Skip to main content
Log in

A Monte Carlo method for finding important ligand fragments from receptor data

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

A simulated annealing method for finding important ligand fragments is described. At a given temperature, ligand fragments are randomly selected and randomly placed within the given receptor cavity, often replacing or forming bonds with existing ligand fragments. For each new ligand fragment combination, the bonded, nonbonded, polarization and solvation energies of the new ligand–receptor system are compared to the previous configuration. Acceptance or rejection of the new system is decided using the Boltzmann distribution\({\text{e}}^{{\text{ - E/kT}}}\), where E is the energy difference between the old and new systems, k is the Boltzmann constant and T is the temperature. Thus, energetically unfavorable fragment switches are sometimes accepted, sacrificing immediate energy gains in the interest of finding a system with minimum energy. By lowering the temperature, the rate of unfavorable switches decreases and energetically favorable combinations become more difficult to change. The process is terminated when the frequency of switches becomes too small. As a test, the method predicted positions and types of important ligand fragments for neuraminidase that were in accord with the known ligand, sialic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Andrews, P., In Foye, W. (Ed.) Principles of Medicinal Chemistry, 3rd ed., Lea & Febiger, Philadelphia, PA, U.S.A., 1990, pp. 855– 860.

    Google Scholar 

  2. Bugg, C., Carson, W. and Montgomery, J., Sci. Am., 269 (1993) 92.

    Google Scholar 

  3. Von Itzstein, M., Wu, W., Kok, G., Pegg, M., Dyason, J., Jin, B., Pahn, T., Smythe, M., White, H., Oliver, S., Colman, P., Varghese, J., Ryan, M., Woods, J., Bethell, R., Hotham, V., Cameron, J. and Penn, C., Nature, 363 (1993) 418.

