Skip to main content
Log in

Classification of auxin plant hormones by interaction property similarity indices

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Although auxins were the first type of plant hormone to be identified, little is known about the molecular mechanism of this important class of plant hormones. We present a classification of a set of about 50 compounds with measured auxin activities, according to their interaction properties. Four classes of compounds were defined: strongly active, weakly active with weak antiauxin behaviour, inactive and inhibitory. All compounds were modeled in two low-energy conformations, ‘P’ and ‘T’, so as to obtain the best match to the ‘planar’ and ‘tilted’ conformations, respectively, of indole 3-acetic acid. Each set of conformers was superimposed separately using several different alignment schemes. Molecular interaction energy fields were computed for each molecule with five different chemical probes and then compared by computing similarity indices. Similarity analysis showed that the classes are on average distinguishable, with better differentiation achieved for the T conformers than the P conformers. This indicates that the T conformation might be the active one. Further, a screening was developed which could distinguish compounds with auxin activity from inactive compounds and most antiauxins using the T conformers. The classifications rationalize ambiguities in activity data found in the literature and should be of value in predicting the activities of new plant growth substances and herbicides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Davies, P.J., Plant Hormones and Their Role in Plant Growth and Development, Martinus Nijhoff, Dordrecht, The Netherlands, 1987.

    Google Scholar 

  2. Thimann, K.V., Hormone Action in the Whole Life of Plants, The University of Massachusetts Press, Amherst, MA, U.S.A., 1977.

    Google Scholar 

  3. Palme, K.J., Plant Growth Regul., 12 (1993) 171.

    Google Scholar 

  4. Klämbt, D., Plant Mol. Biol., 14 (1990) 1045.

    Google Scholar 

  5. Jones, A.M., Physiol. Plant., 80 (1990) 154.

    Google Scholar 

  6. Jones, A.M. and Prasad, P.V., BioEssays, 14 (1992) 43.

    Google Scholar 

  7. Venis, M.A. and Napier, M., Crit. Rev. Plant Sci., 14 (1995) 27.

    Google Scholar 

  8. Tian, H., Klämbt, D. and Jones, A.M., J. Biol. Chem., 270 (1995) 26962.

    Google Scholar 

  9. Löbler, M. and Klämbt, D., J. Biol. Chem., 260 (1985) 9848.

    Google Scholar 

  10. Shimomura, S., Sotobayashi, S., Futai, M. and Fukui, T., J. Biochem., 99 (1986) 1513.

    Google Scholar 

  11. Inohara, N., Shimomura, S., Fukui, T. and Futai, M., Proc. Natl. Acad. Sci. USA, 86 (1989) 3564.

    Google Scholar 

  12. Napier, R.M., Venis, M.A., Bolton, M.A., Richardson, L.I. and Butcher, G.W., Planta, 176 (1988) 519.

    Google Scholar 

  13. Veldstra, H., Enzymologia, 11 (1944) 97.

    Google Scholar 

  14. Porter, W.L. and Thimann, K.V., Phytochemistry, 4 (1965) 229.

    Google Scholar 

  15. Kaethner, J.M., Nature, 267 (1977) 19.

    Google Scholar 

  16. Farrimond, J.A., Elliott, M.C. and Clark, D.W., Nature, 274 (1978) 401.

    Google Scholar 

  17. Lehmann, P.A.F., Chem.-Biol. Interact., 20 (1978) 239.

    Google Scholar 

  18. Rakhaminova, A.B., Khavkin, E.E. and Yaguzhinskii, L.S., Biokhimiya, 43 (1978) 806.

    Google Scholar 

  19. Katekar, G.F., Phytochemistry, 18 (1979) 223.

    Google Scholar 

  20. Pattabhi, V., Curr. Sci., 59 (1990) 1228.

    Google Scholar 

  21. Bures, M.G., Black-Schaefer, C. and Gardner, G., J. Comput.-Aided Mol. Design, 5 (1991) 323.

    Google Scholar 

  22. Kojić-Prodić, B., Nigović, B., Tomić, S., Ilić, N., Magnus, V., Konjević, R., Giba, Z. and Duax, W.L., Acta Crystallogr., B47 (1991) 1010.

    Google Scholar 

  23. Nigović, B., Kojić-Prodić, B., Antolić, S., Tomić, S., Puntarec, V. and Cohen, J.D., Acta Crystallogr., B52 (1996) 332.

