Skip to main content
Log in

Prediction of binding constants of protein ligands: A fast method for the prioritization of hits obtained from de novo design or 3D database search programs

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

A dataset of 82 protein–ligand complexes of known 3D structure and binding constant Ki was analysed to elucidate the important factors that determine the strength of protein–ligand interactions. The following parameters were investigated: the number and geometry of hydrogen bonds and ionic interactions between the protein and the ligand, the size of the lipophilic contact surface, the flexibility of the ligand, the electrostatic potential in the binding site, water molecules in the binding site, cavities along the protein–ligand interface and specific interactions between aromatic rings. Based on these parameters, a new empirical scoring function is presented that estimates the free energy of binding for a protein–ligand complex of known 3D structure. The function distinguishes between buried and solvent accessible hydrogen bonds. It tolerates deviations in the hydrogen bond geometry of up to 0.25 Å in the length and up to 30 °Cs in the hydrogen bond angle without penalizing the score. The new energy function reproduces the binding constants (ranging from 3.7 × 10-2 M to 1 × 10-14 M, corresponding to binding energies between -8 and -80 kJ/mol) of the dataset with a standard deviation of 7.3 kJ/mol corresponding to 1.3 orders of magnitude in binding affinity. The function can be evaluated very fast and is therefore also suitable for the application in a 3D database search or de novo ligand design program such as LUDI. The physical significance of the individual contributions is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Referenc es

  1. Lewis, R.A. and Leach, A.R., J. Comput.-Aided Mol. Design, 8 (1994) 467.

    Google Scholar 

  2. Nishibata, Y. and Itai, A., J. Med. Chem., 36 (1993) 2921.

    Google Scholar 

  3. Bohacek, R.S. and McMartin, C., J. Am. Chem. Soc., 116 (1994) 5560.

    Google Scholar 

  4. Gehlhaar, D.K., Moerder, K.E., Zichi, D., Sherman, C.J., Ogden, R.C. and Freer, S.T., J. Med. Chem., 38 (1995) 466.

    Google Scholar 

  5. Moon, J.B. and Howe, W.J., Proteins, 11 (1991) 314.

    Google Scholar 

  6. Tschinke, V. and Cohen, N.C., J. Med. Chem., 36 (1993) 3863.

    Google Scholar 

  7. Rotstein, S.H. and Murcko, M.A., J. Med. Chem., 36 (1993) 1700.

    Google Scholar 

  8. Eisen, M.B., Wiley, D.C., Karplus, M. and Hubbard, R.E., Proteins, 19 (1994) 199.

    Google Scholar 

  9. Caflish, A., Miranker, A. and Karplus, M., J. Med. Chem., 36 (1993) 2142.

    Google Scholar 

  10. Lewis, R.A., Roe, D.C., Huang, C., Ferrin, T.E., Langridge, R. and Kuntz, I.D., J. Mol. Graphics, 10 (1992) 66.

    Google Scholar 

  11. Mata, P., Gillet, V.J., Johnson, P., Lampreia, J., Myatt, G.J., Sike, S. and Stebbings, A.L., J. Chem. Inf. Comput. Sci., 35 (1995) 479.

    Google Scholar 

  12. Bartlett, P.A., Shea, G.T., Telfer, S.J. and Waterman, S., In Roberts, S.M. (Ed.) Molecular Recognition: Chemical and Biological Problems, Royal Society of London, London, (1989) pp. 182–196.

    Google Scholar 

  13. Pearlman, D.A. and Murcko, M.A., J. Comput. Chem., 14 (1993) 1184.

    Google Scholar 

  14. Böhm, H.J., J. Comput.-Aided Mol. Design, 6 (1992) 61.

    Google Scholar 

  15. Böhm H.J., J. Comput.-Aided Mol. Design, 6 (1992) 593.

    Google Scholar 

  16. Blaney, J.M. and Dixon, J.S., Perspect. Drug Discov. Design, 1 (1993) 301.

    Google Scholar 

  17. Kuntz, I.D., Meng, E.C. and Shoichet, B.K., Acc. Chem. Res., 27 (1994) 117.

    Google Scholar 

  18. DesJarlais, R.L., Sheridan, R.P., Seibel, G.L., Dixon, J.S., Kuntz, I.D. and Venkataraghavan, R., J. Med. Chem., 31 (1988) 722.

