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Abstract. In this article we present two algorithms, for reducing the effects of control-space quan-
tisation errors on a Khepera mobile robot. Specifically, we consider that control-space quantisation
is present, when there is only a finite set of available robot wheels velocities. Thus the velocities
of the robot wheels can not be chosen from any point in a continuous set. The first algorithm can
be used to perform pure rotations (no translation) of the mobile robot while reducing the effects of
these errors. The second algorithm can be used to perform robust straight-line motions, between
the mobile robot current position, and a predefined goal position in its working environment.
Simulation results demonstrating the effectiveness of the algorithm will be presented.
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1. Introduction

Keeping track of position is important in many mobile robot navigation methods.
The estimation of mobile robot position, based on odometry and other dead-
reckoning methods, has been frequently considered in the literature (e.g., [1, 2]).
This problem may be seen as focused from a position-estimation perspective.
However, this paper deals with a problem seldom considered in the literature, i.e.,
the effects of discretisation of both the time and control space on the behaviour
of a robot. The problem’s interest goes beyond the application discussed. Works
related to this problem, in a broad sense, are those of G. Chirikjian et al. on
discretely actuated robots [3–5]. In this article we present two algorithms, for
reducing motion errors that are caused by control-space quantisation, in the spe-
cific case of a Khepera mobile robot [6, 7]. Error reduction is obtained by appro-
priately choosing the sequence of robot motion manoeuvres. The first algorithm
can be used to perform pure rotations (no translation) of the mobile robot while
reducing the effects of these errors. The second algorithm can be used to perform
straight-line motions, between the mobile robot current position, and a predefined
goal position in its working environment. On the Khepera mobile robot, there
are two motion control variables: the velocities of the two wheels. Advantage is
taken from the knowledge about the characteristics of control-space quantisation
errors that are induced by the finite set of available wheels velocities. Thus, the
problem we face in this paper, may be seen as being more focused from a control
(actuation) perspective. Borenstein and Feng [8] present a systematic calibration
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198 R. ARAÚJO AND A. T. DE ALMEIDA

method for reducing odometry errors that arise from other nonidealities that are
present on differential-drive mobile robots, such as the uncertainty about the
effective wheelbase, and unequal wheel diameters.

The quantisation-error problem of digital systems is a long-standing problem
(e.g., [9]). Control-space quantisation means that commands to the system can not
be chosen from a continuous set, but can only take values from a set with a finite
number of elements. These errors between the desired and actual commands,
imply the appearance of state and output errors on the system. If care is not
taken, the effects of these errors can accumulate, and after a series of commands,
the actual final state of the system can be quite different from the desired state.
The effect of input quantisation is that of reducing the reachable set of the system
to a countable (not finite in general) subset of the state space. This set may or may
not be dense, i.e., there may be a minimum unavoidable error to reach a given
goal, or the error may be made arbitrarily small by long enough manoeuvres. For
instance, in the problem of rotating the robot, if the minimum step of rotation
is irrational in π, then the robot can reach any orientation with arbitrarily small
errors, at the cost of possibly turning around many times before reaching that
approximation. However, in the methods considered in this paper, there is an
interest to keep the number of input steps on a reasonable number. The number
of intervals is supposed to be prespecified. Thus the method for first obtaining
it, is considered outside the scope of the paper.

The organisation of the paper is as follows. In Section 2, for completeness,
we formulate the kinematic model of the Khepera mobile robot. In Section 3
we present the algorithm for robot rotation. Section 4 presents the algorithm
for straight-line motion of the mobile robot. In Section 5 we present simulation
results. Finally, in Section 6 we make some concluding remarks.

2. Kinematics of the Khepera Mobile Robot

This work is made around the Khepera miniature mobile robot [6, 7]. The circular
shaped Khepera mobile robot (Figure 1) has two actuating wheels, each controlled
by a DC motor that has an incremental encoder and can rotate in both directions.

An external computer can command each motor, to take a speed ranging
from −10 to +10. The unit is the (encoder pulse)/10 ms that corresponds to 8
millimetres per second. The distance between the robot wheels, and the wheels’s
radius are given, respectively, by ∆r = 52.5 mm, and rw = 8 mm. The number of
pulses per revolution of the wheel is N = 600 (pulses/rev.). Each robot wheel has
an associated up/down counter that accumulates the resulting number of pulses
that were seen since the last (counter) reset. The rotation angle of a wheel per
counter pulse is given by α1 = 2π/N . The corresponding wheel advancement is
obtained by:

l =
2π
N
rw (1)
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Figure 1. The Khepera miniature mobile robot.

which gives l ≈ 0.0837 mm. The corresponding number of pulses, per millimetre
of wheel advancement is given by Nmm = 1/l ≈ 11.94.