    Google Scholar 

  24. Antolić, S., Kojić-Prodić, B., Tomić, S., Nigović, B., Magnus, V. and Cohen, J.D., Acta Crystallogr., B52 (1996) 651.

    Google Scholar 

  25. Edgerton, M.D., Tropsha, A. and Jones, A.M., Phytochemistry, 35 (1994) 1111.

    Google Scholar 

  26. Beale, M.H. and Sponsel, J., Plant Growth Regul., 12 (1996) 227.

    Google Scholar 

  27. Ramek, M., Tomić, S. and Kojić-Prodić, B., Int. J. Quant. Chem., Quant. Biol. Symp., 22 (1995) 75.

    Google Scholar 

  28. Ramek, M., Tomić, S. and Kojić-Prodić, B., Int. J. Quant. Chem., 60 (1996) 1727.

    Google Scholar 

  29. Lutz, B.T.G., Van der Windt, E., Kanters, J., Klämbt, D., Kojić-Prodić, B. and Ramek, M., J. Mol. Struct., 382 (1996) 177.

    Google Scholar 

  30. Wade, R.C., In Kubinyi, H. (Ed.) 3D QSAR in Drug Design: Theory, Methods and Applications, ESCOM, Leiden, The Netherlands, 1993, pp. 486–505.

    Google Scholar 

  31. Good, A.C., In Dean, P.M. (Ed.) Molecular Similarity in Drug Design, Blackie Academic & Professional, London, U.K., 1995, pp. 1–23.

    Google Scholar 

  32. Burt, C. and Richards, G., J. Comput. Chem., 11 (1990) 1139.

    Google Scholar 

  33. Richard, A.M., J. Comput. Chem., 12 (1991) 959.

    Google Scholar 

  34. Carbo, R., Arnau, M. and Leyda, L., Int. J. Quant. Chem., 17 (1980) 1185.

    Google Scholar 

  35. Klebe, G., Abraham, U. and Mietzner, T., J. Med. Chem., 37 (1994) 4130.

    Google Scholar 

  36. Cramer III, R.D., De Priest, S.A., Patterson, D.E. and Hecht, P., In Kubinyi, H. (Ed.) 3D QSAR in Drug Design: Theory, Methods and Applications, ESCOM, Leiden, The Netherlands, 1993, pp. 443–485.