    Google Scholar 

  19. Meng, E.C., Shoichet, B.K. and Kuntz, I.D., J. Comput. Chem., 13 (1992) 505.

    Google Scholar 

  20. Meng, E.C., Gschwend, D.A., Blaney, J.M. and Kuntz, I.D., Proteins, 17 (1993) 266.

    Google Scholar 

  21. Kuntz, I.D., Science, 257 (1992) 1078.

    Google Scholar 

  22. Shoichet, B.K., Stroud, R.M., Santi, D.V., Kuntz, I.D. and Perry, K.M., Science, 259 (1993) 1445.

    Google Scholar 

  23. Lawrence, M.C. and Davis, P.C., Proteins, 12 (1992) 31.

    Google Scholar 

  24. Miller, M.D., Kearsley, S.K., Underwood, D.J. and Sheridan, R.P., J. Comput.-Aided Mol. Design, 8 (1994) 153.

    Google Scholar 

  25. Gehlhaar, D.K., Verkhivker, G.M., Rejto, P.A., Sherman, C.J., Fogel, D.B., Fogel, L.J. and Freer, S.T., Chem. Biol., 2 (1995) 317.

    Google Scholar 

  26. van Gunsteren, W.F. and Weiner, P.K., Computer Simulations of Biomolecular Systems, ESCOM, Leiden, 1989.

    Google Scholar 

  27. Kollman, P.A., Chem. Rev., 93 (1993) 2395.

    Google Scholar 

  28. Kollman, P.A., Curr. Opin. Struct. Biol., 4 (1994) 240.

    Google Scholar 

  29. Warshel, A., Tao, H., Fothergill, M. and Chu, Z.T., Isr. J. Chem., 34 (1994) 253.

    Google Scholar 

  30. Honig, B. and Nicholls, A., Science, 268 (1995) 1144.

    Google Scholar 

  31. Grootenhuis, P.D.J. and Van Galen, P.J.M., Acta Crystallogr., D51 (1995) 560.

    Google Scholar 

  32. Kurinov, I.V. and Harrison, R.W., Nature Struct. Biol., 1 (1994) 735.

    Google Scholar 

  33. Holloway, M.K., Wai, J.M. and Halgren, T.A., J. Med. Chem., 38 (1995) 305.

    Google Scholar 

  34. Miranker A. and Karplus, M., Proteins Struct. Funct. Genet., 11 (1991) 29.

    Google Scholar 

  35. Vajda, S., Weng, Z., Rosenfeld, R. and DeLisi, C., Biochemistry, 33 (1994) 13977.

    Google Scholar 

  36. Krystek, S., Stouch, T. and Novotny, J., J. Mol. Biol., 234 (1993) 661.

    Google Scholar 

  37. Horton, N. and Lewis, M., Protein Sci., 1 (1992) 169.

    Google Scholar 

  38. Bohacek, R.S. and McMartin, C., J. Med. Chem., 35 (1992) 1671.

    Google Scholar 

  39. Jedrzejas, M.J., Singh, S., Brouillette, W.J., Air, G.M. and Luo, M., Proteins, 23 (1995) 264.

    Google Scholar 

  40. Nauchitel, V., Villaverde, M.C. and Sussman, F., Protein Sci., 4 (1995) 1356.

    Google Scholar 

  41. Peräkylä, M. and Pakkanen, T.A., Proteins, 20 (1994) 367.

    Google Scholar 

  42. Head, R.D., Smythe, M.L., Oprea, T.I., Waller, C.L., Green, S.M. and Marshall, G.R., J. Am. Chem. Soc., 118 (1996) 3959.

