Skip to main content
Log in

Molecular modeling of the human vasopressin V2 receptor/agonist complex

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The V2 vasopressin renal receptor (V2R), which controls antidiuresis in mammals, is a member of the large family of heptahelical transmembrane (7TM) G protein-coupled receptors (GPCRs). Using the automated GPCR modeling facility available via Internet (http://expasy.hcuge.ch/swissmod/SWISS-MODEL.html) for construction of the 7TM domain in accord with the bovine rhodopsin (RD) footprint, and the SYBYL software for addition of the intra- and extracellular domains, the human V2R was modeled. The structure was further refined and its conformational variability tested by the use of a version of the Constrained Simulated Annealing (CSA) protocol developed in this laboratory. An inspection of the resulting structure reveals that the V2R (likewise any GPCR modeled this way) is much thicker and accordingly forms a more spacious TM cavity than most of the hitherto modeled GPCR constructs do, typically based on the structure of bacteriorhodopsin (BRD). Moreover, in this model the 7TM helices are arranged differently than they are in any BRD-based model. Thus, the topology and geometry of the TM cavity, potentially capable of receiving ligands, is in this model quite different than it is in the earlier models. In the subsequent step, two ligands, the native [arginine8]vasopressin (AVP) and the selective agonist [d-arginine8]vasopressin (DAVP) were inserted, each in two topologically non-equivalent ways, into the TM cavity and the resulting structures were equilibrated and their conformational variabilities tested using CSA as above. The best docking was selected and justified upon consideration of ligand-receptor interactions and structure-activity data. Finally, the amino acid residues were indicated, mainly in TM helices 3-7, as potentially important in both AVP and DAVP docking. Among those Cys112, Val115-Lys116, Gln119, Met123 in helix 3; Glu174 in helix 4; Val206, Ala210, Val213-Phe214 in helix 5; Trp284, Phe287-Phe288, Gln291 in helix 6; and Phe307, Leu310, Ala314 and Asn317 in helix 7 appeared to be the most important ones. Many of these residues are invariant for either the GPCR superfamily or the neurophyseal (vasopressin V2R, V1aR and V1bR and oxytocin OR) subfamily of receptors. Moreover, some of the equivalent residues in V1aR have already been found critical for the ligand affinity [Mouillac et al., J. Biol. Chem, 270 (1995) 25771].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Schertler, G.F.X., Villa, C. and Henderson, R., Nature, 362 (1993) 770.

    Google Scholar 

  2. Unger, V.M. and Schertler, G.F.X., ophys. J., 68 (1995) 1776.

  3. Schertler, G.F.X. and Hargrave, P.A., Proc. Natl. Acad. Sci. USA, 92 (1995) 11578.

    Google Scholar 

  4. Baldwin, J.M., EMBO J., 12 (1993) 1693.

    Google Scholar 

  5. Herzyk, P. and Hubbard, R.E., Biophys. J., 69 (1995) 2419.

    Google Scholar 

  6. Swiss-Model, an automated knowledge-based protein modeling server at Glaxo Wellcome Research and Development S.A. in Geneva (http://expasy.hcuge.ch/swissmod/SWISSMODEL. html).

  7. Henderson, R., Baldwin, J.M., Ceska, T.A., Zemlin, F., Beckmann, E. and Downing, K.H., J. Mol. Biol., 213 (1990) 899.

    Google Scholar 

  8. Grigorieff, N., Ceska, T.A., Downing, K.H., Baldwin, J.M. and Henderson, R., Mol. Biol., 259 (1996) 393.

    Google Scholar 

  9. Strader, C.D., Fong, T.M., Tota, M.R., Underwood, D. and Dixon, R.A.F., Annu. Rev. Biochem., 63 (1994) 101.

    Google Scholar 

  10. Sugimoto, T., Saito, M., Mochizuki, S., Watanabe, Y., Hashimoto, S. and Kawashima, H., J. Biol. Chem., 269 (1994) 27088.

