Skip to main content
Log in

Adaptive Task-Space Control of Flexible-Joint Manipulators

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

This paper considers the motion control and compliance control problemsfor uncertain rigid-link, flexible-joint manipulators, and presents newadaptive task-space controllers as solutions to these problems. The motioncontrol strategy is simple and computationally efficient, requires littleinformation concerning either the manipulator or actuator/transmissionmodels, and ensures uniform boundedness of all signals and arbitrarilyaccurate task-space trajectory tracking. The proposed compliant motioncontrollers include an adaptive impedance control scheme, which isappropriate for tasks in which the dynamic character of theend-effector/environment interaction must be controlled, and an adaptiveposition/force controller, which is useful for those applications thatrequire independent control of end-effector position and contact force. Thecompliance control strategies retain the simplicity and model independenceof the trajectory tracking scheme upon which they are based, and are shownto ensure uniform boundedness of all signals and arbitrarily accuraterealization of the given compliance control objectives. The capabilities ofthe proposed control strategies are illustrated through computer simulationswith a robot manipulator possessing very flexible joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ortega, R. and Spong, M.: Adaptive motion control of rigid robots: A tutorial, Automatica 25(6) (1989), 877–888.

    Google Scholar 

  2. Abdallah, C., Dawson, D., Dorato, P., and Jamshidi, M.: Survey of the robust control of robots, IEEE Control Systems Magazine 11(2) (1991), 24–30.

    Google Scholar 

  3. Sweet, L. and Good, M.: Redefinition of the robot motion control problem: Effects of plant dynamics, drive system constraints, and user requirements, in: Proc. IEEE Conference on Decision and Control, Las Vegas, NV, 1984.

  4. Good, M., Sweet, L., and Strobel, K.: Dynamic models for control system design of integrated robot and drive systems, ASME J. Dynamic Systems, Measurement, and Control 107(1) (1985), 53–59.

    Google Scholar 

  5. Ahmad, S.: Analysis of robot drive train errors, their static effects, and their compensation, IEEE Trans. Robotics and Automation 4(2) (1988), 117–129.

    Google Scholar 

  6. Spong, M.: Modeling and control of elastic joint robots, ASME J. Dynamic Systems, Measurement, and Control 109(4) (1987), 310–319.

    Google Scholar 

  7. Spong, M., Khorasani, K., and Kokotovic, P.: An integral manifold approach to the feedback control of flexible joint robots, IEEE Trans. Robotics and Automation 3(4) (1987), 291–300.

    Google Scholar 

  8. Khorasani, K.: Nonlinear feedback control of flexible joint manipulators, IEEE Trans. Automatic Control 35(10) (1990), 1145–1149.

    Google Scholar 

  9. Tomei, P.: A simple PD controller for robots with elastic joints, IEEE Trans. Automatic Control {vn36(10)} (1991), 1208–1213.

    Google Scholar 

  10. Dawson, D., Qu, Z., Carroll, J., and Bridges, M.: Control of robot manipulators in the presence of actuator dynamics, Int. J. Robotics and Automation 8(1) (1993), 13–21.

    Google Scholar 

  11. Nicosia, S. and Tomei, P.: Design of global tracking controllers for flexible-joint robots, J. Robotic Systems 10(6) (1993), 835–846.

    Google Scholar 

  12. Spong, M.: Adaptive control of flexible joint manipulators, Systems and Control Letters 13(1989), 15–21.

    Google Scholar 

  13. Khorasani, K.: Adaptive control of flexible-joint robots, IEEE Trans. Robotics and Automation {vn8(2)} (1992), 250–267.

    Google Scholar 

  14. Lozano, R. and Brogliato, B.: Adaptive control of robot manipulators with flexible joints, IEEE Trans. Automat. Control 37(2) (1992), 174–181.

    Google Scholar 

  15. Dawson, D., Qu, Z., and Bridges, M.: Hybrid adaptive control for tracking of rigid-link flexible-joint robots, IEEE Proc. D 140(3) (1993), 155–159.

    Google Scholar 

  16. Kwan, C. and Yeung, K.: Robust adaptive control of revolute flexible-joint manipulators using sliding technique, Systems and Control Letters 20(1993), 279–288.

    Google Scholar 

  17. Tomei, P.: Tracking control of flexible joint robots with uncertain parameters and disturbances, IEEE Trans. Automat. Control 39(5) (1994), 1067–1072.

    Google Scholar 

  18. Qu, Z.: Input–output robust tracking control design for flexible joint robots, IEEE Trans. Automat. Control 40(1) (1995), 78–83.

    Google Scholar 

  19. Bridges, M., Dawson, D., and Abdallah, C.: Control of rigid-link, flexible-joint robots: a survey of backstepping approaches, J. Robotic Systems 12(3) (1995), 199–216.

    Google Scholar 

  20. Brogliato, B., Ortega, R., and Lozano, R.: Global tracking controllers for flexible-joint manipulators: a comparative study, Automatica 31(7) (1995), 941–956.

    Google Scholar 

  21. Raibert, M. and Craig, J.: Hybrid position/force control of manipulators, ASME J. Dynamic Systems, Measurement, and Control 102(2) (1981), 126–133.

    Google Scholar 

  22. Hogan, N.: Impedance control: an approach to manipulation, Parts I-III, ASME J. Dynamic Systems, Measurement, and Control 107(1) (1985), 1–24.

    Google Scholar 

  23. Colbaugh, R., Glass, K., and Seraji, H.: Performance-based adaptive tracking control of robot manipulators, J. Robotic Systems 12(8) (1995), 517–530.

    Google Scholar 

  24. Colbaugh, R., Seraji, H., and Glass, K.: Adaptive compliant motion control for dexterous manipulators, Int. J. Robotics Research 14(3) (1995), 270–280.

    Google Scholar 

  25. Seraji, H.: Configuration control of redundant manipulators: theory and implementation, IEEE Trans. Robotics and Automation 5(4) (1989), 472–490.

    Google Scholar 

  26. Glass, K., Colbaugh, R., Lim, D., and Seraji, H.: Real-time collision avoidance for redundant manipulators, IEEE Trans. Robotics and Automation 11(3) (1995), 448–457.

    Google Scholar 

  27. Spong, M. and Vidyasagar, M.: Robot Dynamics and Control, Wiley, New York, 1989.

    Google Scholar 

  28. Corless, M.: Guaranteed rates of exponential convergence for uncertain systems, J. Optim. Theory Appl. 64(3) (1990), 481–494.

    Google Scholar 

  29. Colbaugh, R.: Modeling constrained mechanical systems for advanced controller development, Robotics Laboratory Report 95–11, New Mexico State University, 1995.

  30. Lozano, R. and Brogliato, B.: Adaptive hybrid force-position control for redundant manipulators, IEEE Trans. Automatic Control 37(10) (1992), 1501–1505.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colbaugh, R., Glass, K. Adaptive Task-Space Control of Flexible-Joint Manipulators. Journal of Intelligent and Robotic Systems 20, 225–249 (1997). https://doi.org/10.1023/A:1007980629042

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007980629042

Navigation