Skip to main content
Log in

RigFit: A new approach to superimposing ligand molecules

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

If structural knowledge of a receptor under consideration is lacking, drug design approaches focus on similarity or dissimilarity analysis of putative ligands. In this context the mutual ligand superposition is of utmost importance. Methods that are rapid enough to facilitate interactive usage, that allow to process sets of conformers and that enable database screening are of special interest here. The ability to superpose molecular fragments instead of entire molecules has proven to be helpful too. The RigFit approach meets these requirements and has several additional advantages. In three distinct test applications, we evaluated how closely we can approximate the observed relative orientation for a set of known crystal structures, we employed RigFit as a fragment placement procedure, and we performed a fragment-based database screening. The run time of RigFit can be traded off against its accuracy. To be competitive in accuracy with another state-of-the-art alignment tool, with which we compare our method explicitly, computing times of about 6s per superposition on a common day workstation are required. If longer run times can be afforded the accuracy increases significantly. RigFit is part of the flexible superposition software FlexS which can be accessed on the WWW [http://cartan.gmd.de/FlexS].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Rarey, M., Kramer, B., Lengauer, T. and Klebe, G., J. Mol. Biol., 261 (1996) 470.

    Google Scholar 

  2. Lemmen, C. and Lengauer, T., J. Comput.-Aided Mol. Design, 11 (1997) 357.

    Google Scholar 

  3. Kearsley, S.K. and Smith, G.M., Tetrahedron Comput. Methodol., 3 (1990) 615.

    Google Scholar 

  4. Klebe, G., Mietzner, T. and Weber, F., J. Comput.-Aided Mol. Design, 8 (1994) 751.

    Google Scholar 

  5. Kato, Y., Inoue, A., Yamada, M., Tomioka, N. and Itai, A., J. Comput.-Aided Mol. Design, 6 (1992) 475.

    Google Scholar 

  6. Marshall, G.R., Barry, C.D., Bosshard, H.D., Dammkoehler, R.D. and Dunn, D.A., In Olson, E.C. and Christoffersen, R.E. (Eds.) Computer-Assisted Drug Design, Vol. 112, American Chemical Society, Washington, DC, 1979, pp. 205–222.

    Google Scholar 

  7. Martin, Y.C., Bures, M.G., Danaher, E.A., DeLazzer, J., Lico, I. and Pavlik, P.A., J. Comput.-Aided Mol. Design, 7 (1992) 83.

    Google Scholar 

  8. Jones, G., Willett, P. and Glen, R.C., J. Comput.-Aided Mol. Design, 9 (1995) 532.

    Google Scholar 

  9. Grant, J.A., Gallardo, M.A. and Pickup, B.T., J. Comput. Chem., 17 (1996) 1653.

    Google Scholar 

  10. Mestres, J., Rohrer, D.C. and Maggiora, G.M., J. Comput. Chem., 18 (1997) 934.

    Google Scholar 

  11. Mestres, J., Rohrer, D.C. and Maggiora, G.M., J. Mol. Graphics Mod., 15 (1997) 114.

    Google Scholar 

  12. Petitjean, M., J. Chem. Inf. Comput. Sci., 36 (1996) 1038.

    Google Scholar 

  13. Navaza, J., Acta Crystallogr., A50 (1994) 157.

    Google Scholar 

  14. Diederichs, K., Proteins, 23 (1995) 187.

    Google Scholar 

  15. Nissink, J.W.M., Verdonk, M.L., Kroon, J., Mietzner, T. and Klebe, G., J. Comput. Chem., 18 (1997) 638.

    Google Scholar 

  16. Klebe, G., In Kubinyi, H. (Ed.) 3D QSAR in Drug Design. Theory, Methods and Applications, ESCOM, Leiden, 1993, pp. 173–199.

    Google Scholar 

  17. Bures, M.G., In Charifson, P.S. (Ed.) Practical Application of Computer-Aided Drug Design, Marcel Dekker, New York, NY, pp. 39–72.

  18. Carbó, R., Leyda, L. and Arnau, M., Int. J. Quant. Chem., 17 (1980) 1185.

    Google Scholar 

  19. Hodgkin, E.E. and Richards, G., Int. J. Quant. Chem.: Quant. Biol. Symp., 14 (1987) 105.

    Google Scholar 

  20. Good, A.C., Hodgkin, E.E. and Richards, W.G., J. Chem. Inf. Comput. Sci., 32 (1992) 188.

    Google Scholar 

  21. Rossmann, M.G. and Blow, D.M., Acta Crystallogr., 15 (1962) 24.

    Google Scholar 

  22. Hiller, C., Optimierungsmethoden zum strukturellen Alignment von Ligandmolekülen. Master's thesis, University of Bonn, 1997.

  23. Lattman, E.E., Acta Crystallogr., B28 (1972) 1065.

    Google Scholar 

  24. Dennis, J.E. and Schnabel, R.B., Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-Hall, NJ, 1983.

    Google Scholar 

  25. Griewank, A.O., Markey, B.R. and Evans, D.J., J. Chem. Phys., 71 (1979) 3449.

    Google Scholar 

  26. Rossmann, M.G., The Molecular Replacement Method, Gordon & Breach, New York, NY, 1972.

    Google Scholar 

  27. Cooper, D.L. and Allan, N.L., J. Comput.-Aided Mol. Design, 3 (1989) 253.

    Google Scholar 

  28. Katchalski-Katzir, E., Shariv, I., Eisenstein, M., Friesem, A.A., Aflalo, C. and Vakser, I.A., Proc. Natl. Acad. Sci. USA, 89 (1992) 2195.

    Google Scholar 

  29. Mattos, C., Rasmussen, B., Ding, X., Petsko, G.A. and Ringe, D., Nat. Struct. Biol., 1 (1994) 55.

    Google Scholar 

  30. Jones, G., Willett, P., Glen, R.C. and Taylor, R., J. Mol. Biol., 267 (1997) 727.

    Google Scholar 

  31. Allen, F.H., Bellard, S., Brice, M.D., Cartwright, B.A., Doubleday, A., Higgs, H., Hummelink-Peters, T., Kennard, O., Motherwell, W.D.S., Rodgers, J.R. and Watson, D.G., Acta Crystallogr., B35 (1979) 2331.

    Google Scholar 

  32. Bracewell, R.N., The Fourier Transform and its Applications, 2nd ed., Electrical and Electronic Engineering Series, McGraw-Hill, New York, NY, 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemmen, C., Hiller, C. & Lengauer, T. RigFit: A new approach to superimposing ligand molecules. J Comput Aided Mol Des 12, 491–502 (1998). https://doi.org/10.1023/A:1008027706830

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008027706830

Navigation