Skip to main content
Log in

The Generic Bilinear Calibration-Estimation Problem

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

We identify a very general, recurring pattern in a number of well known problems in biological and machine vision. Many problems are of a peculiar double-sided nature: One attempts to estimate certain properties of the environment using a certain type of equipment and simultaneously one attempts to calibrate the same equipment on the structure of the environment. At first sight this appears the kind of the chicken and the egg problem that might well prove to be insoluble. However, due to basic constraints that universally apply (e.g., the world is only three-dimensional), a solution—up to a certain class of ambiguity transformations—often exists. The more complicated the problem is, the less important the remaining ambiguity will be, at least in a relative sense. Many well known problems are special in that they can be cast in bilinear form, sometimes after transformation or the introduction of dummy variables. Instances include photometric stereo, photometric estimations (e.g., of lightness), local (differential) image operators, a variety of photogrammetric problems, etc. It turns out that many of these problems—and together these make up a large fraction of the generic problems in machine vision today—can be cast in a simple universal framework. This framework enables one to handle arbitrarily large (that is, not minimal, consistent configurations), noisy (thus inconsistent) date sets automatically. The level at which prior information (either of a deterministic or a statistical nature) is used (assumptions such as constant albedo, rigidity, uniform distributions, etc.) is clearly separated as an additional, typically nonlinear, stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Borges, C. F. 1991. Trichromatic approximation method for surface illumination. J. Opt. Soc. Am., A8:1319-1323.

    Google Scholar 

  • Chasles, M. 1855. Question No. 296. Nouv. Ann. Math., 14:50.

    Google Scholar 

  • Faugeras, O. 1993. Three-Dimensional Computer Vision: A Geometric Viewpoint, MIT Press: Cambridge, Mass.

    Google Scholar 

  • Faugeras, O. 1995. Stratification of three-dimensional vision: Projective, affine, and metric representations, J. Opt. Soc. Am., A12:465-484.

    Google Scholar 

  • Freeman, W. T. 1994. The generic viewpoint assumption in a framework for visual perception. Nature, 368(6471):542-545.

    Google Scholar 

  • Gershun, A. 1937. Notions du champ lumineux et son application à la photométrie. R. G. E., 42:5.

    Google Scholar 

  • Hayakawa, H. 1994. Photometric stereo under a light source with arbitrary motion. J. Opt. Soc. Am., A11:3079-3089.

    Google Scholar 

  • Horn, B. K. P. and Brooks, M. J. (Eds.). 1989. Shape from Shading. The MIT Press: Cambridge, Mass.

    Google Scholar 

  • Judd, B. B., MacAdam, D. L., and Wyszecki, G. 1964. Spectral distribution of typical daylight as a function of correlated color temperature. J. Opt. Soc. Am., 54:1031.

    Google Scholar 

  • Klein, F. 1939. Elementary Mathematics from an Advanced Standpoint. Geometry. Dover: New York.

    Google Scholar 

  • Koenderink, J. J. and van Doorn, A. J. 1980. Photometric invariants related to solid shape. Optica Acta, 27:981-996.

    Google Scholar 

  • Koenderink, J. J. and van Doorn, A. J. 1984. Facts on optic flow. Biol. Cybern., 56:363-370.

    Google Scholar 

  • Koenderink, J. J. and van Doorn, A. J. 1987. The structure of images. Biol. Cybern., 50:247-254.

    Google Scholar 

  • Koenderink, J. J. and van Doorn, A. J. 1991. Affine structure from motion. J. Opt. Soc. Am., A8:377-385.

    Google Scholar 

  • Koenderink, J. J. and van Doorn, A. J. 1992. Generic neighborhood operators. IEEE PAMI, 14:597-605.

    Google Scholar 

  • Koenderink, J. J. and van Doorn, A. J. 1993. Illuminance critical points on generic smooth surfaces. J. Opt. Soc. Am., A10:844-854.

    Google Scholar 

  • Kontsevich, L. L., Petrov, A. P., and Vergelskaya, I. S. 1994. Reconstruction of shape from shading in color images. J. Opt. Soc. Am., A11:1047-1052.

    Google Scholar 

  • Kruppa, E. 1913. Zur Ermittlung eines Objektes aus zwei Perspektiven mit innerer Orientierung. Stz. Ber. Akad. Wiss., Wien, math. naturwis. Kl., Abt. IIa, 122:1939-1948.

    Google Scholar 

  • Land, E. H. 1962. Color in the natural image. Proc. Roy. Inst. of Great Britain, vol. 39, pp. 1-15.

    Google Scholar 

  • Longuet-Higgins, H. C. 1981. A computer algorithm for reconstructing a scene from two projections. Nature (London), 293:133-135.

    Google Scholar 

  • Maloney, L. T. and Wandell, B. A. 1986. Color constancy: A method for recovering surface spectral reflectance. J. Opt. Soc. Am., A3:29-33.

    Google Scholar 

  • Moon, P. 1939. Basic principles in illumination calculations. J. Opt. Soc. Am., 29:108-116.

    Google Scholar 

  • Osorio, D. and Bossomaier, T. R. J. 1992. Human cone-pigment spectral sensitivities and the reflectances of natural surfaces. Biol. Cybern., 67:217–222.

    Google Scholar 

  • Pentland, A. P. 1982. Finding the illuminant direction. J. Opt. Soc. Am., 72:448-455.

    Google Scholar 

  • Rydfalk, M. 1987. Candide, a parametrized face. Rep. LiTH-ISY-I-0866 (Linköping University, Linköping, Sweden).

    Google Scholar 

  • Shashua, A. 1992. Projective structure from two uncalibrated images: Structure from motions and recognition. M. I. T. Artif. Intell. Lab., Massachusetts Inst. Technol., Cambridge, MA: A. I. Memo 1363.

    Google Scholar 

  • Sparr, G. and Nielsen, L. 1990. Shape and mutual cross-ratios with applications to orientation problems. TR. 1990:3 (Lund Inst. Technol.).

  • Stolfi, J. 1991. Oriented Projective Geometry. Academic Press: Boston.

    Google Scholar 

  • Tomasi, C. and Kanade, T. 1992. Shape and motion from image streams under orthography: A factorization method. Int. J. Comput. Vision., 9:137-154.

    Google Scholar 

  • Ullman, S. 1979. The Interpretation of Visual Motion. The MIT Press: Cambridge, Mass.

    Google Scholar 

  • Woodham, R. J. 1980. Photometric method for determining surface orientation from multiple images. Opt. Eng., 19:139- 144.

    Google Scholar 

  • Wolfram, S. 1991. Mathematica, A System for doing Mathematics by Ccomputer. Addison-wesley Publishing Company, Inc.: Redwood City, California.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koenderink, J.J., Van Doorn, A.J. The Generic Bilinear Calibration-Estimation Problem. International Journal of Computer Vision 23, 217–234 (1997). https://doi.org/10.1023/A:1007971132346

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007971132346

Keywords

Navigation