Skip to main content
Log in

Quantitative structure-activity relationships and comparative molecular field analysis of TIBO derivatised HIV-1 reverse transcriptase inhibitors

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Quantitative structure-activity relationships (QSAR) and Comparative Molecular Field Analysis (CoMFA) have been applied in order to explain the structural requirements of HIV-1 reverse transcriptase (HIV-1 RT) inhibitory activity of TIBO derivatives on the MT-4 cells. The best QSAR model is satisfactory in both statistical significance and predictive ability. The derived structural descriptors indicate the importance of electronic contributions toward the HIV-1 RT inhibition of this class of compounds. However, it could not reveal any hydrophobic influence because of high collinearity between C2 and log P variables. In order to cope with steric interaction in the correlation, 3D-QSAR was performed using CoMFA. The obtained CoMFA model shows high predictive ability, r2 cv=0.771, and clearly demonstrates its potential in the steric feature of the molecules through contour maps, explaining a majority (81.8%) of the variance in the data. Consequently, these results can be useful in identifying the structural requirements of TIBO derivatives and helpful for better understanding the HIV-1 RT inhibition. Eventually, they provide a beneficial basis to design new and more potent inhibitors of HIV-1 RT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pauwels, R., Andries, K., Desmyter, J., Schols, D., Kukla, M.J., Breslin, H.J., Raeymaechers, A., Gelder, J.V., Woestenborghs, R., Heykants, J., Schellekens, K., Janessen, M.A.C., De Clercq, E. and Janssen, P.A.J., Nature, 343 (1990) 470.

    Google Scholar 

  2. Frank, K.B., Noll, G.J., Connell, E.V. and Sim, I.S., J. Biol. Chem., 266 (1991) 14232.

    Google Scholar 

  3. Althaus, I.W., Chou, J.J., Gonzales, A.J., Deibel, M.R., Chou, K.-C., Kezdy, F.J., Romero, D.L., Aristoff, P.A., Tarpley, W.G. and Reusser, F., J. Biol. Chem., 268 (1993) 6119.

    Google Scholar 

  4. Spence, R.A., Kati, W.M., Anderson, K.S. and Johnson, K.A., Science, 267 (1995) 988.

    Google Scholar 

  5. Kohlstaedt, L.A., Wang, J., Friedman, J.M., Rice, P.A. and Steitz, T.A., Science, 256 (1992) 1783.

    Google Scholar 

  6. Ding, J., Das, K., Tantillo, C., Zhang, W., Clark, A.D.J., Jessen, S., Lu, X., Hsiou, Y., Jacobo-Molina, A., Andries, K., Pauwels, R., Moereels, H., Koymans, L, Janssen, P.A.J., Smith, R.H.J., Kroeger Koepke, R., Michejda, C.J., Hughes, S.H. and Arnold, E., Structure, 3 (1995) 365.

    Google Scholar 

  7. Ren, J.S., Esnouf, R., Hopkins, A., Ross, C., Jones, Y., Stammers, D. and Stuart, D., Structure, 3 (1995) 915.

    Google Scholar 

  8. Richman, D., Shih, C.-K., Lowy, I., Rose, J., Prodanovich, P., Goff, S. and Griffin, J., Proc. Natl. Acad. Sci. USA, 88 (1991) 11241.

    Google Scholar 

  9. Das, K., Ding, J., Hsiou, Y., Clark Jr., A.D., Moereels, H., Koymans, L., Andries, K., Pauwels, R., Janssen, R.A.J., Boyer, P.L., Clark, P., Smith Jr., R.H., Smith, M.B.K., Michejda, C.J., Hughes, S.H. and Arnold, E., J. Mol. Biol., 264 (1996) 1085.

    Google Scholar 

  10. Tantillo, C., Ding, J., Jacobo-Molina, A., Nanni, R.G., Boyer, P.L., Hughes, S.H., Pauwels, R., Andries, K., Janssen, P.A.J. and Arnold, E., J. Mol. Biol., 243 (1994) 369.

