Skip to main content
Log in

Self-Calibration of a Moving Camera from Point Correspondences and Fundamental Matrices

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

We address the problem of estimating three-dimensional motion, and structure from motion with an uncalibrated moving camera. We show that point correspondences between three images, and the fundamental matrices computed from these point correspondences, are sufficient to recover the internal orientation of the camera (its calibration), the motion parameters, and to compute coherent perspective projection matrices which enable us to reconstruct 3-D structure up to a similarity. In contrast with other methods, no calibration object with a known 3-D shape is needed, and no limitations are put upon the unknown motions to be performed or the parameters to be recovered, as long as they define a projective camera.

The theory of the method, which is based on the constraint that the observed points are part of a static scene, thus allowing us to link the intrinsic parameters and the fundamental matrix via the absolute conic, is first detailed. Several algorithms are then presented, and their performances compared by means of extensive simulations and illustrated by several experiments with real images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ayache, N. 1990. Stereovision and Sensor Fusion. MIT Press.

  • Basu, A. 1993. Active calibration: Alternative strategy and analysis. In Proc.of the Conf.on Computer Vision and Pattern Recognition, New-York, pp. 495–500.

  • Brand, P., Mohr, R., and Bobet, P. 1993. Distorsions optiques: Correction dans un modele projectif. Technical Report RR-1933, INRIA.

  • Coxeter, H. S. M. 1987. Projective Geometry. SpringerVerlag, second edition.

  • Crowley, J., Bobet, P., and Schmid, C. 1993. Maintaining stereo calibration by tracking image points. In Proc.of the Conf.on Computer Vision and Pattern Recognition, New-York, pp. 483–488.

  • Deriche, R. and Blaszka, T. 1993. Recovering and characterizing image features using an efficient model based approach. In Proc. International Conference on Computer Vision and Pattern Recognition.

  • Deriche, R., Vaillant, R., and Faugeras, O. 1992. From Noisy Edges Points to 3D Reconstruction of a Scene: A Robust Approach and Its Uncertainty Analysis, Vol. 2, pp. 71–79. World Scientific. Series in Machine Perception and Artificial Intelligence.

    Google Scholar 

  • Dron, L. 1993. Dynamic camera self-calibration from controled motion sequences. In Proc.of the conf.on Computer Vision and Pattern Recognition, New-York, pp. 501–506.

  • Du, F. and Brady, M. 1993. Self-calibration of the intrinsic parameters of cameras for active vision systems. In Proc.of the conf.on Computer Vision and Pattern Recognition, New-York, pp. 477–482.

  • Fang, J. Q. and Huang, T. S. 1984. Some experiments on estimating the3Dmotion parameters of a rigid body from two consecutive image frames. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6:545–554.

    Google Scholar 

  • Faugeras, O. D. 1993. Three-Dimensional Computer Vision: A Geometric Viewpoint. MIT Press.

  • Faugeras, O. D. and Toscani, G. 1986. The calibration problem for stereo. In Proceedings of CVPR'86, pp. 15–20.

  • Faugeras, O. D., Lustman, F., and Toscani, G. 1987. Motion and Structure from point and line matches. In Proc.International Conference on Computer Vision, pp. 25–34.

  • Faugeras, O. D. and Maybank, S. J. 1990. Motion from point matches: Multiplicity of solutions. The International Journal of Computer Vision, 4(3):225–246, also INRIA Tech. Report 1157.

    Google Scholar 

  • Faugeras, O. D., Luong, Q.-T., and Maybank, S. J. 1992. Camera self-calibration: Theory and experiments. In Proc.European Conference on Computer Vision, Santa-Margerita, Italy, pp. 321–334.

  • Garner, L. E. 1981. An Outline of Projective Geometry. Elsevier: North Holland.

    Google Scholar 

  • Golub, G. H. and Van Loan, C. F. 1989. Matrix Computations. The John Hopkins University Press.

  • Hartley, R. I. 1992. Estimation of relative camera positions for uncalibrated cameras. In Proc.European Conference on Computer Vision, pp. 579–587.

  • Hartley, R. I. 1994a. An algorithm for self calibration from several views. In Proc.Conference on Computer Vision and Pattern Recognition, Seattle, WA, pp. 908–912.

  • Hartley, R. I. 1994b. Self-calibration from multiple views with a rotating camera. In Proc.European Conference on Computer Vision, Stockholm, Sweden, pp. 471–478.

  • Horn, B. K. P. 1990. Relative orientation. The International Journal of Computer Vision, 4(1):59–78.

    Google Scholar 

  • Huang, T. S. and Faugeras, O. D. 1989. Some properties of the Ematrix in two view motion estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11:1310–1312.

    Google Scholar 

  • Jazwinsky, A. M. 1970. Stochastic Processes and Filtering Theory. Academic Press: London.

    Google Scholar 

  • Kanatani, K. 1991. Computational projective geometry. Computer Vision, Graphics, and Image Processing.Image Understanding, 54(3).

  • Kanatani, K. 1992. Geometric Computation for Machine Vision. Oxford university press.