In this paper, besides using the millimetre (mm) as a unit for measuring
lengths, lengths are sometimes expressed in “increments”. A distance (or a length)
is expressed in increments, when it is specified by the number of encoder pulses
required for the corresponding wheel to traverse such a distance. Thus, when
expressed expressed in increments, a length has no unit of measure. It is just a
number. However, this number is equal to the numerical value of the distance, if
the unit used for measuring this distance was the length l, as defined above. For
example, in increments, the distance between the wheels is given by:

∆rinc = ∆r/l (2)

which gives ∆rinc ≈ 626.67 increments.
In all this paper we assume that the mobile robot is being digitally controlled

with a sampling period of T (expressed in seconds), and will make use of variable
T10 to denote a time of 10 ms, i.e., T10 = 10 ms. Define pWR as the position of
the robot’s centre relative to the fixed world frame (Figure 2), at the beginning
of a sampling interval:

pWR =
[
xWR yWR

]T
. (3)

The orientation of the robot’s front, at the beginning of a sampling interval k,
may be represented by a unit vector d(k), or with an angle θR = θR(k) = α(k)
(Figure 2):

d = d(k) =
[
d0(k) d1(k)

]T
, (4)

θR = θR(k) = α(k) = atan 2
[
± d1(k), d0(k)

]
, d0(k)

2 + d1(k)
2 = 1, (5)

d0(k) = cos
[
θR(k)

]
, d1(k) = ± sin

[
θR(k)

]
. (6)
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Figure 2. Mobile robot frame and world frame.

In all this paper whenever ± or ∓ signs appear, the upper sign applies to the
normal case, and the lower sign applies when the world-frame Y -axis points in
the direction opposite to that illustrated in Figures 2 and 3. The second case is
useful, for example, in conjunction with the “Khepera Simulator Version 2.0”
[10].

Assume that, at the beginning and at the end of a sampling interval k, the val-
ues of the encoder counters are, respectively, given by vectors sR = [s0R s1R]T,
and s′R = [s′0R s′1R]T. The associated encoder-variation vector

dsR = s′R − sR =
[
ds0R ds1R

]T (7)

can be easily calculated from the speeds, vi, of the two wheels on the sampling
interval: dsiR = viT/T10.

On a sampling interval k, the rotation of the wheels imply a change on
the robot’s centre-frame (from {R} to {R1} – Figure 3). This change can be
represented by a displacement vector of the robot’s centre described on its own
original frame, pRR1; and by a change on the robot’s frame rotation angle, θRR1 = θ
(Figure 3):

pRR1 =
[
xRR1 yRR1

]T
, θRR1 = θ = θR1 − θR. (8)

If we define r to be the robot centre’s trajectory rotation-radius, then from Fig-
ure 3 we can also see that xRR1, and yRR1 can be calculated as follows:

xRR1 =

{
r · sin θ, if ds0R 6= ds1R,
l · ds0R, if ds0R = ds1R,

(9)

yRR1 =

{
r · (1− cos θ), if ds0R 6= ds1R,
0, if ds0R = ds1R.

(10)

At the end of a sampling interval k, the position of the robot is given by the
vector (pWR )′ = pWR1, and the orientation is given by vector d′ = d(k + 1), or
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Figure 3. Robot frame change.

the angle θR1. The objective is to calculate these variables. This can be done
using (8), and the following two equations:(

pWR
)′

= pWR1 = pWR + RW
R · pRR1, d′ = RR

R1 · d. (11)

RW
R , the rotation matrix of the robot frame with respect to the world frame, and

RR
R1, the incremental rotation matrix, may be written as follows:

RW
R =

[
d0(k) −d1(k)
d1(k) d0(k)

]
, RR

R1 =

[
cos θ ∓ sin θ
± sin θ cos θ

]
. (12)

At this point only r and θ remain to be calculated. Observing Figure 3, the
following two equations can be written:

l · ds1R = r1 · θ, l · ds0R = (r1 + ∆r) · θ, (13)

where, as motivated by Figure 3, r0 = r+∆r/2, and r1 = r−∆r/2. The absolute
value of r0 (r1) is easily interpreted as the rotation radius of the trajectory of
wheel 0 (1). Note that Equations (13) are valid regardless of the value of ds0R

and ds1R. By subtracting (if ds0R 6= ds1R) and adding the equations of (13),
and expressing r and ∆r in increments we finally obtain (note θ = 0, r =∞, if
ds0R = ds1R):

θ =
ds0R − ds1R

∆rinc
, (14)

rinc =
∆rinc

2
· ds0R + ds1R

ds0R − ds1R
. (15)
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202 R. ARAÚJO AND A. T. DE ALMEIDA

3. Robot Rotation

In this section we devise an algorithm for performing pure rotation of the Khepera
mobile robot. It is an objective of the algorithm to reduce the effects of control-
space quantisation errors, that arise due to the finite set of, equally spaced, motor
velocities that are available as commands to the robot. We wish to perform a
pure robot rotation, thus the two wheels must have symmetrical velocities. If θ
is the desired rotation angle, then we have:

ds0R = −ds1R (16)

Substituting in Equation (14) we get the total required number of increments:

ds0R =
∆rinc

2
θ. (17)

We will assume that the rotation will take place in NTθ sampling intervals.
The duration NTθ may be calculated from a predefined velocity for the robot
body or for the wheels.

