Skip to main content
Log in

Analyzing and Synthesizing Images by Evolving Curves with the Osher-Sethian Method

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Numerical analysis of conservation laws plays an important role in the implementation of curve evolution equations. This paper reviews the relevant concepts in numerical analysis and the relation between curve evolution, Hamilton-Jacobi partial differential equations, and differential conservation laws. This close relation enables us to introduce finite difference approximations, based on the theory of conservation laws, into curve evolution. It is shown how curve evolution serves as a powerful tool for image analysis, and how these mathematical relations enable us to construct efficient and accurate numerical schemes. Some examples demonstrate the importance of the CFL condition as a necessary condition for the stability of the numerical schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adalsteinsson, D. and Sethian, J. A. 1995. A fast level set method for propagating interfaces. J. of Comp. Phys., 118:269-277.

    Google Scholar 

  • Alvarez, L., Lions, P. L., and Morel, J. M. 1992. Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal., 29:845-866.

    Google Scholar 

  • Alvarez, L., Guichard, F., Lions, P. L., and Morel, J. M. 1993. Axioms and fundamental equations of image processing. Arch. Rational Mechanics, 123.

  • Blum, H. 1973. Biological shape and visual science ( part I). J. Theor. Biol., 38:205-287.

    Google Scholar 

  • Brockett, R. W. and Maragos, P. 1992. Evolution equations for continuous-scale morphology. In Proceedings IEEE International Conference on Acoustics, Speech, and Signal Processing, San Francisco, California, pp. 1-4.

  • Bruckstein, A. M. 1988. On shape from shading. Comput. Vision Graphics Image Process., 44:139-154.

    Google Scholar 

  • Bruckstein, A. M. 1994. Analyzing and synthesizing images by evolving curves. In Proceedings IEEE ICIP, Austin, Texas, vol. 1, pp. 11-15.

    Google Scholar 

  • Caselles, V., Catte, F., Coll, T., and Dibos, F. 1993. A geometric model for active contours. Numerische Mathematik, 66:1-31.

    Google Scholar 

  • Caselles, V., Kimmel, R., and Sapiro, G. 1995a. Geodesic active contours. In Proceedings ICCVs'95, Boston, Massachusetts, pp. 694- 699.

  • Caselles, V., Kimmel, R., and Sapiro, G. 1997. Geodesic active contours. IJCV 22(1):61-79.

    Google Scholar 

  • Chopp, D. L. 1993. Computing minimal surfaces via level set curvature flow. J. of Computational Physics, 106(1):77-91.

    Google Scholar 

  • Cohen, L. D. and Kimmel, R. 1997. Global minimum for active contour models: A minimal path approach. IJCV 24(1):57- 78.

    Google Scholar 

  • Courant, R., Friedrichs, K. O., and Lewy, H. 1928. Uber die partiellen differenzengliechungen der mathematisches Physik. Math. Ann., 100:32-74.

    Google Scholar 

  • Courant, R., Friedrichs, K. O., and Lewy, H. 1967. On the partial difference equations of mathematical physics. IBM Journal, 11:215- 235.

    Google Scholar 

  • Epstein, C. L. and Gage, M. 1987. The curve shortening flow. In Wave Motion: Theory, Modeling, and Computation. A. Chorin and A. Majda (Eds.), Springer-Verlag: New York.

    Google Scholar 

  • Feynman, R. P., Leighton, R. B., and Sands, M. 1964. The Feynman Lectures on Physics. Addison Wesley: Massachusetts.

    Google Scholar 

  • Gage, M. and Hamilton, R. S. 1986. The heat equation shrinking convex plane curves. J. Diff. Geom., 23.

  • Grayson, M. 1987. The heat equation shrinks embedded plane curves to round points. J. Diff. Geom., 26.

  • Harten, A., Hyman, J. M., and Lax, P. D. 1976. On finite-difference approximations and entropy conditions for shocks. Comm. Pure Appl. Math., 29:297.

    Google Scholar 

  • Kimmel, R. 1992. Shape from shading via level sets. M. Sc. Thesis (in Hebrew), Technion-Israel Institute of Technology.

  • Kimmel, R. 1995. Curve Evolution on Surfaces. D. Sc. Thesis, Technion-Israel Institute of Technology.

  • Kimmel, R. and Bruckstein, A. M. 1993. Shape offsets via level sets. CAD, 25(5):154-162.

    Google Scholar 

  • Kimmel, R., Kiryati, N., and Bruckstein, A. M. 1994. Using multilayer distance maps in finding shortest paths between moving obstacles. In Proceedings of ICPR, International Conference of Pattern Recognition, Jerusalem, Israel, pp. 367-372.

  • Kimmel, R. and Bruckstein, A. M. 1995a. Global shape from shading. CVIU, 62(3):360-369.