    Google Scholar 

  43. Jain, A.N., J. Comput.-Aided Mol. Design, 10 (1996) 427.

    Google Scholar 

  44. Böhm, H.J., J. Comput.-Aided Mol. Design, 8 (1994) 243.

    Google Scholar 

  45. Ajay and Murcko M.A., J. Med. Chem., 38 (1995) 4953.

    Google Scholar 

  46. Böhm, H.J., J. Comput.-Aided Mol. Design, 8 (1994) 623.

    Google Scholar 

  47. Mack, H., Pfeiffer, T., Hornberger, W., Böhm., H.J. and Höffken, H.W., J. Enzyme Inhibition, 9 (1995) 73.

    Google Scholar 

  48. Rarey, M., Wefing, S. and Lengauer, T., J. Comput.-Aided Mol. Design, 10 (1996) 41.

    Google Scholar 

  49. Burley, S.K. and Petsko, G.A., Science, 229 (1985) 23.

    Google Scholar 

  50. Hunter, C.A., Singh, J. and Thornton, J.M., J.Mol. Biol., 218 (1991) 837.

    Google Scholar 

  51. Hunter, C.A., Chem. Soc. Rev., (1994) 101.

  52. Sander, C., personal communication.

  53. GROMOS, user manual.

  54. Jorgensen, W.L. and Pranata, J., J. Am. Chem. Soc., 112 (1990) 2008.

    Google Scholar 

  55. Connolly, M.L., Science, 221 (1983) 709.

    Google Scholar 

  56. Programs INSIGHT and DISCOVER, distributed by MSI, San Diego, CA.

  57. Dauber-Osguthorpe, P., Roberts, V.A., Osguthorpe, D.J., Wolff, J., Genest, M. and Hagler, A.T., Proteins, 4 (1988) 31.

    Google Scholar 

  58. Kleywegt, G.J. and Jones, T.A., Acta Crystallogr., D50 (1994) 178.

    Google Scholar 

  59. Bernstein, F.C., Koetzle, T.F., Williams, G.J.B, Meyer Jr., E.F., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T. and Tasumi, T., J. Mol. Biol., 112 (1977) 535.

    Google Scholar 

  60. Wilson, D.K. and Quiocho, F.A., Biochem., 32 (1993) 1689.

    Google Scholar 

  61. Harvey, S.C., In Goodman, A. (Ed.) The Pharmacological Basics of Therapeutics, MacMillan Press, New York, NY (1987) pp. 980–985.

    Google Scholar 

  62. Mangani, S., Carloni, P. and Orioli, P., J. Mol. Biol., 223 (1992) 573.

    Google Scholar 

  63. Cappalonga, A.M., Alexander, R.S. and Christianson, D.W., J. Biol. Chem., 267 (1992) 19192.

    Google Scholar 

  64. Xiang, S., Short, S.A., Wolfenden, R. and Carter, C.W., Biochemistry, 34 (1995) 4516.

    Google Scholar 

  65. Mattos, C., Rasmussen, B., Ding, X., Petsko, G.A. and Ringe, D., Nature Struct. Biol., 1 (1994) 55.

    Google Scholar 

  66. Van Duyne, G.D., Standaert, R.F., Karplus, P.A., Schreiber, S.L. and Clardy, J., Science, 252 (1991) 839.

    Google Scholar 

  67. Kim, E.E., Baker, C.T., Dwyer, M.D., Murcko, M.A., Rao, B.G., Tung, R.D. and Navia, M.A., J. Am. Chem. Soc., 117 (1995) 1181.

