Skip to main content
Log in

Dynamic Vergence Using Log-Polar Images

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Vergence provides robot vision systems with a crucial degree of freedom: it enables fixation of points in visual space at different distances from the observer. Vergence control, therefore, affects the performance of the stereo system as well as the results of motion estimation and tracking and, as such, must satisfy different requirements in order to be able to provide not only a stable fixation, but a stable binocular fusion, and a fast, smooth and accurate reaction to changes in the environment. To obtain this kind of performance the paper focuses specifically on the use of dynamic visual information to drive vergence control. In this context, moreover, the use of a space-variant, anthropomorphic sensor is described and some advantages in relation to vergence control are discussed to demonstrate the relevance of image plane geometry for this particular task. Expansion or contraction patterns and the temporal evolution of the degree of fusion measured in the log-polar domain are the inputs to the vergence control system and determine robust and accurate steering of the two cameras. Real-time experiments are presented to demonstrate the performance of the system covering different key situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allman, J. and Kaas, J. 1971. Representation of the visual field in striate and adjoining cortex of the owl monkey (aotus trivirgatus). Brain Res., 35: 89-106.

    Google Scholar 

  • Bernardino, A. and Santos-Victor, J. 1996. Vergence control for robotics heads using log-polar images. In Proc. Int. Conference on Intelligent Robots and Systems, Osaka-Japan. JRS-IEEE.

    Google Scholar 

  • Capurro, C., Panerai, F., Sandini, G. 1995. Space variant vision for an active camera mount. In Proc. SPIE AeroSense95, Orlando, Florida.

  • Capurro, C., Panerai, F., and Sandini, G. 1996. Vergence and tracking fusing log-polar images. In Proc. Int. Conference on Pattern Recognition, Vienna-Austria.

  • Carpenter, R. 1991. Eye Movements. The Macmillan Press.

  • Cipolla, R. and Blake, A. 1992. Surface orientation and time to contact from image divergence and deformation. In Proc. ECCV-92, G. Sandini (Ed.), S. Margherita Ligure-Italy. Springer Verlag.

    Google Scholar 

  • Coombs, D. and Brown, C. 1990. Intelligent gaze control in binocular vision. In Proc. of the Fifth IEEE International Symposium on Intelligent Control, Philadelphia, PA.

  • Coombs, D., Olson, T., and Brown, C. 1990. Gaze control and segmentation. In Proc. of the AAAI-90 Workshop on Qualitative Vision, Boston, MA.

  • Coombs, D. and Brown, C. 1993. Real-time binocular smooth pursuit. Int. Journal of Computer Vision, 11(2): 147-164.

    Google Scholar 

  • Cowey, A. 1964. Projection of the retina on to striate and prestriate cortex in the squirrel monkey, saimiri sciureus. J. Neurophysiol., 27: 266-293.

    Google Scholar 

  • Daniel, M. and Whitteridge, D. 1961. The representation of the visual field on the cerebral cortex in monkeys. J. Physiol. (London), 159: 203-221.

    Google Scholar 

  • Debusschere, I., Bronckaers, E., Claeys, C., Kreider, G., der Spiegel, J. V., Bellutti, P., Soncini, G., Dario, P., Fantini, F., and Sandini, G. 1989. A 2d retinal ccd sensor for fast 2d shape recognition and tracking. In Proc. 5th Int. Solid-State Sensor and Transducers, Montreux.

  • Ferrari, F., Sandini, G., Hermans, L., Guerin, C., Manganas, A., Dario, P., and Frowein, H. 1994. Tide project 1038 ibidem, technical annex. Technical Report, ibidem Consortium.

  • Ferrari, F., Nielsen, P. Q. J., and Sandini, G. 1995. Space variant imaging. Sensor Review, 15(2): 17-20.

    Google Scholar 

  • Fisher, T. and Juday, R. 1988. A programmable video image remapper. In Proc. SPIE, 938: 122-128.

    Google Scholar 

  • Griswold, N. C., Lee, J., and Weiman, C. 1992. Binocular fusion revisited utilizing a log-polar tessellation. Computer Vision and Image Processing, pp. 421-457.

  • Horn, B. K. P. 1986. Robot Vision. MIT Press: Cambridge, USA.

    Google Scholar 

  • Hubel, D. and Wiesel, T. 1977. Functional architecture of macaque monkey cortex. Proc. R. Soc. Lond., 198: 1-59.

    Google Scholar 

  • Irani, M., Rousso, B., and Peleg, S. 1994. Recovery of egomotion using image stabilization. In Proc. IEEE CVPR, Seattle, USA.

  • Jenkin, M. and Tsotsos, J. K. 1991. Techniques for disparity measurement. CVGIP: Image Understanding, 53(1).

  • Judge, S. J. (1991). Vergence. In Eye Movements, R. Carpenter (Ed.), CRC Press, (7): 157-172.

  • Julesz, B. 1986. Stereoscopic vision. Vision Res., 26(9): 1601-1602.