Let the velocity of wheel 0, in each sampling interval, be denoted by vθ(k)
(k = 1, . . . ,NTθ) – for wheel 1 the velocities have opposite sign. The velocities
vθ(k) will be calculated such that the evolution of the angle θ will be, as closely as
possible, linear. For that purpose we will begin by defining the variable ds′0R(k)
that represents the total cumulative number of pulses of motor zero, since the
beginning of the rotation, and thus taking into account velocities vθ(i) (i =
1, . . . , k):

ds′0R(k) = ds′0R(k − 1) + vθ(i) ·
T

T10
, k = 1, . . . ,NTθ, (18)

with ds′0R(0) = 0.
For approximating the linear evolution of the angle θ, vθ(k) (k = 1, . . . ,NTθ)

will be calculated in the following way, where the “round()” function rounds to
the nearest integer.

ds0R(k) =
k

NTθ
· ds0R,

vθ(k) = round
(
ds0R(k)− ds′0R(k − 1)

T/T10

)
.

(19)

4. Straight-line Motion

In this section we present an algorithm for performing straight-line motion of
the Khepera mobile robot while reducing the effects of control-space quantisa-
tion errors, that arise due to the finite set of, equally spaced, wheels velocities
commands available. The objective of the method is to ensure that, at the end of
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Figure 4. Straight-line approximation.

each sampling interval, the robot position is, as close as possible to the position
it ideally would have if the motion had a constant velocity along the straight line
joining the initial and desired final positions of the robot. The resulting trajec-
tory will be close but not exactly a straight line. The straight-line motion can
be divided on two phases. First, a pure rotation of the mobile robot, such that
the front of the robot points to the final point as precisely as possible. Second, a
motion to the final point using a path as close as possible to a straight line. For
the pure rotation of phase 1, the algorithm presented in Section 3 can be used.
In the rest of this section, the straight-line motion algorithm of phase 2 will be
discussed.

We will assume that the second phase of the motion will take place in NT l

sampling intervals. The duration NT l may be calculated from a predefined veloc-
ity of the wheels. The duration of the rotation phase is also prespecified as
discussed in Section 3.

Consider Figure 4, where Pini = P(0), and Pf = P(NT l) are the initial
and final points of the motion, respectively. In this figure, the following four
straight lines are defined. Line ρ1 – line connecting the initial point, P(0), to
the final point, P(NT l). Lines ρ2, ρ4 – respectively, the lines closest and second-
closest to ρ1, that are possible to achieve, at the end of the pure rotation motion
of phase 1. This motion has an angle-resolution of θ = |∆dsR|/∆rinc, with
|∆dsR| = |ds0R − ds1R| = 2 · T/T10 pulses per sampling interval. Line ρ3 – the
other line closest to ρ1 that would be attainable if |∆dsR| = |ds0R − ds1R| =
1 · T/T10 pulses per sampling interval. The slope of this line would only be
achieved from ρ2, with a robot motion that also included a translation component.
This is because, pure rotation implies |∆dsR| = 2·|ds0R|·T/T10 – corresponding
to an even number on the difference between the velocities of the two wheels.
Note that, as is easily proved, among these four lines, ρ2 and ρ3, are those that
are “slope-closest” to ρ1, and are “slope-distant” from each other T/T10 pulses
of difference per sampling interval.
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204 R. ARAÚJO AND A. T. DE ALMEIDA

Following an ideal straight-line trajectory would imply that, after starting in
Pini, at the end of each sampling interval k (k = 1, . . . ,NT l), the robot would
be in point P(k):

Pini =
(
x(0), y(0)

)
= P(0), (20)

Pf =
(
x(NT l), y(NT l)

)
, (21)

P(k) =
(
x(k), y(k)

)
, k = 1, . . . ,NT l, (22)

x(k) = x(0) +
k

NT l
·
(
x(NT l)− x(0)

)
= x(k − 1) +

1
NT l
·
(
x(NT l)− x(0)

)
, (23)

y(k) = y(0) +
k

NT l
·
(
y(NT l)− y(0)

)
= y(k − 1) +

1
NT l
·
(
y(NT l)− y(0)

)
. (24)

Because of trajectory errors that arise due to control-space quantisation, at the end
of interval k, the robot is not in point P(k), but is in point P′(k) = (x′(k), y′(k))
(k = 1, . . . ,NT l). We define the trajectory error in interval k in the following
way:

e(k) = ‖P(k)− P′(k)‖, k = 1, . . . ,NT l, (25)

where ‖(a, b)‖ =
√
a2 + b2 is the Euclidean norm of vector (a, b).

The overall algorithm for straight-line motion is based on the following ideas.
At every sampling interval the algorithm chooses one of two options it has
for motion. In the first option the robot does only a straight-line translation,
maintaining its slope angle θR. This implies ds0R = ds1R. With the second
option, the robot trajectory is a circular arc tangent to the trajectories of the
adjacent intervals. In this way, besides an overall translation at the end of the
sampling interval, there is a slight continuous change of the slope angle, θR,
during the interval. The change of this angle is such that, after the advancements,
the robot always has the slope of either line ρ2 or line ρ3 (Figure 4). Note that,
the slopes of lines ρ2 and ρ3 are the ones closest to the slope of ρ1, that can
be attained. This second option implies |∆dsR| = |ds0R − ds1R| = 1 · T/T10

pulses per sampling interval. The algorithm chooses from those two options, the
one where we can attain a point P′(k) as close as possible to P(k). Note that
the direction of slope change must be opposite to the previous slope change that
occurred. We see that, with this method, we obtain not only positions but also
slopes as close, as possible to the desired ones. This implies an overall trajectory
with less errors and close to the desired straight-line. The two options for motion
will be studied in Problems 1 and 2 below.
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Let us start by Problem 1. The task to be solved with this problem is to use a
straight-line to go from P′(k − 1) to P(k) on sampling interval k. At the end of
the interval we will achieve not P(k), but P′1(k). P′1(k) is the point with the least
error, e1(k), that can be achieved in straight line with the available velocities of
the robot. In this problem we are given P(k), P′(k−1), and d(k−1); and are asked
to calculate P′1(k), e1(k), and the velocities of the wheels 1v

