. Vollhardt, K.P.C., Organic Chemistry, Freeman, New York, NY, U.S.A., 1987, pp. 1189–1198.

    Google Scholar 

  27. Hehre, W.J., Radom, L., Schleyer, P.v.R. and Pople, J.A., Ab Initio Molecular Orbital Theory, Wiley, New York, NY, U.S.A., 1986, pp. 165–173.

    Google Scholar 

  28. Wheeler, R.A., J. Am. Chem. Soc., 116 (1994) 11048.

    Google Scholar 

  29. Robinson, H.H. and Kahn, S.D., J. Am. Chem. Soc., 112 (1990) 4728.

    Google Scholar 

  30. Qin, Y. and Wheeler, R.A., J. Chem. Phys., 102 (1995) 1687.

    Google Scholar 

  31. Schlegel, H.B., J. Chem. Phys., 84 (1986) 4530.

    Google Scholar 

  32. Baker, J., Scheiner, A. and Andzelm, J., Chem. Phys. Lett., 216 (1993) 380.

    Google Scholar 

  33. Cramer, C.J., Dulles, F.J., Giesen, D.J. and Almlof, J., Chem. Phys. Lett., 245 (1995) 165.

    Google Scholar 

  34. Neat, P. and Fessenden, R.W., J. Phys. Chem., 78 (1974) 523. b. West, P.R., Harman, L.S., Josephy, P.D. and Mason, R.P., Biochem. Pharmacol., 33 (1984) 2933.

    Google Scholar 

  35. Stone, T.J. and Waters, W.A., Proc. Chem. Soc., (1962) 253.

  36. Schlegel, H.B., J. Chem. Phys., 92 (1988) 3075.

    Google Scholar 

  37. Chen, W. and Schlegel, H.B., J. Chem. Phys., 101 (1994) 5957.

    Google Scholar 

  38. Koopmans, T., Physica, 1 (1934) 104.

    Google Scholar 

  39. Lide, D.R. (Ed.), CRC Handbook of Chemistry and Physics, 76th ed., CRC Press, Boca Raton, FL, U.S.A., 1995-1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mariam, Y.H., Chantranupong, L. Electron affinities of p-benzoquinone, p-benzoquinone imine and p-benzoquinone diimine, and spin densities of their p-benzosemiq. J Comput Aided Mol Des 11, 345–356 (1997). https://doi.org/10.1023/A:1007903612053

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007903612053

Navigation