    Google Scholar 

  • Koenderink, J. and van Doorn, J. 1991. Affine structure from motion. Journal of the Optical Society of America, 8(2): 377-385.

    Google Scholar 

  • Negahdaripour, S. and Lee, S. 1992. Motion recovery from images sequences using only first order optical flow information. IJCV, 9(3): 163-184.

    Google Scholar 

  • Nelson, R. and Aloimonos, J. 1989. Obstacle avoidance using flow field divergence. IEEE Trans. on PAMI, PAMI-11(10): 1102- 1106.

    Google Scholar 

  • Nielsen, J. and Sandini, G. 1994. Learning mobile robot navigation: A behavior-based approach. In IEEE Int. Conf. on Systems, Man and Cybernetics, San Antonio, Texas.

  • Nordlund, T. U. P. 1995. Closing the loop: Pursuing a moving object by a moving observer. In Proc. 6th Int. Conf. on Computer Analysis of images and Patterns.

  • Ogle, K. 1964. Researches in Binocular Vision. Hafner Publishing Company: London.

    Google Scholar 

  • Pahlavan, K., Uhlin, T., and Eklund, J. 1992. Integrating primary ocular processes. In Proc. Second European Conference on Computer Vision, Santa Margherita, Italy. Springer-Verlag, pp. 526-541.

    Google Scholar 

  • Questa, P. and Sandini, G. 1996. Time to contact computation with a space-variant retina-like c-mos sensor. In Proc. Int. Conference on Intelligent Robots and Systems, Osaka, Japan. JRS-IEEE.

    Google Scholar 

  • Rojer, A. and Schwartz, E. 1990. Design considerations for a space variant visual sensor with complex logarithmic geometry. In Proc. Int. Conf. on Pattern Recognition, Philadelphia, PA.

  • Sanger, T. D. 1988. Stereo disparity computation using gabor filter. Biological Cybernetics, 59: 405-418.

    Google Scholar 

  • Santos-Victor, J. and Sandini, G. 1995. Visual based obstacle detection: A purposive approach using normal flow. In Proc. of the Int. Conf. on Intelligent Autonomous Systems, Karlsruhe, Germany.

  • Scheffer, D., Dierickx, B., and Pardo, F. 1996. Log-polar image sensor in cmos technology. In Proc. Europto, Besancon.

  • Schwartz, E. L. 1977. Spatial mapping in the primate sensory projection: Analytic structure and relevance to perception. Biol. Cybernetics, 25: 181-194.

    Google Scholar 

  • Schwartz, E. L. 1980. A quantitative model of the functional architecture of human striate cortex with application to visual illusion and cortical texture analysis. Biological Cybernetics, 37: 63-76.

    Google Scholar 

  • Sharkey, P., Murray, D., Vandevelde, S., Reid, I., and McLauchlan, P. 1993. A modular head/eye platform for real-time reactive vision. Mechatronics, 3(4).

  • Subbarao, M. and Waxman, A. 1986. Closed from solutions to image flow equations for planar surfaces in motion. CVGIP, 36: 208- 228.

    Google Scholar 

  • Sundereswaran, V. 1991. Egomotion from global flow field data. In Proc. of the IEEE Workshop on Visual Motion, Princeton, NJ- USA.

    Google Scholar 

  • Theimer, W. M., Mallot, H. A., and Tolg, S. 1992. Phase method for binocular vergence control and depht reconstruction. In Proc. SPIE Intelligent Robots and Computer Vision XI, Boston, Massachussetts.

  • Tistarelli, M. and Sandini, G. 1993. On the advantages of polar and log-polar mapping for direct estimation of time-to-impact from optical flow. IEEE Transactions on PAMI, 14(4): 401-410.

    Google Scholar 

  • Tunley, H. and Young, D. (1994). First order optical flow from logpolar sampled images. In Proc. Third European Conference on Computer Vision.

  • Vleeschauwer, D. D. 1993. An intensity-based coarse-to-fine approach to reliably measure binocular disparity. CVGIP: Image Understanding, 57(2).

  • Weiman, C. 1995. Binocular stereo via log-polar retinas. In Proc. SPIE AeroSense95, Orlando, Florida.

  • Weiman, C. F. R. and Juday, R. D. 1990. Tracking algorithms using log-polar mapped image coordinates. In SPIE Int. Conf. on Intelligent Robots and Computer Vision VIII: Algorithms and Techniques, Philadelphia (PA), 1192: 843-853.

    Google Scholar 

  • Weiman, C. and Fisher, T. 1994. Log-polar binocular vision system. Technical Report NAS 9-18637, Nasa Final Report, Danbury, CT.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capurro, C., Panerai, F. & Sandini, G. Dynamic Vergence Using Log-Polar Images. International Journal of Computer Vision 24, 79–94 (1997). https://doi.org/10.1023/A:1007974208880

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007974208880

Navigation