Skip to main content
Log in

Texture histograms as a function of irradiation and viewing direction

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

The textural appearance of materials encountered in our daily environment depends on two directions, the irradiation and viewing direction. We investigate the bidirectional grey level histograms of a large set of materials, obtained from a texture database. We distinguish important categories, relate the various effects to physical mechanisms, and list material attributes that influence the bidirectional histograms. We use a model for rough surfaces with locally diffuse and/or specular reflection properties, a class of materials that commonly occurs, to generate bidirectional histograms and obtain close agreement with experimental data. We discuss several applications of bidirectional texture functions and histograms. In particular, we present a new approach to texture mapping based on bidirectional histograms. For 3D texture, this technique is superior to standard 2D texture mapping at hardly any extra computational cost or memory requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aloimonos, Y. 1988. Shape from texture. Biological Cybernetics, 58: 345–360.

    Google Scholar 

  • Beckmann, P. and Spizzichino, A. 1963. The Scattering of Electromagnetic Waves from Rough Surfaces. Pergamon, New York.

    Google Scholar 

  • Bovik, A. C., Clark, M. and Geisler, W. S. 1990. Multichannel texture analysis using localized spatial filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(1): 55–73.

    Google Scholar 

  • Chandrasekhar, S. 1960. Radiative Transfer. Dover: New York.

    Google Scholar 

  • Cook, R.L. and Torrance, K.E. 1981. A reflectance model for computer graphics. ACM Computer Graphics, 15(3): 307–316.

    Google Scholar 

  • Dana, K.J., van Ginneken, B., Nayar, S.K. and Koenderink, J.J. 1996. Reflectance and texture of real-world surfaces. Columbia University, Technical Report CUCS–048–96.

  • Dana, K.J., van Ginneken, B., Nayar, S.K. and Koenderink, J.J. 1997. Reflectance and texture of real-world surfaces. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 151–157.

  • Dorsey, J. and Hanrahan, P. 1996. Modeling and rendering of metallic patinas. Proc. ACM SIGGRAPH, pp. 387–396.

  • Gårding, J. and Lindeberg, T. 1996. Direct computation of shape cues based on scale-adapted spatial derivative operators. International Journal of Computer Vision, 17(2): 163–192.

    Google Scholar 

  • Gerstl, S.A.W. and Borel, C.C. 1992. Principles of the radiosity method versus radiative transfer for canopy reflectance modeling. IEEE Trans. on Geoscience and Remote Sensing, pp. 271–275.

  • Ginneken, B. van, Stavridi, M. and Koenderink, J.J. 1998. Diffuse and specular reflection from rough surfaces. Applied Optics, 37(1): 130–139.

    Google Scholar 

  • Hanrahan, P. and Krueger, W. 1993. Reflection from layered surfaces due to subsurface scattering. Proc. ACM SIGGRAPH, pp. 165–174.

  • He, X.D., Torrance, K.E., Sillion, F.X. and Greenberg, D.P. 1991. A comprehensive physical model for light reflection. ACM Computer Graphics, 25(4): 175–186.

    Google Scholar 

  • Horn, B.K. and Brooks, M.J. (eds) 1989. Shape from shading. Massachusetts Institute of Technology.

  • Kajiya, J.T. 1989. Rendering fur with three-dimensional textures. Proc. ACM SIGGRAPH, 23(3): 271–280.

    Google Scholar 

  • Koenderink, J.J. and van Doorn, A.J. 1996. Illuminance texture due to surface mesostructure. Journal of the Optical Society of America A, 13: 452–463.

    Google Scholar 

  • Koenderink, J.J., van Doorn, A.J. and Stavridi, M. 1996. Bidirectional reflection distribution functions expressed in terms of surface scattering modes. European Conference on Computer Vision, pp. 28–39.

  • Kortüm, G. 1969. Reflectance Spectroscopy. Springer-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • Kubelka, P. and Munk, F. 1931. Ein Beitrag zur Optik der Farbenstriche. Z. Tech. Phys, 12: 593.

    Google Scholar 

  • Leader, J.C. 1979. Analysis and prediction of laser scattering from rough-surface materials. Journal of the Optical Society of America, 69(4):610–628.

    Google Scholar 

  • Middleton, D. 1960. Introduction to Statistical Communications Theory. McGraw-Hill, New York.

    Google Scholar 

  • Nayar, S.K., Ikeuchi, K. and Kanade, T. 1991. Surface reflection: physical and geometrical perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13: 611–634.

    Article  Google Scholar 

  • Nicodemus, F.E., Richmond, J.C. and Hsia, J.J. 1977. Geometrical Considerations and Nomenclature for Reflectance. National Bureau of Standards. Monograph No. 160.

  • Oren, M. and Nayar, S.K. 1995. Generalization of the Lambertian model and implications for machine vision. International Journal of Computer Vision, 14: 227–251.

    Google Scholar 

  • Phong, B.T. 1975. Illumination for computer generated pictures. Communications of the ACM, 18(6): 311–317.

    Google Scholar 

  • Poulin, P. and Fournier, A. 1990. A model for anisotropic reflection. ACM Computer Graphics, pp. 273–282.

  • Richards, W.A. 1982. Lightness scale from image intensity distributions. Applied Optics, 21(14): 2569–2582.

    Google Scholar 

  • Smith, B.G. 1967. Geometrical shadowing of a random rough surface. IEEE Transactions on Antennas and Propagation, 15(5): 668–671.

    Google Scholar 

  • Tagare, H.D. and deFigueiredo, R.J.P. 1991. Atheory of photometric stereo for a class of diffuse non-Lambertian surfaces. IEEE Transaction on Pattern Analysis and Machine Intelligence, 13(2): 133–152.

    Google Scholar 

  • Torrance, K. and Sparrow, E. 1967. Theory for off-specular reflection from roughened surfaces. Journal of the Optical Society of America, 57(9): 1105–1114.

    Google Scholar 

  • van de Hulst, H.C. 1981. Light scattering by small particles. Dover: New York.

    Google Scholar 

  • Westin, S., Arvo, J.R. and Torrance, K.E. 1992. Predicting reflectance functions from complex surfaces. Proc. ACM SIGGRAPH, 26: 255–264.

    Google Scholar 

  • Wolff, L.B. 1994. Diffuse-reflectance model for smooth dielectric surfaces. Journal of the Optical Society of America A, 11(11): 2956–2968.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Ginneken, B., Koenderink, J.J. & Dana, K.J. Texture histograms as a function of irradiation and viewing direction. International Journal of Computer Vision 31, 169–184 (1999). https://doi.org/10.1023/A:1008018015948

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008018015948

Navigation