    Google Scholar 

  11. De Keyzer, Y., Auzan, C., Lenne, F., Beldjord, C., Thibonnier, M., Bertagna, X. and Clauser, E., FEBS Lett., 356 (1994) 215.

    Google Scholar 

  12. Laszlo, F.A., Laszlo, F., Jr. and DeWied, D., Pharmacol. Rev., 43 (1991) 73.

    Google Scholar 

  13. Liu, J. and Wess, J., J. Biol. Chem., 271 (1996) 8772.

    Google Scholar 

  14. Chini, B., Mouillac, B., Ala, Y., Balestre, M.-N., Trumpp-Kallmeyer, S., Hoflack, J., Elands, J., Hibert, M., Manning, M., Jard, S. and Barberis, C., EMBO J., 14 (1995) 2176.

    Google Scholar 

  15. Ufer, E., Postina, R., Gorbulev, V. and Fahrenholz, F., FEBS Lett., 362 (1995) 19.

    Google Scholar 

  16. Iismaa, T.P., Biden, T.J. and Shine, J., G Protein-Coupled Receptors, Springer-Verlag, Heidelberg, Germany, 1995, Chapter 1, pp. 16–22.

    Google Scholar 

  17. Baldwin, J.M., Curr. Opin. Cell. Biol., 6 (1994) 180.

    Google Scholar 

  18. Swiss-Prot accession code P30518 (http://expasy.hcuge.ch/sprot-top.html)

  19. SYBYL, v. 6.1, Tripos Inc., St. Louis, MO, U.S.A., 1994.

  20. Brookhaven Protein Data Bank accession code 1xy1.

  21. Fine, R.M., Wang, H., Shenkin, P.S., Yarmush, D.L. and Levinthal, C., Proteins, 1 (1987) 342.

    Google Scholar 

  22. Shenkin, P.S., Yarmush, D.L., Fine, R.M., Wang, H. and Levinthal, C., Biopolymers, 26 (1987) 2053.

    Google Scholar 

  23. AMBER 4.1, Pearlman, D.A., Case, D.A., Caldwell, J.W., Ross, W.S., Cheatham III, T.E., Ferguson, D.M., Seibel, G.L., Singh, U.C., Weiner, P.K. and Kollman, P.A., University of California, San Francisco, CA, U.S.A., 1995.

    Google Scholar 

  24. RasMol, v. 2.6, Molecular Visualisation Program, Sayle, R., Glaxo Wellcome Research and Development, Stevenage, Hertfordshire, U.K., 1996.

    Google Scholar 

  25. Kraulis, P., J. Appl. Crystallogr., 24 (1991) 946.

    Google Scholar 

  26. Vriend, G., GPCRDB © 1996 (http://swift.embl-heidelberg.de/7tm/).

  27. Wood, S.P., Tickle, I.J., Treharne, A.M., Pitts, J.E., Mascarenhas, Y., Li, J.Y., Husain, J., Cooper, S., Blundell, T.L., Hruby, V.J., Buku, A., Fischman, J.F. and Wyssbrod, H.R., Science, 232 (1986) 633.

    Google Scholar 

  28. Tarnowska, M., Liwo, A., Kasprzykowski, F., Łankiewicz, L., Grzonka, Z. and Ciarkowski, J., Curr. Top. Med. Chem., 1 (1993) 145.

    Google Scholar 

  29. Hruby, V.J., Chow, M.-S. and Smith D.D., Annu. Rev. Pharmacol. Toxicol., 30 (1990) 501.

    Google Scholar 

  30. Kojro, E., Eich, P., Gimpl, G. and Fahrenholz, F., Biochemistry, 32 (1993) 13537.

    Google Scholar 

  31. Brtník, F., In Jošt, K., Lebl, M. and Brtník, F. (Eds.), CRC Handbook of Neurophyseal Hormone Analogs, Vol. II, part 1, CRC Press, Inc., Boca Raton, FL, USA, 1987, pp. 126–154.