    Google Scholar 

  11. Hannongbua, S., Lawtrakul, L. and Limtrakul, J., J. Comput.-Aided Mol. Design, 10 (1996) 145.

    Google Scholar 

  12. Hannongbua, S., Lawtrakul, L., Sotriffer, C.A. and Rode, B.M., Quant. Struct.-Act. Relat., 15 (1996) 389.

    Google Scholar 

  13. Hansch, C. and Fujita, T., J. Am. Chem. Soc., 86 (1964) 1616.

    Google Scholar 

  14. Cramer III, R.D., Patterson, D.E. and Bunce, J.D., J. Am. Chem. Soc., 110 (1988) 5959.

    Google Scholar 

  15. Breslin, H.J., Kukla, M.J., Ludovici, D.W., Mohrbacher, R., Ho, W., Miranda, M., Rodgers, J.D., Hitchens, T.K., Leo, G., Gauthier, D.A., Ho, C.Y., Scott, M.K., De Clercq, E., Pauwels, R., Andries, K., Janssen, M.A.C. and Janssen, P.A.J., J. Med. Chem., 38 (1995) 771.

    Google Scholar 

  16. Tripos Associates Inc., St. Louis, MO.

  17. Dewar, M.J., Zoebisch, E.G., Healy, E.F. and Stewart, J.P., J. Am. Chem. Soc., 107 (1985) 3902.

    Google Scholar 

  18. GAUSSIAN 94, Pittsburgh, PA, 1995.

  19. ChemPlus 1.0, Hypercube Inc., Waterloo, ON, USA, 1993.

  20. Miller, K.J., J. Am. Chem. Soc., 112 (1990) 8533.

    Google Scholar 

  21. Norusis, M.J., SPSS for Windows Release 6.0., SPSS, Inc., Chicago, 1993.

    Google Scholar 

  22. Quantum Chemistry Program Exchange, Indiana University, Bloomington, IN.

  23. SYBYL Molecular Modelling Software, version 6.4, Tripos Associates, Inc., St. Louis, MO. 1996.

  24. Wold, S., Johansson, E. and Cocchi, M., In Kubinyi, H. (Ed.) 3D QSAR in Drug Design: Theory, Methods and Applications, ESCOM, Leiden, 1993, pp. 523-549.

    Google Scholar 

  25. SYBYL Molecular Modelling Software, version 6.3, SYBYL Ligand Base Design, Tripos Associates, Inc., St. Louis, MO, 1996, p. 229.

  26. Topliss, J.G. and Costello, R.J., J. Med. Chem., 15 (1972) 1066.

    Google Scholar 

  27. Wold, S., Quant. Struct.-Act. Relat., 10 (1991) 191.

    Google Scholar 

  28. Ho, W., Kukla, M.J., Breslin, H.J., Lodevici, D.W., Grows, P.P., Diamond, C.J., Miranda, M., Rodgers, D.W., Ho, C.Y., De Clercq, E., Pauwels, R., Andries, K., Janssen, M.A.C. and Janssen, P.A.J., J. Med. Chem., 38 (1995) 794.

    Google Scholar 

  29. Kukla, M.J., Breslin, H.J., Diamond, C.J., Grods, P.P., Ho, C.Y., Miranda, M., Roders, J.D., Sherril, R.G., De Clercq, E. and Janssen, P.A.J., J. Med. Chem., 34 (1991) 3187.

    Google Scholar 

  30. Kukla, M.J., Breslin, H.J., Pauwels, R., Fedde, C.L., Scott, M.K., Miranda, M., Sherril, R.G., Raeymaeker, A., Gelder, J.V., Andries, K., Janssen, M.A.C., De Clercq, E. and Janssen, P.A.J., J. Med. Chem., 34 (1991) 746.

    Google Scholar 

  31. Hansch, C. and Leo, A., Substituent Constants for Correlation Analysis in Chemistry and Biology, Wiley Interscience, New York, NY, 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hannongbua, S., Pungpo, P., Limtrakul, J. et al. Quantitative structure-activity relationships and comparative molecular field analysis of TIBO derivatised HIV-1 reverse transcriptase inhibitors. J Comput Aided Mol Des 13, 563–577 (1999). https://doi.org/10.1023/A:1008013917905

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008013917905

Navigation