′
l0(k) = 1v

′
l1(k) (in

pulses/10 ms). Note that in this Problem 1, vector d(k), and angle θR(k) = α(k)
are constant (see Equations (4)–(6) and Figure 2).

Let us start by determining the equation of the straight line ρ′1(k − 1) that
passes on P′(k − 1), and has a slope of α(k − 1). We can write the following
parametric equation on λ (see also Equations (4)–(6) and Figure 2){

x = x′(k − 1) + λ cos(α(k − 1)),
y = y′(k − 1)± λ sin(α(k − 1)).

(26)

Multiplying the two equations of (26), respectively, by sin(α(k − 1)) and
cos(α(k− 1)), and subtracting the resulting equations, we obtain the equation of
the straight line in its general form:

Ax+By + C = 0, (27)

where
A = sin(α(k − 1)) = ±d1(k),
B = ∓ cos(α(k − 1)) = ∓d0(k),
C = ±y′(k − 1) cos(α(k − 1))− x′(k − 1) sin(α(k − 1)).

(28)

Call this straight line ρ′1(k − 1), observe Figure 5, and note the following:
(1) P′′1(k) is the point of line ρ′1(k − 1) that is closest to P(k). The velocity,
1v
′′
l (k), required for going from P′(k − 1) to P′′1(k) is in general real-valued.

(2) P′1(k) and P′′′1 (k) are the points of line ρ′1(k − 1) closest to P(k), that can
be attained with the integer velocities available on the robot wheels. (3) P′1(k) is
the point of line ρ′1(k − 1) that is closest to P(k) while also able to be attained
with the available integer robot velocities. As is easily proved, this velocity is
given by round(1v

′′
l (k)). Therefore, we wish to determine the point, P′′1(k), that

belongs to the straight line given by Equation (27), and is at a minimum distance
of point P(k) = (x(k), y(k)). After obtaining the closest point, it is trivial to
calculate the minimum distance.

The coordinates of point P′′1(k), may be obtained using the Lagrange multi-
pliers method for minimising the distance function subject to restriction (27). We
get, 

x′′1(k) =
B2x(k)−ABy(k)− CA

A2 +B2 ,

y′′1 (k) =
A2y(k)−ABx(k)− CB

A2 +B2 ,

(29)
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206 R. ARAÚJO AND A. T. DE ALMEIDA

Figure 5. Equal velocities (Problem 1).

where A, B, and C are given by Equation (28). Next we can calculate the
real-valued velocity (in pulses/10 ms) that is needed to attain P′′1(k), as follows,

1v
′′
l (k) =

‖P′′1(k)− P′(k − 1)‖
l · T/T10

, (30)

where l is given by Equation (1). The integer velocity corresponding to the
closest point, P ′(k), that is possible to attain with the available robot velocities
is given by,

1v
′
l(k) = round

(
1v
′′
l (k)

)
(31)

The coordinates of point P′1(k) = (x′1(k), y
′
1(k)), can now be obtained from x,

and y in Equation (26), of line ρ′1(k − 1), if the following value of λ is used:

λ = λρ = 1v
′
l(k) · l · T/T10. (32)

The resulting error-distance, e1(k), can be calculated using an equation similar
to (25).

Taking into account Figure 4, define σ(k) = sgn(x× d(k))z where sgn(a) =
a/|a| except sgn(0) = 1, × denotes the vector product, and )z denotes the z
component of the vector. Vector x is given by:

x =
Pf − Pini

‖Pf − Pini‖
,

and d(k) is a unit vector with the same direction of the x axis of the robot frame
on time interval k.

Let us now analyse Problem 2. The objective of this problem is to move the
robot from P′(k−1) to P(k) on sampling interval k, while enforcing the following
conditions on the velocities of the robot’s wheels: |∆dsR| = |ds0R − ds1R| =
1 · T/T10 pulses per sampling interval, and sgn(∆dsR) = sgn[σ(k − 1)]. At the
end of the interval we will attain not P(k), but P′2(k). From all the points that can
be reached in those conditions, P′2(k) is the one with the minimum associated
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Figure 6. Velocities differing by one (Problem 2).

error, e2(k). In this problem we are given P(k), P′(k − 1), and d(k − 1); and
are asked to calculate P′2(k), e2(k), and the velocities of the wheels 2v