    Google Scholar 

  32. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A. and Haak, J.R., J. Chem. Phys., 81 (1984) 3684.

    Google Scholar 

  33. Mouillac, B., Chini, B., Balestre, M.-N., Elands, J., Trumpp-Kallmeyer, S., Hoflack, J., Hibert, M., Jard, S. and Barberis, C., J. Biol. Chem., 270 (1995) 25771.

    Google Scholar 

  34. Trumpp-Kallmeyer, S., Hoflack, J., Bruinvels, A. and Hibert, M., J. Med. Chem., 35 (1992) 3448.

    Google Scholar 

  35. Brtník, F., In Jošt, K., Lebl, M. and Brtník, F. (Eds.), CRC Handbook of Neurohypophyseal Hormone Analogs, Vol II, part 1, CRC Press, Inc., Boca Raton, FL, USA, 1987, pp. 131–134.

    Google Scholar 

  36. Scheer, A., Fanelli, F., Costa, T., De Benedetti, P. and Cotecchia, S., EMBO J., 15 (1996) 3566.

    Google Scholar 

  37. Hechter, O., Terada, S., Nakahara, T. and Flouret, G., J. Biol. Chem., 253 (1978) 3219.

    Google Scholar 

  38. Hechter, O., Terada, S., Spitsberg, V., Nakahara, T., Nakagawaga, S.H. and Flouret, G., J. Biol. Chem., 253 (1978) 3230.

    Google Scholar 

  39. Chini, B., Mouillac, B., Ala, Y., Balestre, M.-N., Trumpp-Kallmeyer, S., Hoflack, J., Elands, J., Hibert, M., Manning, M., Jard, S. and Barberis, C., EMBO J., 14 (1995) 2176.

    Google Scholar 

  40. Howl, J. and Wheatley, M. In Kaumaya, P.T.P. and Hodges, R.S. (Eds.), Peptides: Chemistry, Structure and Biology, Mayflower Scientific, Kingswinford, U.K., 1996, pp. 400–402.

    Google Scholar 

  41. Postina, R., Kojro, E. and Fahrenholz, F., J. Biol. Chem., 271 (1996) 31593.

    Google Scholar 

  42. Birnbaumer, M., J. Receptor Sign. Transduct. Res., 15 (1995) 131.

    Google Scholar 

  43. Krystek, S.R., Hunt, J.T., Jr, Stein, P.D. and Stouch, T.R., J. Med. Chem., 38 (1995) 659.

    Google Scholar 

  44. Trumpp-Kallmeyer, S., Hoflack, J. and Hibert, M., In Buck, S.H; (Ed.), The Tachykinin Receptor, Humana Press, Totowa, NJ, USA, 1994, pp. 237–255.

    Google Scholar 

  45. Underwood, D.J., Strader, C.D., Rivero, R., Patchett, A.A., Greenlee, W. and Prendergast, K., Chem. Biol., 1 (1994) 211.

    Google Scholar 

  46. Laakkonen, L.J., Guarnieri, F., Pearlman, J.H., Gershengorn, M.C. and Osman, R., Biochemistry, 35 (1996) 7651.

    Google Scholar 

  47. Pearlman, J.H., Laakkonen, L.J., Guarnieri, F., Osman, R. and Gershengorn, M.C., Biochemistry, 35 (1996) 7643.

    Google Scholar 

  48. Scheer, A. and Cotecchia, S., J. Receptor Sign. Transduct. Res., 17 (1997) 57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Czaplewski, C., Kaźmierkiewicz, R. & Ciarkowski, J. Molecular modeling of the human vasopressin V2 receptor/agonist complex. J Comput Aided Mol Des 12, 275–287 (1998). https://doi.org/10.1023/A:1007969526447

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007969526447

Navigation