    Google Scholar 

  37. Kearsley, S.K. and Smith, G.M., Tetrahedron Comput. Methodol., 3 (1990) 615.

    Google Scholar 

  38. Bagdassarian, C.K., Schramm, V.L. and Schwartz, S.D., J. Am. Chem. Soc., 118 (1996) 8825.

    Google Scholar 

  39. Carbo, R. and Calabuig, B., Int. J. Quant. Chem., 42 (1992) 1681.

    Google Scholar 

  40. Hodgkin, E.E. and Richards, W.G., Int. J. Quant. Chem., Quant. Biol. Symp., 14 (1987) 105.

    Google Scholar 

  41. Good, E.E., Hodgkin, E.E. and Richards, W.G., J. Chem. Inf. Comput. Sci., 32 (1992) 188.

    Google Scholar 

  42. Ray, P.M., Dohrmann, U. and Hartel, R., Plant Physiol., 60 (1977) 585.

    Google Scholar 

  43. Hatano, T., Katayama, M. and Marumo, S., Experientia, 43 (1987) 1237.

    Google Scholar 

  44. Hatano, T., Kato, Y., Katayama, M. and Marumo, S., Experientia, 45 (1989) 400.

    Google Scholar 

  45. Katayama, M., Kato, Y., Kimoto, H. and Fuji, S., Experientia, 51 (1995) 721.

    Google Scholar 

  46. Katekar, G.F. and Geissler, A.E., Phytochemistry, 21 (1982) 257.

    Google Scholar 

  47. Katekar, G.F. and Geissler, A.E., Phytochemistry, 22 (1983) 27.

    Google Scholar 

  48. Rescher, U., Walther, A., Schiebl, C. and Klämbt, D., J. Plant Growth Regul., 15 (1996) 1.

    Google Scholar 

  49. Reinecke, D.M., Ozga, J.A. and Magnus, V., Phytochemistry, 40 (1995) 1361.

    Google Scholar 

  50. Wain, R.L. and Wightman, F., Ann. Appl. Biol., 40 (1953) 244.

    Google Scholar 

  51. Fawcett, C.H., Wain, R.L. and Wightman, F., Ann. Appl. Biol., 43 (1955) 342.

    Google Scholar 

  52. Veldstra, H. and Van der Westeringh, C., Recl. Trav. Chim. Pays-Bas, 70 (1951) 1113.

    Google Scholar 

  53. Bruström, H., Physiol. Plant., 3 (1950) 277.

    Google Scholar 

  54. Nitsch, J.P. and Nitsch, C., Plant Physiol., 3 (1956) 94.

    Google Scholar 

  55. Mür, R.M. and Hansch, C., Physiol. Plant., 28 (1953) 218.

    Google Scholar 

  56. Stenlid, G. and Engvild, K.C., Physiol. Plant., 70 (1987) 109.

    Google Scholar 

  57. Böttger, M., Engvild, K.C. and Soll, H., Planta, 140 (1978) 89.

    Google Scholar 

  58. Toothill, J.R., Wain, R.L. and Wightman, F., Ann. Appl. Biol., 44 (1956) 547.

    Google Scholar 

  59. Hansen, B., I. Bot. Nat., (1954) 230.

  60. Veldstra, H., Recl. Trav. Chim. Pays-Bas, 71 (1952) 15.

    Google Scholar 

  61. Pybus, M.F., Wain, R.L. and Wightman, F., Nature, 182 (1958) 1094.

    Google Scholar 

  62. Smith, G., Kennard, C.H.L. and White, A.H., Acta Crystallogr., B34 (1978) 2885.

    Google Scholar 

  63. Hoffmann, A.L., Fox, S.W. and Bullock, M.W., J. Biol. Chem., 196 (1952) 437.

    Google Scholar 

  64. INSIGHT, v. 95, Biosym Technologies, San Diego, CA, U.S.A., 1995.

  65. DISCOVER, v. 2.97, Biosym Technologies, San Diego, CA, U.S.A., 1995.

  66. Maple, J.R., Thacher, T.S., Dinur, U. and Hagler, A.T., Chem. Design Autom. News, 5(9) (1990) 5.

    Google Scholar 

  67. Gundertofte, K., Liljefors, T., Norrby, P.O. and Pettersson, I., J. Comput. Chem., 17 (1996) 429.

    Google Scholar 

  68. Dauber-Osguthorpe, P., Roberts, V.A., Osguthorpe, D.J., Wolff, J., Genest, M. and Hagler, A.T., Proteins Struct. Funct. Genet., 4 (1988) 31.

    Google Scholar 

  69. Mulliken, R.S., J. Chem. Phys., 23 (1955) 1833.

    Google Scholar 

  70. Tomić, S., Ph.D. Thesis, University of Zagreb, Zagreb, Croatia, 1993.

  71. GRID user manual, edition 14, Molecular Discovery Ltd., Oxford, U.K.

  72. Goodford, P.J., J. Med. Chem., 28 (1985) 849.

    Google Scholar 

  73. Boobbyer, D.N.A., Goodford, P.J., McWhinnie, P.M. and Wade, R.C., J. Med. Chem., 32 (1989) 1083.

    Google Scholar 

  74. Wade, R.C., Clark, K.J. and Goodford, P.J., J. Med. Chem., 36 (1993) 140.

    Google Scholar 

  75. Wade, R.C. and Goodford, P.J., J. Med. Chem., 36 (1993) 148.

    Google Scholar 

  76. Gabdoulline, R.R. and Wade, R.C., J. Mol. Graph., 14 (1996) 341.

    Google Scholar 

  77. Korn, G.A. and Korn, T.M., Mathematical Handbook for Scientists and Engineers, McGraw-Hill, New York, NY, U.S.A., 1961.

    Google Scholar 

  78. Stewart, J.J.P., J. Comput. Chem., 10 (1989) 209.

    Google Scholar 

  79. Tomić, S., Ramek, M. and Kojić-Prodić, B., Croat. Chem. Acta, (1998) in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomić, S., Gabdoulline, R.R., Kojić-Prodić, B. et al. Classification of auxin plant hormones by interaction property similarity indices. J Comput Aided Mol Des 12, 63–79 (1998). https://doi.org/10.1023/A:1007973008558

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007973008558

Navigation