    Google Scholar 

  • Kimmel, R. and Bruckstein, A. M. 1995b. Tracking level sets by level sets: Amethod for solving the shape from shading problem. CVIU, 62(2):47-58.

    Google Scholar 

  • Kimmel, R. and Sapiro, G. 1995. Shortening three dimensional curves via two dimensional flows. International Journal: Computers & Mathematics with Applications, 29(3):49-62.

    Google Scholar 

  • Kimmel, R., Shaked, D., Kiryati, N., and Bruckstein, A. M. 1995a. Skeletonization via distance maps and level sets. CVIU, 62(3): 382-391.

    Google Scholar 

  • Kimmel, R., Siddiqi, K., Kimia, B. B., and Bruckstein, A. M. 1995b. Shape from shading: Level set propagation and viscosity solutions. International Journal of Computer Vision, 16:107-133.

    Google Scholar 

  • Kimmel, R., Amir, A., and Bruckstein, A. M. 1995c. Finding shortest paths on surfaces using level sets propagation. IEEE Trans. on PAMI, 17(6):635-640.

    Google Scholar 

  • Kimmel, R., Kiryati, N., and Bruckstein, A. M. 1996. Sub-pixel distance maps and weighted distance transforms. Journal of Mathematical Imaging and Vision, Special Issue on Topology and Geometry in Computer Vision (to appear).

  • Kiryati, N. and Székely, G. 1993. Estimating shortest paths and minimal distances on digitized three dimensional surfaces. Pattern Recognition, 26(11):1623-1637.

    Google Scholar 

  • Kuznetsov, N. N. 1976. Accuracy of some approximate methods for computing the weak solutions of first-order quasi-linear equation. USSR Comp. Math. and Math Phys., 16:105-119.

    Google Scholar 

  • Lax, P. D. 1973. Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves. Society for Industrial and Applied Mathematics: Philadelphia, Pennsylvania.

    Google Scholar 

  • LeVeque, R. J. 1992. Numerical Methods for Conservation Laws. Lectures in Mathematics. Birkhauser Verlag, Basel.

    Google Scholar 

  • Malladi, R., Sethian, J. A., and Vemuri, B. C. 1995. Shape modeling with front propagation: A level set approach. IEEE Trans. on PAMI, 17:158-175.

    Google Scholar 

  • Osher, S. J. and Sethian, J. A. 1988. Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. of Comp. Phys., 79:12-49.

    Google Scholar 

  • Osher, S. and Shu, C. W. 1991. High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations. SIAM J. Numer. Analy., 28(4):907-922.

    Google Scholar 

  • Pnueli, Y. and Bruckstein, A. M. 1994. DigiDurer-a digital engraving system. The Visual Computer, 10:277-292.

    Google Scholar 

  • Pnueli, Y. and Bruckstein, A. M. 1996. Gridless halftoning. Graphic Models and Image Processing, 58(1):38-64.

    Google Scholar 

  • Sapiro, G. and Tannenbaum, A. 1993. Affine invariant scalespace. International Journal of Computer Vision, 11(1):25- 44.

    Google Scholar 

  • Sapiro, G., Kimmel, R., Shaked, D., Kimia, B., and Bruckstein, A. M. 1993. Implementing continuous-scale morphology via curve evolution. Pattern Recognition, 26(9):1363-1372.

    Google Scholar 

  • Sapiro, G. and Tannenbaum, A. 1995. Area and length preserving geometric invariant scale-spaces. IEEE Trans. on PAMI, 17(1).

  • Schroeder 1983. The eikonal equation. The Mathematical Intelligencer, 5(1):36-37.

    Google Scholar 

  • Sethian, J. A. 1985. Curvature and the evolution of fronts. Commun. in Math. Phys., 101:487-499.

    Google Scholar 

  • Sethian, J. A. 1989. A review of recent numerical algorithms for hypersurfaces moving with curvature dependent speed. J. of Diff. Geom., 33:131-161.

    Google Scholar 

  • Shaked, D. and Bruckstein, A. M. 1995. The curve axis. CGIU (to appear).

  • Smoller, J. 1983. Shock Waves and Reaction-Diffusion Equations. Springer-Verlag: New York.

    Google Scholar 

  • Sod, G. A. Numerical Methods in Fluid Dynamics. Cambridge Univ. Press.

  • Weickert, J., Anisotropic diffusion in image processing. Ph. D. Thesis. Kaiserslautern Univ. Germany, Nov. 1995.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kimmel, R., Kiryati, N. & Bruckstein, A.M. Analyzing and Synthesizing Images by Evolving Curves with the Osher-Sethian Method. International Journal of Computer Vision 24, 37–55 (1997). https://doi.org/10.1023/A:1007970107971

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007970107971

Navigation