Skip to main content
Log in

Inclusion of conserved buried water molecules in the model structure of rat submaxillary kallikrein

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

A new approach to the molecular modelling of homologous serine proteases isadopted, by including a set of 21 buried waters known to be preserved inenzymes sharing the primary specificity of trypsin, in the homology modellingof rat submaxillary gland kallikrein. Buried waters – water moleculessequestered from bulk solvent within a protein matrix – appear to beintegral conserved components of all serine proteases of known structure andshould be incorporated into serine protease models built on the basis ofsequence/structural homology to this family. The absence of such waters mightinduce errors in a force field simulation, favouring the formation ofnonexistent hydrogen bonds and locally inaccurate structure. The kallikreinmodel refinement has led to the conclusion that an additional buried watershould be added to the original rigid matrix of 21 conserved water molecules.The structurally preserved protein cavities of such waters validate themodelled structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Murray, S.R., Chao, J., Lin, F.K. and Chao, L., J. Cardiovasc. Pharmacol., 15 (Suppl. 6) (1990) 7.

    Google Scholar 

  2. Moreau, T., Brillard-Bourdet, M., Bouhnik, J. and Gauthier, F., J. Biol. Chem., 267 (1992) 10045.

    Google Scholar 

  3. Thomas, K.A., Baglan, N.C. and Bradshaw, R.A., J. Biol. Chem., 256 (1981) 9156.

    Google Scholar 

  4. Lazure, C., Seidah, N.G., Thibault, G., Genest, J. and Chretien, M., In Proceedings of the VIIth American Peptide Symposium, 1981, pp. 517–519.

  5. Gutkowska, J., Thibault, G., Cantin, M., Garcia, R. and Genest, J., Can. J. Physiol. Pharmacol., 61 (1983) 449.

    Google Scholar 

  6. Serveau, C., Moreau, T., Zhou, G.X., ElMoujahed, A., Chao, J. and Gauthier, F., FEBS Lett., 309 (1992) 405.

    Google Scholar 

  7. Kettner, C., Mirabelli, C., Pierce, J.B. and Shaw, E., Arch. Biochem. Biophys., 202 (1980) 420.

    Google Scholar 

  8. Bode, W., Chen, Z. and Bartels, K., J. Mol. Biol., 164 (1983) 237.

    Google Scholar 

  9. Chen, Z. and Bode, W., J. Mol. Biol., 164 (1983) 283.

    Google Scholar 

  10. Ashley, P.L. and MacDonald, R.J., Biochemistry, 24 (1985) 4512.

    Google Scholar 

  11. Swift, G.H., Dagorn, J., Ashley, P.L., Cummings, S.W. and Mac-Donald, R.J., Proc. Natl. Acad. Sci. USA, 79 (1982) 7263.

    Google Scholar 

  12. Mosimann, S., Meleshko, R. and James, M.N.G., Proteins Struct. Funct. Genet., 23 (1995) 301.

    Google Scholar 

  13. Edsall, J.T. and McKenzie, H.A., Adv. Biophys., 16 (1983) 53.

    Google Scholar 

  14. Hubbard, S.J., Gross, K.H. and Argos, P., Protein Eng., 7 (1994) 613.

    Google Scholar 

  15. Sreenivasan, U. and Axelsen, P.H., Biochemistry, 31 (1992) 12785.

    Google Scholar 

  16. Fujinaga, M. and James, M.N.G., J. Mol. Biol., 195 (1987) 373.

    Google Scholar 

  17. Abola, E.E., Bernstein, F.C., Bryant, S.H., Koetzle, T.F. and Weng, J., In Allen, F.H., Bergerhoff, G. and Sievess, R. (Eds.) Protein Data Bank in Crystallographic Databases–Information Content, Software Systems, Scientific Applications, Data Commission of the International Union of Crystallography, Bonn/Cambridge/ Chester, 1987, pp. 107–132.

  18. Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.F., Brice Jr., M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T. and Tasumi, M., J. Mol. Biol., 112 (1977) 535.

    Google Scholar 

  19. QUANTA (v. 4.0), Molecular Simulations Inc., Burlington, MA, U.S.A., 1994.

  20. Wilmott, C.M. and Thornton, J.M., Protein Eng., 3 (1990) 479.

    Google Scholar 

  21. Kraut, H., Frey, E.K. and Werle, E., Hoppe-Seyler’s Z. Physiol. Chem., 189 (1930) 97.

    Google Scholar 

  22. Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S. and Karplus, M., J. Comput. Chem., 4 (1983) 187.

    Google Scholar 

  23. Marquart, M., Walter, J., Deisenhofer, J., Bode, W. and Haber, R., Acta Crystallogr., B39 (1983) 480.

    Google Scholar 

  24. Wade, R.C., Mazor, M.H., McCammon, A. and Quiocho, F.A., Biopolymers, 31 (1991) 919.

    Google Scholar 

  25. Connolly, M.L., Science, 221 (1983) 709.

    Google Scholar 

  26. Connolly, M.L., J. Appl. Crystallogr., 16 (1983) 548.

    Google Scholar 

  27. Pearlman, D.A., Case, D.A., Caldwell, J.C., Seibel, G.L., Singh, U.C., Weiner, P. and Kollman. P.A., AMBER 4.0, University of California, San Francisco, CA, U.S.A., 1991.

    Google Scholar 

  28. Weiner, S.J., Kollman, P.A., Case, D.A., Singh, U.C., Ghio, C., Alagona, G., Profeta Jr., S. and Weiner, P., J. Am. Chem. Soc., 106 (1984) 765.

    Google Scholar 

  29. Van Gunsteren, W.F. and Karplus, M., Biochemistry, 21 (1982) 2259.

    Google Scholar 

  30. Brooks III, C.L. and Karplus, M., J. Mol. Biol., 208 (1989) 159.

    Google Scholar 

  31. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.C., DiNola, A. and Haak, R., J. Chem. Phys., 81 (1984) 3684.

    Google Scholar 

  32. Bode, W., Greyling, H.J., Huber, R., Otlewski, J. and Wilusz, T., FEBS Lett., 242 (1989) 285.

    Google Scholar 

  33. Rehse, P.H., Steinmetzer, T., Li, Y., Konnishi, Y. and Cygler, M., to be published.

  34. Bode, W., Wei, A.Z., Huber, R., Meyer, E., Travis, J. and Neumann, S., EMBO J., 5 (1986) 2453.

    Google Scholar 

  35. Wang, D., Bode, W. and Huber, R., J. Mol. Biol., 185 (1985) 595.

    Google Scholar 

  36. Remington, S.J., Woodbury, R.G., Reynolds, R.A., Matthews, B.W. and Neurath, H., Biochemistry, 27 (1988) 8097.

    Google Scholar 

  37. Laskowski, R.A., McArthur, M.W., Moss, D.S. and Thornton, J.M., J. Appl. Crystallogr., 26 (1993) 283.

    Google Scholar 

  38. Ramakrishnan, C. and Ramachandran, G.N., Biophys. J., 5 (1965) 909.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henriques, E.F., Ramos, M.J. & Reynolds, C.A. Inclusion of conserved buried water molecules in the model structure of rat submaxillary kallikrein. J Comput Aided Mol Des 11, 547–556 (1997). https://doi.org/10.1023/A:1007919812771

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007919812771

Navigation