′
l0(k) and

2v
′
l1(k) (in pulses/10 ms).
Let ρ′2(k−1) be the locus of the points attainable from P′(k−1) after time T ,

by varying the wheel’s velocities 2v
′
l0(k) and 2v

′
l1(k), while still satisfying the

conditions of the problem. However surprising it may seem to our intuition, the
fact is that, as we will show shortly, ρ′2(k − 1) is a straight line. Having this in
mind, we can observe Figure 6. Note that whereas in Figure 5 line ρ′1(k − 1)
included the robot trajectory, here in Figure 6 line ρ′2(k− 1) is distinct from the
robot trajectory. Regarding Figure 6 note the following: (1) P′′2(k) is the point
of line ρ′2(k − 1) that is closest to P(k). The required velocities for going from
P′(k− 1) to P′′2(k) are in general real-valued, and here we call them 2v

′′
l0(k) and

2v
′′
l1(k); (2) P′2(k) and P′′′2 (k) are the points of line ρ′2(k − 1) closest to P(k),

that can be attained with the integer velocities available on the robot wheels;
(3) P′2(k) is the point of line ρ′(k − 1) that is closest to P(k) while also able to
be attained with the available integer robot velocities. These velocities, 2v

′
l0(k)

and 2v
′
l1(k), as is easily seen, can be computed with the following equations,

2v
′
l1(k) =

{
round

(
2v
′′
l1(k)

)
, if σ(k − 1) > 0,

2v
′
l0(k)− 1, if σ(k − 1) < 0,

(33)

2v
′
l0(k) =

{
2v
′
l1(k)− 1, if σ(k − 1) > 0,

round
(

2v
′′
l0(k)

)
, if σ(k − 1) < 0.

(34)

Let us suppose for a moment that velocities 2v
′′
l0(k) and 2v

′′
l1(k) were applied

to the robot wheels. Thus the attained point would be P′′2(k). From Equations (14)
and (15), and the hypothesis of this problem, the angle and radius of rotation of
the robot’s centre frame can respectively be calculated as follows:

θ′′ =
ds0R − ds1R

∆rinc
=
T sgn[σ(k − 1)]

T10∆rinc
, (35)
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r′′ =
∆r

2
· ds0R + ds1R

ds0R − ds1R
= sgn [σ(k − 1)]T10

∆r

2
[2 2v

′′
l (k)− 1], (36)

where we define 2v
′′
l (k) as follows,

2v
′′
l (k) =

{
2v
′′
l1(k), if σ(k − 1) > 0,

2v
′′
l0(k), if σ(k − 1) < 0.

(37)

Taking into account Equations (4), (8)–(12), we can write the following equations
for the coordinates of the points that, with the available robot wheels velocities,
can be attained at the end of sampling interval k, if we have started on point
P′(k − 1):{

x = x′(k − 1) + r′′ · ax,
y = y′(k − 1) + r′′ · ay,

(38)

where{
ax = d0(k − 1) · sin(θ′′)− d1(k − 1) · [1− cos(θ′′)],
ay = d1(k − 1) · sin(θ′′) + d0(k − 1) · [1− cos(θ′′)].

(39)

Multiplying the two equations of (38), respectively by ay and ax, and subtracting
the resulting equations, we obtain

[x− x′(k − 1)] · ay = [y − y′(k − 1)] · ax. (40)

Equation (40) confirms the statement previously made, that the set of points
attainable, ρ′2(k − 1), constitutes a straight line. From (40), we can equivalently
write the equation of this straight line on the form of Equation (27), where,

A = ay,
B = −ax,
C = y′(k − 1) · ax − x′(k − 1) · ay.

(41)

Now, to obtain P′′2(k), we can apply an approach similar to the one that was
used for solving Problem 1. Thus, similarly to Equation (29), the coordinates of
P′′2(k) can be calculated using the following equation, with A, B, and C given
by (41).

x′′2(k) =
B2x(k)−ABy(k)− CA

A2 +B2 ,

y′′2 (k) =
A2y(k)−ABx(k)− CB

A2 +B2 .

(42)

After that, velocity 2v
′′
l (k) is calculated in the following way:

2v
′′
l (k) =

‖P′′2(k)− P′(k − 1)‖
l · T/T10

. (43)
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Using Equations (37), and (33)–(34) we calculate 2v
′
l0(k) and 2v

′
l1(k), that lead

the robot to point P′2(k).
Similarly to Equations (36) and (37), we can calculate the effective rotation

radius, r′, when we go to P′2(k) as follows

r′ =
∆r

2
· ds0R + ds1R

ds0R − ds1R
= sgn[σ(k − 1)] T10

∆r

2
[2 2v

′
l(k)− 1], (44)

where,

2v
′
l(k) =

{
2v
′
l1(k), if σ(k − 1) > 0,

2v
′
l0(k), if σ(k − 1) < 0.

(45)

The coordinates of point P′2(k) = (x′2(k), y
′
2(k)), can now be obtained from x,

and y, in Equation (38), of line ρ′2(k − 1), if r′′ is substituted by r′. Finally, the
resulting error-distance, e2(k), can be calculated by using an equation similar
to (25).

According to the overall algorithm, if e1(k) 6 e2(k), velocities 1v
′
l0(k) =

1v
′
l1(k) are chosen. In this case the point attained at the end of the sampling

interval is P ′(k) = P ′1(k). Otherwise, velocities 2v
′
l0(k) and 2v

′
l1(k) are chosen.