  • Kruppa, E. 1913. Zur Ermittlung eines Objektes aus zwei Perspektiven mit innerer Orientierung. Sitz.-Ber.Akad.Wiss., Wien, math. naturw.Kl., Abt.IIa., 122:1939–1948.

    Google Scholar 

  • Kumar, R. and Hanson, A. 1990. Sensibility of the pose refinement problem to accurate estimation of camera parameters. In Proceedings of the International Conference on Computer Vision, Osaka, Japan, pp. 365–369.

  • Kumar, R. V. R., Tirumalai, A., and Jain, R. C. 1989. A non-linear optimization algorithm for the estimation of structure and motion parameters. In Proc.International Conference on Computer Vision and Pattern Recognition, pp. 136–143.

  • Longuet-Higgins, H. C. 1981. A computer algorithm for reconstructing a scene from two projections. Nature, 293:133–135.

    Google Scholar 

  • Luong, Q.-T. 1992. Matrice fondamentale et auto-calibration en vision par ordinateur. Ph. D. thesis, Universite de Paris-Sud, Orsay.

    Google Scholar 

  • Luong, Q.-T. and Faugeras, O. D. 1992. Self-calibration of a camera using multiples images. In Proc.International Conference on Pattern Recognition, Den Hag, The Netherlands, pp. 9–12.

  • Luong, Q.-T. and Viéville, T. 1996. Canonic representations for the geometries of multiple projective views. Computer Vision and Image Understanding, 64(2):193–229.

    Google Scholar 

  • Luong, Q.-T. and Faugeras, O. D. 1994. An optimization framework for efficient self-calibration and motion determination. In Proc.International Conference on Pattern Recognition, Jerusalem, Israel, pp. A-248–A-252.

  • Luong, Q.-T. and Faugeras, O. D. 1994. A stability analysis of the fundamental matrix. In Proc.European Conference on Computer Vision, Stockholm, Sweden, pp. 577–588.

  • Luong, Q.-T. and Faugeras, O. D. 1996. The fundamental matrix: Theory, algorithms, and stability analysis. Intl.Journal of Computer Vision 7(1):43–76.

    Google Scholar 

  • Luong, Q.-T., Deriche, R., Faugeras, O. D., and Papadopoulo, T. 1993. On determining the fundamental matrix: Analysis of different methods and experimental results. Technical Report RR-1894, INRIA

  • Maybank, S. J. 1990. The projective geometry of ambiguous surfaces. Proc.of the Royal Society London A, 332:1–47.

    Google Scholar 

  • Maybank, S. J. and Faugeras, O. D. 1992. A theory of self-calibration of a moving camera. The International Journal of Computer Vision, 8(2):123–151.

    Google Scholar 

  • Maybeck, P. S. 1979. Stochastic Models, Estimation and Control. Academic Press: London.

    Google Scholar 

  • Mundy, J. L. and Zisserman, A. (Eds.) 1992. Geometric Invariance in Computer Vision. MIT Press.

  • Robert, L. 1993. Reconstruction de courbes et de surfaces par vision stéréoscopique. Applications a la robotique mobile. Ph. D. thesis, Ecole Polytechnique.

  • Semple, J. G. and Kneebone, G. T. 1979. Algebraic Projective Geometry. Clarendon Press: Oxford, 1952 (Reprinted).

    Google Scholar 

  • Spetsakis, M. E. and Aloimonos, J. 1988. Optimal computing of structure from motion using point correspondances in two frames. In Proc.International Conference on Computer Vision, pp. 449–453.

  • Trivedi, H. P. 1988. Can multiple views make up for lack of camera registration? Image and Vision Computing, 6(1):29–32.

    Google Scholar 

  • Tsai, R. Y. 1989. Synopsis of Recent Progress on Camera Calibration for 3D Machine Vision. In Oussama Khatib, John J. Craig, and Tomás Lozano-Pérez (Eds.), The Robotics Review. MIT Press: pp. 147–159.

  • Tsai, R. Y. and Huang, T. S. 1984. Uniqueness and estimation of three-dimensional motion parameters of rigid objects wirth curved surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6:13–27.

    Google Scholar 

  • Ullman, S. 1979. The Interpretation of Visual Motion. MIT Press.

  • Vieville, T. 1994. Auto-calibration of visual sensor parameters on a robotic head. Image and Vision Computing, 12.

  • Wampler, C. W., Morgan, A. P., and Sommese, A. J. 1988. Numerical continuation methods for solving polynomial systems arising in kinematics. Technical Report GMR-6372, General Motors Research Labs.

  • Weng, J., Ahuja, N., and Huang, T. S. 1989. Optimal motion and structure estimation. In Proc.International Conference on Computer Vision and Pattern Recognition, pp. 144–152.

  • Zhang, Z. and Faugeras, O. D. 1992. 3D Dynamic Scene Analysis. Springer-Verlag.

  • Zhang, Z., Deriche, R., Faugeras, O., and Luong, Q.-T. 1995. A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry. Artificial Intelligence Journal 78:87–119.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luong, QT., Faugeras, O. Self-Calibration of a Moving Camera from Point Correspondences and Fundamental Matrices. International Journal of Computer Vision 22, 261–289 (1997). https://doi.org/10.1023/A:1007982716991

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007982716991

Navigation