Skip to main content
Log in

Protein secondary structure templates derived from bioactive natural products – Combinatorial chemistry meets structure-based design

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Lead finding strategies in pharmaceutical research comprise structure-based drug design as well as screening efforts of natural product pools or large chemical libraries. In this context we propose a combined approach by utilizing natural product-derived structure information on receptor- or enzyme-complementarity for designing unique core structures that can be employed as privileged template molecules underlying combinatorial libraries. A set of rules for the transformation of molecular frameworks from natural products to structurally defined peptidomimetics is introduced. Special emphasis is laid on the correspondence in the orientational properties and functionalization patterns between natural products and regular protein secondary structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Verlinde, C.L.M.J. and Hol, W.G.J., Structure, 2 (1994) 577.

    Google Scholar 

  2. Petsko, G.A., Nature Supplement (intelligent drug design) 384 (1996) 7.

    Google Scholar 

  3. See for example: Branden, C. and Tooze, J. (Eds.) Introduction to Protein Structure, Garland Publishing, Inc., New York, NY, 1991.

    Google Scholar 

  4. Horwell, D.C., Bioorg. Med. Chem., 4 (1996) 1573.

    Google Scholar 

  5. Adang, A.E.P., Hermkens, P.H.H., Linders, J.T.M, Ottenheijm, H.C.J. and van Staveren, C.J., Recl. Trav. Chim. Pays-Bas, 113 (1994) 63.

    Google Scholar 

  6. Wiley, R.A. and Rich, D.H., Med. Res. Rev., 13 (1993) 327.

    Google Scholar 

  7. Balkenhohl, F., Bussche-Hünnefeld, C. v.d., Lansky, A. and Zechel, C., Angew. Chem. Int. Ed. Engl., 35 (1996) 2288.

    Google Scholar 

  8. Thompson, L.A. and Ellman, J.A., Chem. Rev., 96 (1996) 555.

    Google Scholar 

  9. Boger, D.L., Zhou, J., Borzilleri, R.M. and Nukui, S., Bioorg. Med. Chem. Lett., 6 (1996) 1089.

    Google Scholar 

  10. Boger, D.L. and Zhou, J., Bioorg. Med. Chem., 4 (1996) 1597.

    Google Scholar 

  11. Boger, D.L., Zhou, J., Borzilleri, R.M., Nukui, S. and Castle, S.L., J. Org. Chem., 62 (1997) 2054.

    Google Scholar 

  12. Janetka, J.W. and Rich, D.H., J. Am. Chem. Soc., 117 (1995) 10585.

    Google Scholar 

  13. Janetka, J.W., Satyshur, K.A. and Rich, D.H., Acta Crystallogr., Sect. C (1996) 3112.

  14. Janetka, J.W., Raman, P., Satyshur, K.A., Flentke, G.R. and Rich, D.H., J. Am. Chem. Soc., 119 (1997) 441.

    Google Scholar 

  15. Itokawa, H. and Takeya, K., Heterocycles, 35 (1993) 1467.

    Google Scholar 

  16. See for example: Müller, G., Gurrath, M., Kurz, M. and Kessler, H., Proteins Struct. Funct. Genet., 15 (1993) 235.

    Google Scholar 

  17. Evans, D.A. and Ellman, J.A., J. Am. Chem. Soc., 111 (1989) 1063.

    Google Scholar 

  18. Boger, D.L. and Yohannes, D., J. Org. Chem., 55 (1990) 6000.

    Google Scholar 

  19. Boger, D.L. and Zhou, J., J. Am. Chem. Soc., 115 (1993) 11426.

    Google Scholar 

  20. Boger, D.L., Patane, M.A. and Zhou, J., J. Am. Chem. Soc., 116 (1994) 8544.

    Google Scholar 

  21. Boger, D.L. and Borzilleri, R.M., Bioorg. Med. Chem. Lett., 5 (1995) 1187.

    Google Scholar 

  22. Boger, D.L., Borzilleri, R.M., Nukui, S. and Beresis, R.T., J. Org. Chem., 62 (1997) 4721.

    Google Scholar 

  23. Beugelmans, R., Bigot, A., Bios-Choussy, M. and Zhu, J., J. Org. Chem., 61 (1996) 771.

    Google Scholar 

  24. Zhu, J., Synlett, 2 (1997) 133.

    Google Scholar 

  25. Burgess, K., Lim, D., Bois-Choussy, M. and Zhu, J., Tetrahedron Lett., 38 (1997) 3345.

    Google Scholar 

  26. Qabar, M., Urban, J., Sia, C., Klein, M. and Kahn, M., In Chaiken, I.M. and Janda, K.D. (Eds.), Molecular Diversity and Combinatorial Chemistry: Libraries and Drug Discovery, American Chemical Society, Washington, DC, 1996, p. 2.

    Google Scholar 

  27. Graybill, T.L., Agrafiotis, D.K., Bone, R., Illig, C.R., Jaeger, E.P., Locke, K.T., Lu, T., Salvino, J.M., Soll, R.M., Spurlino, J.C., Subasinghe, N., Tomczuk, B.E. and Salemme, F.R., In Chaiken, I.M. and Janda, K.D. (Eds.), Molecular Diversity and Combinatorial Chemistry: Libraries and Drug Discovery, American Chemical Society, Washington, DC, 1996, p. 16.

    Google Scholar 

  28. Irie, K., Isaka, T., Iwata, Y., Yanai, Y., Nakamura, Y., Koizumi, F., Ohigashi, H., Wender, P.A., Satomi, Y. and Nishino, H., J. Am. Chem. Soc., 118 (1996) 10733.

    Google Scholar 

  29. Graf von Roedern, E. and Kessler, H., Angew. Chem. Int. Ed. Engl., 33 (1994) 687.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, G., Giera, H. Protein secondary structure templates derived from bioactive natural products – Combinatorial chemistry meets structure-based design. J Comput Aided Mol Des 12, 1–6 (1998). https://doi.org/10.1023/A:1007954801605

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007954801605

Navigation