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Summary

We report the application of a recently developed alignment-free 3D QSAR method [Crippen, G.M.,
J. Comput. Chem., 16 (1995) 486] to a benchmark-type problem. The test system involves the binding
of 31 steroid compounds to two kinds of human carrier protein. The method used not only allows for
arbitrary binding modes, but also avoids the problems of traditional least-squares techniques with regard
to the implicit neglect of informative outlying data points. It is seen that models of considerable predic-
tive power can be obtained even with a very vague binding site description. Underlining a systematic,
but usually ignored, problem of the QSAR approach, there is not one unique type of model but, rather,
an entire manifold of distinctly different models that are all compatible with the experimental informa-
tion. For a given model, there is also a considerable variation in the found binding modes, illustrating
the problems that are inherent in the need for ‘correct’ molecular alignment in conventional 3D QSAR

methods.

Introduction

The binding of steroid molecules to corticosteroid-
and testosterone-binding human globulin has long been
recognized as a challenging test case for the evaluation of
new methods related to the identification of quantitative
structure—activity relationships (QSARs) [1]. Thus the
system has also repeatedly been studied with three-dimen-
sional (3D) QSAR techniques [2], i.e., methods that
include an explicit representation of the 3D ligand struc-
ture. There have been reports using not only the very
popular technique of Comparative Molecular Field Ana-
lysis (CoMFA) [3-6], but also the recent and rather elab-
orate method ‘Compass’ [7], a similarity matrix method
[6], and another CoMFA-type approach [8,9]. Apart from
the benchmarking aspect, the steroid—protein system also
continues to be of considerable fundamental interest, as
there is still no direct structural information on the li-
gand-binding domains of the corresponding receptors [10].

In this paper, we report on a study of the human ste-
roid—protein system with the recently proposed EGSITE
(Energy and Geometry of SITE models) technique.
EGSITE differs from other 3D QSAR methods in a num-
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ber of crucial points. Although it is the eventual outcome
of an evolution of techniques that has been labeled the
‘Voronoi’ approach to binding site modeling [11-13],
EGSITE is probably most easily understood independent
from its precursors. Its conceptual basis is in the math-
ematical field of interval analysis, and the relevant for-
malism has been presented in some detail in the original
publication of the method [14]. In the following, we will
summarize the essential characteristics of the new method;
an in-depth description of the computational algorithm
can be found in the original paper.

First, EGSITE leads to binding site models that are
objective in the sense that they require no input from the
user as to which conformations of the training set mol-
ecules are important, nor how the active molecules are to
be superimposed at the binding site. This goes beyond
even the automatic superposition algorithms employed by
the most advanced 3D QSAR methods [7,15,16], which
are so critical to their results. In most methods, one be-
gins by determining some kind of molecular superposi-
tion, explicitly or implicitly, either by subjective input
from the user or by some fixed algorithm. Then the activ-
ities of the compounds are correlated with molecular
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properties, some of which depend on this fixed alignment.
In EGSITE, all sorts of different conformations and
superpositions are considered throughout the calculation,
resulting in a final ‘optimal alignment’ for each molecule,
which has the property that no other choice of conforma-
tion and positioning in the site model produces a more
favorable interaction with the site. The initially fixed
alignments in other methods do not necessarily share this
property. We believe EGSITE derives considerable power
from including the positive information that the optimal
alignments explain the observed activities, plus the nega-
tive information that other alignments do not. The more
recent versions of Compass [17] agree with our approach
in that the initial alignment (choice of poses, in their
terminology) is subject to (a starting point dependent)
revision so as to achieve a better fit to the given binding
affinities, but they retain the traditional emphasis of
superposition of molecules on each other, rather than
their positioning relative to the site model. This is still
qualitatively different from EGSITE’s requirement that
the final calculated positioning of each molecule in the
site model is energetically optimal and also fits the data.

A second and most important characteristic of EGSITE
is that it does not involve some kind of least-squares fit-
ting. The method rather associates an error interval with
each and every data point, and EGSITE then attempts to
find a set of simultaneous binding modes for all molecules
within the given error bars. A single disallowed binding
mode is sufficient to invalidate a tentative site model, in
stark contrast to conventional fitting procedures. This
approach is taken in recognition of the fact that it is typi-
cally the outlying binding constants that add the most
useful information to a given training set. In methods
that use least-squares fitting, the outliers are easily swept
aside by the abundance of more regular data points,
naturally an effect that only gets exacerbated by any
redundancy in the data set. By design, EGSITE is not
prone to this perpetual problem of traditional fitting
methods.