    Google Scholar 

  68. Lam, P.Y.S., Jadhav, P.K., Eyermann, C.J., et al., Science, 263 (1994) 380.

    Google Scholar 

  69. Morton, A. and Matthews, B.W., Biochemistry, 34 (1995) 8576.

    Google Scholar 

  70. White, J.L., et al., J. Mol. Biol., 102 (1976) 759.

    Google Scholar 

  71. Bolognesi, M., Cannilo, E., Ascenzi, P., Giacometti, G.M., Merli, A. and Brunori, M., J. Mol. Biol., 158 (1982) 305.

    Google Scholar 

  72. Lipscomb, J.D., Biochemistry, 19 (1980) 3590.

    Google Scholar 

  73. Turk, D., Stürzebecher, J. and Bode, W., FEBS Lett., 287 (1991) 133.

    Google Scholar 

  74. Zollner, H., Handbook of Enzyme Inhibitors, VCH Publishers, Weinheim, 1993.

    Google Scholar 

  75. Cowan, S.W., Newcomer, M.E. and Jones, T.A., Proteins, 8 (1990) 44.

    Google Scholar 

  76. Wood, J., J. Cardiovasc. Pharm., 14 (1989) 221.

    Google Scholar 

  77. Jacobson, B.L., He, J.J., Vermersch, P.S., Lemon, D.D. and Quiocho, F.A., J. Biol. Chem., 266 (1991) 5220.

    Google Scholar 

  78. Weber, P.C., Wendoloski, J.J., Pantoliano, M.W. and Salemme, F.R., J. Am. Chem. Soc., 114 (1992) 3197.

    Google Scholar 

  79. Matthews, B.W., Acc. Chem. Res., 21 (1988) 333.

    Google Scholar 

  80. Fisher, M.T. and Sligar, S.G., J. Am. Chem. Soc., 107 (1985) 5018.

    Google Scholar 

  81. Teplyakov, A., Wilson, K.S., Orioli, P. and Mangani, S., Acta Crystallogr., D49 (1993) 534.

    Google Scholar 

  82. Cooper, J., Foundling, S., Hemmings, A. and Blundell, T., Eur. J. Biochem., 169 (1987) 215.

    Google Scholar 

  83. Miller, D.M., Olson, J.S., Pflugrath, J.W. and Quiocho, F.A., J. Biol. Chem., 258 (1983) 13665.

    Google Scholar 

  84. Watson, K.A., Mitchell, E.P., Johnson, L.N., Son, J.C., Bichard, C.J.F., Orchard, M.G., Fleet, G.W.J., Oikonomakos, N.G., Leonidas, D.D., Kontou, M. and Papageorgioui, A., Biochemistry, 33 (1994) 5745.

    Google Scholar 

  85. Lowe, J.B., Sacchettini, J.C., Laposata, M., McQuillan, J.J. and Gordon, J.I., J. Biol. Chem., 262 (1987) 5931.

    Google Scholar 

  86. Appelt, K., Bacquet, R.J., Bartlett, C.A., et al., J. Med. Chem., 34 (1991) 1925.

    Google Scholar 

  87. Bunting, J.W. and Myer, C.D., Can. J. Chem., 53 (1975) 1993.

    Google Scholar 

  88. Bolin, J.T., Filman, D.A., Matthews, D.A., Hamlin, R.C. and Kraut, J., J. Biol. Chem., 257 (1982) 13650.

    Google Scholar 

  89. Mares-Guia, M. and Shaw, E., J. Biol. Chem., 240 (1965) 1579.

    Google Scholar 

  90. Bode, W., J. Mol. Biol., 127 (1979) 357.

    Google Scholar 

  91. Wallace, R.A., Kurtz, A.N. and Niemann, C., Biochemistry, 2 (1963) 824.

    Google Scholar 

  92. Dani, M., Manca, F. and Rialdi, G., Biochim. Biophys. Acta, 667 (1981) 108.

    Google Scholar 

  93. Blaney, J.M., Hansch, C., Silipo, C. and Villon, A., Chem. Rev., 84 (1984) 333.

    Google Scholar 

  94. Blundell, T.L., Cooper, J., Foundling, S.I., Jones, D.M., Atrash, B. and Szelke, M., Biochemistry, 26 (1987) 5585.

    Google Scholar 

  95. Janes, W. and Schultz, G.E., J. Biol. Chem., 265 (1990) 10443.

    Google Scholar 

  96. Miller, M., Schneider, J., Sathyanarayana, B.K., Toth, M.V., Marshall, G.R., Clawson, L., Selk, L., Kent, S.B.H. and Wlodawer, S., Science, 246 (1989) 1149.