In this case the robot attains point P′(k) = P′2(k). The resulting error is thus
e(k) = min(e1(k), e2(k)). Note that P′(k) will be used by the algorithm on
the next sampling interval. At that stage, point P′(k) can be estimated by the
approach we have taken in this section. However, P′(k) can also be obtained from
a sensing system that provides feedback from the real world (e.g., odometry).

Experiments with this basic two-option algorithm revealed some sub-
optimalities, on two types of situations, that motivated the introduction of two
corresponding improvements.

Before analysing the two situations, we will introduce some preliminary defi-
nitions that will be used on the discussion. Let P = (x, y) be a point, and define
side(P) = sgn[x× (P−P(0))]z , where x is a unit vector with the direction of ρ1

(the line that passes through Pini and Pf – see Figure 4), × denotes the vector
product operation, and ]z denotes the Z component of the vector. As can easily
be seen, side(P) is positive if and only if, point P belongs to the left semiplane
defined by the ideal trajectory line, when we advance from the initial to the final
point. Similarly, side(P) = −1 if point P belongs to the right semiplane.

Suppose that, in terms of slope, line ρ2 is closer than ρ3, to the ideal trajectory
line ρ1 (as may be easily seen, the two improvements that will be introduced,
remain valid even if the opposite case occurs). Line ρ2 (ρ3) is called the most
(least) similar line. The most (least) similar slope, τ2 (τ3), is defined as the slope
of the most (least) similar line. Additionally, let α2 (α3) be the angle between
this line and line ρ1. If d∗0 is a unit vector with the direction of the most similar
line ρ2 (see Figure 4), we define σ0 as,

σ0 = sgn(x× d∗0)z. (46)
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Figure 7. Example illustrating the first undesirable situation.

The first undesirable observed situation is the following. The robot is approach-
ing line ρ1, through a line of most similar slope (thus side(P ′(k)) · σ0 < 0 and
σ(k) · σ0 > 0), and a minimum curvature advancement was performed – see
Figure 7. This corresponds to choosing |∆dsR| = 1 ·T/T10, because the solution
of Problem 2 was the most favourable. This leads the robot trajectory to start
driving away from the ideal trajectory line ρ1. In this way, although during some
of the following sampling intervals (the number may vary), the minimum error
option is chosen, the long term tendency for error decrease will be weaker. What
is happening on the sampling interval under consideration is that, although the
error would be greater if the approach to the ideal trajectory were maintained,
choosing this option would enable the achievement of lower errors on future
sampling intervals. Clearly the robot trajectory slope should change only if it
is driving away from line ρ1, and as a consequence of the change it shall start
approaching ρ1.

In order to avoid this first situation, we only allow a minimum curvature
advancement (using the solution of Problem 2) on interval k if, on that interval,
the robot is driving away from line ρ1 (see Figure 4). Formally, the following
condition was used to detect the situation when the robot is allowed to curve:

Condition 1 =
σ(k − 1) > 0 ∧ side[P′(k − 1)] > 0 ∧ side[P′1(k)] > 0 ∧ side[P′2(k)] > 0
∨
σ(k − 1) < 0 ∧ side[P′(k − 1)] < 0 ∧ side[P′1(k)] < 0 ∧ side[P′2(k)] < 0,

(47)

where ∧ and ∨ denote the logical “AND” and “OR” operations, respectively. To
clearly avoid the situation, Condition 1 ensures that, (i) the robot is currently
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Figure 8. Example illustrating the second undesirable situation.

driving away from ρ1, and (ii), the present robot position P′(k−1), and the next
two possible robot positions, P′1(k) and P′2(k), are all on the same side of ρ1.

The second situation observed is the following. Suppose that, after the pure
rotation phase that precedes the real straight-line motion, the front-slope of the
robot was the most similar, τ2. Then, during the motion, on the sampling intervals
that preceded some interval k, the robot was performing a straight-line motion
with least similar slope. As a result of the motion on interval k, the robot attained
a new position where the error is greater than it would be, if from the very
beginning, the robot used the motion along the most similar line ρ2 (see Figure 8).
This situation is unfavourable on every interval k, where it may occur. It becomes
particularly undesirable when occurring sufficiently close to the last sampling
interval, to invalidate any later recovery of the error until the end of the motion.

To avoid the effects of this second situation, a modification based on the
following idea, was introduced on the algorithm: on sampling interval k, force
the robot trajectory slope to switch (i.e., use the solution of Problem 2), whenever
the best solution of Problems 1 and 2, results on a point for which the distance to
P(k) (point of the ideal trajectory) is greater than the distance, eb(k), from P(k)
to a bounding line ρb(k). Switching enforcement only takes place when the robot
is driving away from the ideal trajectory. Formally, the switching-enforcement
condition is the following:

Condition 1 is TRUE ∧min
(
e1(k), e2(k)

)
> eb(k). (48)

The bounding line, ρb(k), passes through point Pb(k), and makes with line ρ1,
an angle αb, satisfying |αb| = |α2|. Thus, in absolute value, both lines ρb(k)
and ρ2, make the same angle with line ρ1. Point Pb(k) initially coincides with
Pini = P(0), and is subsequently changed, zero or more times, during the motion.
On sampling interval k2, it is changed to Pb(k2) = P(k1 − 1). The sampling
interval k2 is such that, the robot changed its trajectory slope from the most
similar, τ2, to the least similar, τ3. Interval k1 (k1 < k2) depends on k2, and
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Figure 9. Illustration of the procedure used for overcoming the second situation.

corresponds to the most recent interval where the robot’s trajectory crossed,
with the least similar slope, τ3, the ideal trajectory, ρ1. Figure 9 illustrates this
procedure. Minimum curvature advancements correspond to sampling intervals
with circular arc trajectories. However, in order to simplify Figure 9, those arcs
were not depicted, but are approximated by the continuation of the adjacent
straight line trajectories until their intersection.