Finally, EGSITE leads to binding site models of delib-
erate minimum complexity. The description chosen is in
terms of a number of convex ‘regions’, such that every
atom of a given molecule in a given binding mode falls
into one of the regions. Requiring each region to be geo-
metrically convex simplifies the description of the struc-
ture of the site and reduces the combinatorial complexity
without significantly constraining the flexibility of the
method, especially for such simple site models as in this
study. For example, the structural formula of naphthalene
consists of two (convex) hexagons sharing a common
side, yet the combined figure is not convex. The total
number of regions is held as small as possible; for exam-
ple, only two regions — one genuine binding site region
and one solvent region — are sometimes sufficient in the
steroid—protein system studied in this paper. The only

properties of a region are its convexity, a lower and an
upper bound for its diameter, and lower and upper
bounds for the distances relative to the other regions.
(Chirality relationships also enter if there are at least four
binding site regions, see Ref. 11.) The construction of a
site model consists of making the diameter and distance
bounds just as precise as necessary to explain the experi-
mental binding data. More detail (in the form of addi-
tional regions and/or more precise diameter and distance
bounds) only emerges as new molecules are added to the
training set, or if the binding data are provided with
smaller error bars. This minimalist approach avoids the
all too common pitfall of QSAR models with numerous
adjustable parameters: the models serve to reproduce the
data from the training set exceedingly well, but at the cost
of diminishing predictive power.

While the previous features of EGSITE clearly depart
from those of other 3D QSAR methods, the physico-
chemical description of the molecules is rather conven-
tional, with atom-specific parameters that may include
hydrophobicity, molar refractivity, partial charge, or any
other suitable atomic descriptor. A deduced binding site
model associates a corresponding set of physicochemical
parameters with each of the regions, thus completing the
binding site description. By multiplying the physicochem-
ical property of a given atom with the corresponding
value for the region that the latter lies in, and by then
taking the proper sums over all atoms and over all phys-
icochemical properties, the total binding energy of a given
molecule is obtained. An important detail is that in the
abstract space of physicochemical parameters a given
binding site model is generally not just a point but a
polyhedron of finite extent, with its bounds given by a
number of nonredundant linear inequalities (see the orig-
inal publication [14]; also note that this polyhedron in the
space of physicochemical parameters should not be con-
fused with the distance intervals that describe a binding
site model in geometrical space). The result is that in the
prediction mode of EGSITE, it is energy intervals, rather
than unique numbers, that are associated with the binding
modes of a given molecule to a given site model.

Most of the actual computational effort in EGSITE is
spent on checking for the energetic feasibility of binding
modes by solving linear inequalities in the space of phys-
icochemical parameters, carried out again and again while
exploring a geometric search tree of binding site models.
Having the scaling properties of a combinatorial problem,
the total effort grows rapidly with the number of spatial
locations per molecule that has to be handled. The num-
ber of atoms in typical compounds of medicinal interest
may be as large as a hundred, making an exhaustive
testing of all possible atom-onto-region mappings infeas-
ible. One way to address this computational bottleneck is
the use of a united-atom representation of the molecules.
With current computational resources, up to about 10



‘superatoms’ per molecule can be handled quite easily,
and this is also the approach taken here.

A preliminary application of EGSITE to the binding
of cocaine analogues to its nerve membrane receptor was
presented in the first publication [14]. In the present pa-
per, the emphasis is on an application and assessment of
the new method to a benchmark test case. It will be seen
that the predictive power of EGSITE is comparable to
that of other well-recognized QSAR methods. Contrary
to the other methods, however, this performance level is
achieved with a unique, unbiased approach that does not
rely on a preconceived or predetermined single binding
mode for each molecule in the training set. Perhaps the
most important aspect of the ‘objective’ approach taken
here is then that it leads to a vivid illustration of some
fundamental shortcomings of QSAR methods. We will see
that there can be far more than one model that fits the
given data, a simple fact that is hardly ever appreciated.
Furthermore, we will see that the so-called alignment
problem is in fact as serious as it has sometimes been
suggested.

In the next section, we first give some technical details
of the calculations, including a few developments and
improvements of EGSITE since the original publication.
We then present in the following two sections the results
of applying EGSITE to two systems, involving the bind-
ing of 31 steroid test molecules to corticosteroid-binding
globulin and testosterone-binding globulin. In both cases,
we compare with findings from other QSAR studies of
the same systems. In the final section, we present the
conclusions.