    Google Scholar 

  97. Bone, R., Vacca, J.P., Anderson, P.S. and Holloway, M.K., J. Am. Chem. Soc., 113 (1991) 9382.

    Google Scholar 

  98. Welles, T.N.C. and Fersht, A.R., Biochemistry, 25 (1986) 1881.

    Google Scholar 

  99. Verlinde, C.L.M.J., Noble, M.E.M., Kalk, K.H., Groendijk, H., Wierenga, R.K. and Hol, W.G.J., Eur. J. Biochem., 198 (1991) 53.

    Google Scholar 

  100. Roderick, S.L., Fournie-Zuliski, M.C., Roques, B.P. and Matthews, B.W., Biochemistry, 28 (1989) 1493.

    Google Scholar 

  101. Schloss, J.V., Emptage, M.H. and Cleland, W.W., Biochemistry, 23 (1984) 4572.

    Google Scholar 

  102. Kim, H. and Lipscomb, W.N., Biochemistry, 29 (1990) 5546.

    Google Scholar 

  103. Lindquist, R.N., Lynn, J.L. and Lienhard, G.E., J. Am. Chem. Soc., 95 (1973) 8762.

    Google Scholar 

  104. Kim, H. and Lipscomb, W.N., Biochemistry, 30 (1991) 8171.

    Google Scholar 

  105. McPhalen, C.A., Vincent, M.G. and Jansonius, J.N., J. Mol. Biol., 225 (1992) 495.

    Google Scholar 

  106. Hol, W. and Verlinde, C., personal communication.

  107. Bode, W., Turk, D. and Stürzebecher, J., Eur. J. Biochem., 193 (1990) 175.

    Google Scholar 

  108. Stürzebecher, J., Walsmann, P., Voigt, B. and Wagner, G., Thrombosis Res., 36 (1984) 457.

    Google Scholar 

  109. Hilpert, K., Ackermann, J., Banner, D.W., Gast, A., Gubernator, K., Hadvary, P., Labler, L., Müller, K., Schmid, G., Tschopp, T.B. and van de Waterbeemd, H., J. Med. Chem., 37 (1994) 3889.

    Google Scholar 

  110. Mitchell, E.P., Watson, K.A., Bichard, C., Fleet, G.W.J., Zographos, S.E., Oikonomakos, N.G., Board, M. and Johnson, L.N., In Hunter, W.N., Thornton, J.M. and Bailey, S. (Eds.) Making the Most of your Model, Proceedings of the CCP4 study weekend, Chester, 1995, pp. 111–119.

  111. Brandstetter, H., Turk, D., Hoeffken, H.W., Grosse, D., Stürzebecher, J., Martin, P.D., Edwards, B.F.P. and Bode, W., J. Mol. Biol., 226 (1992) 1085.

    Google Scholar 

  112. Steinberg, G.M., Mednick, M.L., Maddox, J. and Rice, R., J. Med. Chem., 18 (1975) 1056.

    Google Scholar 

  113. Greer, J., Erickson, J.W., Baldwin, J.J. and Varney, M.D., J. Med. Chem., 37 (1994) 1035.

    Google Scholar 

  114. Markwardt, F., Walsmann, P. and Landmann, H., Pharmazie, 25 (1970) 551.

    Google Scholar 

  115. Kikumoto, R., Tamao, Y., Tezuka, T., Tonomura, S., Hara, H., Ninomiya, K., Hijikata, A. and Okamoto, S., Biochemistry, 23 (1984) 85.