In order to formally define Pb(k), let us start by defining point Pa(k):

Pa(k) =


Pini, k = 1,
P(k − 1), Condition 2 is TRUE,
Pa(k − 1), otherwise,

(49)

where

Condition 2 =

k > 1 ∧ side[P′(k − 2)] · side[P′(k − 1)] < 0 ∧ σ0 · σ(k − 1) < 0. (50)

Let us also define a logical function np(k), that indicates if the value of point
Pa(k), should be assigned to point Pb(k), when the next switch from the most
similar trajectory slope, τ2, to the least similar slope, τ3, takes place.

np(k) =


TRUE, Condition 2 is TRUE,
FALSE, Condition 3 is TRUE,
np(k − 1), otherwise.

(51)

Condition 3 = k > 1 ∧ σ0 · σ(k − 1) > 0 ∧ σ(k − 1) · σ(k) < 0∧
∧ np(k − 1) = TRUE. (52)

Point Pb(k) is then formally defined as:

Pb(k) =


Pini, k = 1,
Pa(k), Condition 3 is TRUE,
Pb(k − 1), otherwise.

(53)
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OVERALL ALGORITHM

1. IF k = 1 THEN

1.1. Calculate the unit vector d∗0 which has the direction of either line ρ2 or
line ρ3 whichever forms the lowest angle with line ρ1.

1.2. Calculate σ0 according to Equation (46).

1.3. Let Pb := Pini; np := FALSE; PrevCorr := FALSE.

2. ELSE

2.1. IF side[P′(k − 2)] · side[P′(k − 1)] < 0 AND σ0 · σ(k − 1) < 0 THEN

2.1.1. Let Pa := P(k − 1).

2.1.2. Let np := TRUE.

3. Solve Problem 1 obtaining P′1(k), e1(k), and 1v
′
l0(k) = 1v

′
l1(k) as the results.

4. Solve Problem 2 obtaining P′2(k), e2(k), 2v
′
l0(k), and 2v

′
l1(k) as the results.

5. Let eb(k) := distance from P(k) to ρb(k).

6. IF
[
e2(k) < e1(k) OR min(e1(k), e2(k)) > eb(k) AND PrevCorr = TRUE

]
AND σ(k − 1) · side[P′(k − 1)] > 0 AND σ(k − 1) · side[P′1(k)] > 0
AND σ(k − 1) · side[P′2(k)] > 0 THEN

6.1. IF σ0 · σ(k − 1) > 0 AND np = TRUE THEN

6.1.1. Let Pb := Pa.

6.1.2. Let np := FALSE.

6.2. Apply to the robot wells the following velocities that were obtained
from the solution of Problem 2: v0(k) = 2v

′
l0(k) and v1(k) = 2v

′
l1(k).

As a result of those applied velocities the new robot position will be:
P′(k) := P′2(k).

6.3. Let PrevCorr := TRUE.

7. ELSE

7.1. Apply to the robot wells the following velocities that were obtained
from the solution of Problem 1: v0(k) = 1v

′
l0(k) = v1(k) = 1v

′
l1(k).

As a result of those applied velocities the new robot position will be:
P′(k) := P′1(k).

Figure 10. Overall straight-line motion algorithm.
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The straight-line motion method of this section is summarised on the overall
algorithm of Figure 10, to be used on each sampling interval of a straight line
motion. On this algorithm, variables Pb, Pa, and np were used to represent,
on sampling interval k, the values of Pb(k), Pa(k), and np(k), as defined on
Equations (53), (49), and (51), respectively.

The algorithm of Figure 10 uses a variable called “PrevCorr”, with the fol-
lowing purpose. Due to the limited set of available robot wheels velocities, it is
probable that, on the initial intervals of motion, the second situation is detected
with the condition of Equation (48) (also used on algorithm of Figure 10). In an
attempt to overcome this situation, the algorithm would force a minimum cur-
vature advancement (use the solution of Problem 2) that leads to position error
increase. Since we are at the beginning of a motion, this increase will be high
in relative terms. For this reason the algorithm only tries to detect this situation,
after having made a minimum curvature advancement not induced by the second
situation. This invalidates the detection of this situation on the initial sampling
intervals of a motion.

5. Experiments

This section presents results of experiments demonstrating the effectiveness of
the algorithms presented in Sections 3 and 4, with the Khepera mobile robot.
The results presented, were achieved using the “Khepera Simulator Version 2.0”
[10]. The default sampling period of the simulator, T = 62.7 ms, was used. To
test the approach, it was enforced on the simulator, that only quantisation errors
are present.

