Skip to main content
Log in

Diverse binding site structures revealed in homology models of polyreactive immunoglobulins

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

We describe here computer-assisted homology models of the combiningsite structure of three polyreactive immunoglobulins. Template-based modelsof Fv (VL–VH) fragments were derived forthe surface IgM expressed by the malignant CD5 positive B cells from threepatients with chronic lymphocytic leukaemia (CLL). The conserved frameworkregions were constructed using crystal coordinates taken from highlyhomologous human variable domain structures (Pot and Hil). Complementaritydetermining regions (CDRs) were predicted by grafting loops, taken fromknown immunoglobulin structures, onto the Fv framework models. The CDRtemplates were chosen, where possible, to be of the same length and of highresidue identity or similarity. LCDR1, 2 and 3 as well as HCDR1 and 2 forthe Fv were constructed using this strategy. For HCDR3 prediction, adatabase containing the Cartesian coordinates of 30 of these loops wascompiled from unliganded antibody X-ray crystallographic structures and anHCDR3 of the same length as that of the B CLL Fv was selected as a template.In one case (Yar), the resulting HCDR3 model gave unfavourable interactionswhen incorporated into the Fv model. This HCDR3 was therefore modelled usingan alternative strategy of construction of the loop stems, using apreviously described HCDR3 conformation (Pot), followed by chain closurewith a β-turn. The template models were subjected to positionalrefinement using energy minimisation and molecular dynamics simulations(X-PLOR). An electrostatic surface description (GRASP) did not reveal acommon structural feature within the binding sites of the three polyreactiveFv. Thus, polyreactive immunoglobulins may recognise similar and multipleantigens through a diverse array of binding site structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amit, A.G., Mariuzza, R.A., Phillips, S.E.V. and Poljak, R.J., Science, 233 (1986) 747.

    Google Scholar 

  2. Colman, P.M., Laver, W.G., Varghese, J.N., Baker, A.T., Tulloch, P.A., Air, G.M. and Webster, R.G., Nature, 326 (1987) 358.

    Google Scholar 

  3. Herron, J.N., He, X.-M., Mason, M.L., Voss Jr., E.W. and Edmundson, A.B., Proteins Struct. Funct. Genet., 5 (1989) 271.

    Google Scholar 

  4. Herron, J.N., He, X.-M., Ballard, D.W., Blier, P.R., Pace, P.E., Bothwell, A.L.M., Voss Jr., E.W. and Edmundson, A.B., Proteins Struct. Funct. Genet., 11 (1991) 159.

    Google Scholar 

  5. Arevalo, J.H., Hassig, C.A., Stura, E.A., Sims, M.J., Taussig, M.J. and Wilson, I.A., J. Mol. Biol., 241 (1994) 663.

    Google Scholar 

  6. Barry, M.M., Mol, C.D., Anderson, W.F. and Lee, J.S., J. Biol. Chem., 269 (1994) 3623.

    Google Scholar 

  7. Bassolino-Klimas, D., Bruccoleri, R.E. and Subramaniam, S., Protein Sci., 1 (1992) 1465.

    Google Scholar 

  8. Bajorath, J., Bioconj. Chem., 5 (1994) 213.

    Google Scholar 

  9. Chothia, C., Lesk, A.M., Levitt, M., Amit, A.G., Mariuzza, R.A., Phillips, S.E.V. and Poljak, R.J., Science, 233 (1986) 755.

    Google Scholar 

  10. De la Paz, P., Sutton, B.J., Darsley, M.J. and Rees, A.R., EMBO J., 5 (1986) 415.

    Google Scholar 

  11. Martin, A.C.R., Cheetham, J.C. and Rees, A.R., Methods Enzymol., 203 (1991) 121.

    Google Scholar 

  12. Chothia, C., Lesk, A.M., Tramontano, A., Levitt, M., Smith-Gill, S.J., Sheriff, S., Padlan, E.A., Davies, D., Tulip, W.R., Colman, P.M., Spinelli, S., Alzari, P.M. and Poljak, R.J., Nature, 342 (1989) 877.

    Google Scholar 

  13. Chothia, C., Lesk, A.M., Gherardi, E., Tomlinson, I.M., Walter, G., Marks, J.D., Meirion, B.L. and Winter, G., J. Mol. Biol., 227 (1992) 799.

    Google Scholar 

  14. Bruccoleri, R.E. and Karplus, M., Biopolymers, 26 (1987) 137.

    Google Scholar 

  15. Bajorath, J. and Fine, R.M., Immunomethods, 1 (1992) 137.

    Google Scholar 

  16. Sali, A., Curr. Opin. Biotechnol., 6 (1995) 437.

    Google Scholar 

  17. Nicholls, A. and Honig, B., J. Comput. Chem., 12 (1991) 435.

    Google Scholar 

  18. Brunger, A.T., X-PLOR v. 3.1. A System for X-ray Crystallography and NMR, Yale University Press, New Haven, CT, U.S.A., 1992.

    Google Scholar 

  19. Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.F., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T. and Tasumi, M., J. Mol. Biol., 112 (1977) 535.

    Google Scholar 

  20. Guddat, L.W., Shan, L., Anchin, J.M., Linthicum, D.S. and Edmundson, A.B., J. Mol. Biol., 236 (1994) 247.

    Google Scholar 

  21. Fan, Z.C., Shan, L., Guddat, L.W., He, X.-M., Gray, W.R., Raison, R.L. and Edmundson, A.B., J. Mol. Biol., 228 (1992) 188.

    Google Scholar 

  22. Kabat, E.A., Wu, T.T., Perry, H.M., Gottesman, K.S. and Foeller, C., Sequences of Proteins of Immunological Interest, 5th ed., National Institutes of Health, Bethesda, MD, U.S.A., 1991.

    Google Scholar 

  23. Wilmot, C.M. and Thornton, J.M., J. Mol. Biol., 203 (1988) 221.

    Google Scholar 

  24. Powell, M.J.D., Math. Programming, 12 (1977) 241.

    Google Scholar 

  25. Engh, R.A. and Huber, R., Acta Crystallogr., A47 (1991) 392.

    Google Scholar 

  26. Ramachandran, G.N. and Sasisekharan, V., Adv. Protein Chem., 23 (1968) 283.

    Google Scholar 

  27. He, X.-M., Ruker, F., Casale, E. and Carter, D.C., Proc. Natl. Acad. Sci. USA, 89 (1992) 7154.

    Google Scholar 

  28. Wu, T.T., Johnson, G. and Kabat, E.A., Proteins Struct. Funct. Genet., 16 (1993) 1.

    Google Scholar 

  29. Avrameas, S. and Ternynck, T., Mol. Immunol., 30 (1993) 1133.

    Google Scholar 

  30. Cheung, S.C., Takeda, S. and Notkins, A.L., Clin. Exp. Immunol., 101 (1995) 383.

    Google Scholar 

  31. Padlan, E.A., Mol. Immunol., 31 (1994) 231.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramsland, P.A., Guddat, L.W., Edmundson, A.B. et al. Diverse binding site structures revealed in homology models of polyreactive immunoglobulins. J Comput Aided Mol Des 11, 453–461 (1997). https://doi.org/10.1023/A:1007932211514

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007932211514

Navigation