    Google Scholar 

  116. Kim, K.H., Willingmann, P., Gong, Z.X., et al., J. Mol. Biol., 230 (1993) 206.

    Google Scholar 

  117. Entsch, B., Ballou, D.P. and Massey, V., J. Biol. Chem., 251 (1976) 2550.

    Google Scholar 

  118. Badger, J., Minor, I., Kremer, M.J., Oliveira, M.O., Smith, T.J., Griffith, J.P., Guerin, D.M.A., Krishnaswamy, S., Luo, M., Rossmann, M.G., McKinlay, M.A., Diana, G.D., Dutko, F.J., Fancher, M., Rueckert, R.R. and Heinz, B.A., Proc. Natl. Acad. Sci. USA, 85 (1988) 3304.

    Google Scholar 

  119. Herron, J.N., He, X., Mason, M.L., Voss, E.W. and Edmundson, A.B., Proteins, 5 (1989) 271.

    Google Scholar 

  120. Sauter, N.K., Bednarski, M.D., Wurzburg, B.A., Hanson, J.E., Whitesides, G.M., Skehel, J.J. and Wiley, D.C., Biochemistry, 28 (1989) 8388.

    Google Scholar 

  121. Erickson, J., Neidhart, D.J., VanDrie, J., Kempf, D.J., Wang, X.C., Norbeck, D.W., Plattner, J.J., Rittenhouse, J.W., Turon, M., Wideburg, N., Kohlbrenner, W.E., Simmer, R., Helfrich, R., Paul, D.A. and Knigge, M., Science, 249 (1990) 527.

    Google Scholar 

  122. Burkhard, P., Kallen, J., Mikol, V. and Walkinshaw, M.D., In Kungl, A.J., Andrew, P.J. and Schreiber, H. (Eds.) Proceedings of the ICSMB95, 1995, pp. 44–60.

  123. Fersht, A.R., Shi, J.P., Knill-Jones, J., Lowe, D.M., Wilkinson, A.J., Blow, D.M., Brick, P., Carter, P., Waye, M.M.Y. and Winter, G., Nature, 314 (1985) 235.

    Google Scholar 

  124. Shirley, B.A., Stanssens, P., Hahn, U. and Pace, C.N., Biochemistry, 31 (1992) 725.

    Google Scholar 

  125. Connelly, P.R., Aldape, R.A., Bruzzese, F.J., Chambers, S.P., Fitzgibbon, M.J., Fleming, M.A., Itoh, S., Livingstone, D.J., Navia, M.A., Thomson, J.A. and Wilson, K.P., Proc. Natl. Acad. Sci. USA, 91 (1994) 1964.

    Google Scholar 

  126. Chen, Y.W., Fersht, A.R. and Henrick, K., J. Mol. Biol., 234 (1993) 1158.

    Google Scholar 

  127. Richards, F.M., Annu. Rev. Biophys. Bioeng., 6 (1977) 151.

    Google Scholar 

  128. Sharp, K.A., Nicholls, A., Friedman, R. and Honig, B., Biochemistry, 30 (1991) 9686.

    Google Scholar 

  129. Searle, M.S., Williams, D.H. and Gerhard, U., J. Am. Chem. Soc., 114 (1992) 10697.

    Google Scholar 

  130. Sali, A., Veerapandiam, B., Cooper, J.B., Moss, J.B., Hofmann, T. and Blundell, T.L., Proteins, 12 (1992) 158.

    Google Scholar 

  131. Wierenga, R.K., Noble, M.E.M. and Davenport, R.C., J.Mol. Biol., 224 (1992) 1115.

    Google Scholar 

  132. Dougherty, D.A. and Stauffer, D.A., Science, 250 (1990) 1558.

    Google Scholar 

  133. Baker, B.R. and Erickson, E.H., J. Med. Chem., 10 (1967) 1123.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böhm, HJ. Prediction of binding constants of protein ligands: A fast method for the prioritization of hits obtained from de novo design or 3D database search programs. J Comput Aided Mol Des 12, 309 (1998). https://doi.org/10.1023/A:1007999920146

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007999920146

Navigation