The experimental simulation study was conducted in the following way. There
were 100 different straight-line motions performed. In all of those motions the
initial robot position was always the same: P(0) = (x(0), y(0)) = (100, 100),
with an orientation angle, θR, of zero degrees (x-axis aligned). On motion i
(i = 0, . . . , 99) the robot was requested to move to a new point iPf = P(0) +
i∆P, where the total displacement is expressed in polar coordinates as i∆P =
(ir, iθ). The (ideal) trajectory length ir was held constant on all the motions
with ir = 760 mm. The (ideal) trajectory angle was swept along a set of equally
spaced values between 0θ = 112.3 and 99θ = 113.446 degrees, i.e., iθ = 0θ +
(k/99)(99θ− 0θ). The procedure and reasoning for choosing the values of 0θ and
99θ was the following. The angle resolution available on the initial pure rotation,
corresponds to the use of the minimum velocity on one sampling interval. From
Equation (16), this resolution is given by θres = 2T/(T10∆rinc) ≈ 1.146 degrees.
Due to the finite set of robot angles available, the algorithm behaviour will
repeat for every additional of θres on the required (ideal) trajectory angle. For
this reason, it suffices to study an angular range of approximately 1.146 degrees.
This is precisely the amplitude (99θ− 0θ) of the angle range that we used. Note
that 0θ ≈ 98 · θres and 99θ ≈ 99 · θres.
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Figure 11. Comparison of position-errors time-evolution when moving along one straight-
line motion. Two situation as are compared: using and not using the algorithm presented in
this paper.

Figure 11 presents the evolution of position-error on one straight line motion.
Two situations are compared. The dashed line represents the error when not using
the presented algorithm, i.e., when moving along the slope-closest line, ρ2, that
was attained at the end of the initial pure rotation phase (see Section 4). It is a
plot of the distance of the ideal intermediate point, P(k), to line ρ2. Note that
this distance is somewhat optimistic because it does not take into account the
finite set of available wheel velocities. The solid line represents the position-error
resulting from the application of the proposed algorithm. In this case, on interval
k, the position-error is given by the distance from the ideal point, P(k), to the
attained point, P′(k). It is clearly observed on Figure 11, that the algorithm
presented in this article enabled a substantial reduction on position-error. The
error improvement can also be observed on Figure 12. This figure presents the
last 10 sampling intervals of the ideal robot trajectory, and the trajectories that
result, when using, and not using, the proposed algorithm.

Final position-error improvement was not restricted to this particular motion,
but was observed on the whole experiment composed of 100 straight-line motions.
Figure 13 presents an histogram of the final position-errors, obtained when not
using the presented algorithm, i.e., when moving along the slope-closest line,
ρ2 (Section 4). The final errors are calculated as the distances from the desired
final points iP(NT l), to the corresponding lines iρ2. Note that this is optimistic,
since it ignores the restrictions on the robot wheels velocities. The 100 samples
have a mean final position error of m = 4.08 mm and a standard deviation of
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Figure 12. Robot path on the final 10 sampling intervals of motion: ideal trajectory, and
trajectories using and not using the algorithm.

Figure 13. Distribution of final-errors on a universe of 100 different straight-line motions
that did not use the proposed algorithm. The mean error was m = 4.08 mm with a standard
deviation of σ = 2.59 mm.
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Figure 14. Distribution of final-errors on a universe of 100 different straight-line motions
using the proposed algorithm. The mean error was m = 0.59 mm with a standard deviation
of σ = 0.49 mm.

Figure 15. Distribution of final-error improvement, obtained on a universe of 100 different
straight-line motions, when the proposed algorithm was introduced. The mean improvement
was m = 3.49 mm with a standard deviation of σ = 2.32 mm.
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σ = 2.59 mm. Figure 14 presents an histogram of the final position-errors, that
resulted when the proposed algorithm was used. In this case the final errors are
calculated as the distances from points iP(NT l), to the point really attained at
the end of the corresponding motion, iP′(NT l). Those 100 samples have a mean
final position error of m = 0.59 mm and a standard deviation of σ = 0.49 mm.
By comparing Figures 13 and 14, it is clearly seen that the use of the proposed
algorithm, induced a substantial transfer of error samples, to lower error values.

Figure 15 presents an histogram of error decreases that were achieved when
the proposed algorithm was introduced. The distribution is clearly composed of
positive decreases. This demonstrates that the error improvement was general to
all the samples (it is not simultaneously composed of better and worse samples).
The distribution of improvements has a mean of m = 3.49 mm and a standard
deviation of σ = 2.32 mm.

6. Conclusion

In this paper we faced the problem of motion errors that arise when there is
control-space quantisation on a mobile robot. We presented two algorithms that
can be used for reducing motion errors that are due to this quantisation. The
first, presented algorithm can be used to perform pure rotations (no translation)
of the robot, and the second algorithm can be used to perform straight-line
motions. Simulation results were presented that demonstrate the effectiveness
of the approach, with the Khepera mobile robot. By adapting the ideas of the
proposed methods, in order to use them in conjunction with mobile robot local-
isation algorithms, one of the components of the overall position error could be
reduced, thus improving the overall performance.
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