    Google Scholar 

  4. Kuntz, I., Blaney, J., Oatley, S., Langridge, R. and Ferrin, T., J. Mol. Biol., 161 (1982) 269.

    Google Scholar 

  5. DesJarlais, R., Sheridan, R., Seibel, J., Dixon, S., Kuntz, I. and Venkataraghavan, R., J. Med. Chem., 31 (1988) 722.

    Google Scholar 

  6. Martin, Y., J. Med. Chem., 35 (1992) 2145.

    Google Scholar 

  7. Rotstein, S. and Murcko, M., J. Med. Chem., 36 (1993) 1700.

    Google Scholar 

  8. Namasivayam, S. and Dean, P., J. Mol. Graph., 4 (1986) 46.

    Google Scholar 

  9. Lewis, R., Roe, D., Huang, C., Ferrin, T., Langridge, R. and Kuntz, I., J. Mol. Graph., 10 (1992) 66.

    Google Scholar 

  10. Kato, Y., Akiko, I. and Iitaka, Y., Tetrahedron, 43 (1987) 5229.

    Google Scholar 

  11. Meng, E., Shoichet, B. and Kuntz, I., J. Comput. Chem., 13 (1992) 505.

    Google Scholar 

  12. Karfunkel, H., J. Comput. Chem., 7 (1986) 113.

    Google Scholar 

  13. DesJarlais, R., Sheridan, R., Dixon, S., Kuntz, I. and Venkataraghavan, R., J. Med. Chem., 29 (1986) 2149.

    Google Scholar 

  14. Billeter, M., Havel, T. and Kuntz, I., Biopolymers, 26 (1987) 777.

    Google Scholar 

  15. Goodsell, D. and Olson, A., Proteins, 8 (1990) 195.

    Google Scholar 

  16. Hart, T. and Read, R., Proteins, 13 (1992) 206.

    Google Scholar 

  17. Goodford, P., J. Med. Chem., 28 (1985) 849.

    Google Scholar 

  18. Boobbyer, D., Goodford, P., McWhinni, P. and Wade, R., J. Med. Chem., 32 (1989) 1083.

    Google Scholar 

  19. Wade, R., Clark, K. and Goodford, P., J. Med. Chem., 36 (1993) 140.

    Google Scholar 

  20. Wade, R. and Goodford, P., J. Med. Chem., 36 (1993) 148.

    Google Scholar 

  21. Kellogg, G. and Abraham, D., J. Mol. Graph., 10 (1992) 212.

    Google Scholar 

  22. Miranker, A. and Karplus, M., Proteins, 1 (1991) 29.

    Google Scholar 

  23. Caflisch, A., Miranker, A. and Karplus, M., J. Med. Chem., 35 (1993) 2142.

    Google Scholar 

  24. Gillet, V., Johnson, P., Mata, P., Sike, S. and Williams, P., J. Comput.-Aided Mol. Design, 7 (1993) 127.

    Google Scholar 

  25. Nishibata, Y. and Akiko, I., Tetrahedron, 47 (1991) 8985.

    Google Scholar 

  26. Nishibata, Y. and Akiko, I., J. Med. Chem., 36 (1993) 2921.

    Google Scholar 

  27. Lawrence, M. and Davis, P., Proteins Struct. Funct. Genet., 12 (1992) 31.

    Google Scholar 

  28. Böhm, H.-J., J. Comput.-Aided Mol. Design, 6 (1992) 61.

    Google Scholar 

  29. Eisen, M., Wiley, D., Karplus, M. and Hubbard, R., Proteins Struct. Funct. Genet., 19 (1994) 199.

    Google Scholar 

  30. Lewis, R., J. Comput.-Aided Mol. Design, 4 (1990) 205.

    Google Scholar 

  31. Lewis, R.A. and Dean, P.M., Proc. R. Soc. London, B236 (1989) 125.

    Google Scholar 

  32. Singh, J., Saldanha, J. and Thornton, J., Protein Eng., 4 (1991) 251.

    Google Scholar 

  33. Moon, J. and Howe, W., Proteins Struct. Funct. Genet., 11 (1991) 314.

    Google Scholar 

  34. Rotstein, S. and Murcko, M., J. Comput.-Aided Mol. Design, 7 (1993) 23.

    Google Scholar 

  35. Pickett, S.D. and Sternberg, M.J.E., J. Mol. Biol., 231 (1993) 825.

    Google Scholar 

  36. Zielinski, P.J., An Annealing Algorithm for Designing Ligands from Receptor Structures, UMI, Ann Arbor, MI, U.S.A., 1994, p. 1.

    Google Scholar 

  37. Mayo, S., Olafson, B. and Goddard, W., J. Phys. Chem., 94 (1990) 8897.

    Google Scholar 

  38. Cramer, C. and Truhlar, D., J. Am. Chem. Soc., 113 (1991) 8305.

    Google Scholar 

  39. Wang, H. and Levinthal, C., J. Comput. Chem., 12 (1991) 868.

    Google Scholar 

  40. Cramer, C. and Truhlar, D., J. Am. Chem. Soc., 113 (1991) 8552.

    Google Scholar 

  41. Cramer, C. and Truhlar, D., Chem. Phys. Lett., 198 (1992) 74.

    Google Scholar 

  42. Cramer, C. and Truhlar, D., J. Comput. Chem., 13 (1992) 1089.

    Google Scholar 

  43. Cramer, C. and Truhlar, D., J. Comput.-Aided Mol. Design, 6 (1992) 629.

    Google Scholar 

  44. Cramer, C. and Truhlar, D., Science, 256 (1992) 213.

    Google Scholar 

  45. Cramer, C. and Truhlar, D., J. Am. Chem. Soc., 114 (1992) 8226.

    Google Scholar 

  46. Allen, L., J. Am. Chem. Soc., 111 (1989) 9115.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burt, S., Hutchins, C. & Zielinski, P.J. A Monte Carlo method for finding important ligand fragments from receptor data. J Comput Aided Mol Des 11, 243–255 (1997). https://doi.org/10.1023/A:1007952511172

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007952511172

Navigation