Methods

We studied the same diverse set of 31 steroids as in the
classic paper of Cramer et al. [3] and the more recent
papers of Kellogg et al. [4], Good et al. [6], and Jain et al.
[7]. The molecular structures shown in Fig. 1 were taken
from Ref. 7 (note that there are a number of errors in the
structures shown in Refs. 3 and 6). For simplicity, we use
exactly the same compound labels as in the papers of
Good et al. [6] and Jain et al. [7]. The experimental binding
affinities, G,,,, that we seek to fit and predict are —log K
for the dissociation constants from both human corti-
costeroid-binding globulin (CBG) [18] and testosterone-
binding globulin (TBG) [19], which are exactly the same
data used in Ref. 7. We will refer to these values as G,
as shown in Table 1. The assumed experimental errors
and deviations between observed and calculated values
always have units on this logarithmic scale.

The energies of molecular conformations were calcu-
lated with the modeling package Cerius2 [20] using the
MM2 force field option [21] and with missing parameters
obtained from an MM2(91) force field file [22] and from
the literature [23]. For each steroid, an intermediate set of
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conformations representative for the total conformational
space was chosen with the following iterative procedure.
After building and energetically minimizing a given mol-
ecule, first the distance geometry program DGEOM [24]
was used to generate a set of 100 structures. These 100
structures were then all energetically minimized with
Cerius2, and duplicate structures were removed with the
program ‘Padre’ [25]. Then the next iteration was initiated
by using the original molecule and DGEOM to generate
an additional set of 100 structures, etc.; the entire cycle
was repeated until two consecutive iterations did not
produce any additional nonduplicate structures.

For each steroid, a final small set of at most three
conformations was chosen by only retaining all those
conformations from each intermediate set whose energy
lay within 2.5 kcal/mol of that of the most favorable one.
In 18 out of the 31 cases, this set already comprised no
more than either one, two, or three conformations. In the
13 remaining cases (the extreme being steroid 23 with a
total of 21 conformations in the intermediate set), a final
triple of conformations was selected by calculating the
root-mean-square difference between all possible pairs of
distance matrices and then finding the particular triple
with the largest sum of these differences. The conforma-
tional coverage produced by such a set is surprisingly
good [26], but it would be interesting to explore the effect
of including more conformations, particularly for 23. In
the final count, 10 steroids are described by just one
conformation (steroids 2, 3, 5, 9, 12, 15, 16, 19, 25, and
29), six steroids by two conformations (4, 6, 13, 14, 21,
and 26), and the remaining 15 steroids by three confor-
mations.

In the program EGSITE, a few changes and improve-
ments to the algorithm have been made since the original
publication [14]. The first site model region is now explic-
itly declared to be the solvent region, with physicochem-
ical parameters that are zero and hence an interaction
energy with the ligand that always vanishes, since binding
affinity of a molecule to the receptor is measured relative
to the unbound, solvated ligand. Second, the program can
now explicitly address the issue of conformational flexibil-
ity by being able to handle ligands in terms of entire sets
of rigid conformations, such as described in the previous
paragraph. Each conformation in the final set is treated
equally, rather than adding the relative conformational
energy to the calculated binding affinity, or choosing
them with Boltzmann weighted probability.

For the sake of completeness, we will also mention
another modification which is a conceptually rather subtle
one. The training set determines a set of clustered inter-
superatom distances which are used to describe the site
geometry [14], so that the sizes and relative positions of
the site’s regions depend to some extent on the set of
molecules under consideration. When the same site was
subsequently used for prediction purposes, the test set of
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Fig. 1. Superatom grouping of the steroid atoms in the majority of runs. The steroid backbone is partitioned as indicated by the italicized letters
a—j, always giving rise to at least five superatoms. Additional superatoms arise if there are oxygen- or halogen-containing substituents in one or
several of the eight indicated positions (methyl substituents are included in the corresponding fused ring superatoms, rather than being counted
separately).



Fig. 1. (continued).

molecules altered the site geometry. Now the training set
distances are always carried with the site, regardless of
the test set.

The program EGSITE was run with hydrophobicity
data, molar refractivity data, and Gasteiger partial
charges [27] as provided by the molecular modeling pro-
gram ‘Galaxy’ [28]. By using a special Fortran code
linked to the Galaxy package, the declaration of super-
atoms — and all other input file preparation for EGSITE
— could be carried out with the molecular display of a
graphical user interface. For most runs, the atoms of the
steroids were grouped into 7 to 10 superatoms. Five of
the superatoms, a—e, corresponded to a uniform parti-
tioning of the steroid backbone as shown in Fig. 1. The
remaining two to five superatoms, f—j, represented the
substituents added on to the backbone, as also shown in
the figure. In each case, the position of the superatom
was defined as the centroid (average of the Cartesian
coordinates) of the contributing atomic positions. The
physicochemical parameter of a superatom is simply the
sum of the corresponding atomic values.

An important aspect of setting up an EGSITE run is
the specification of the error bars for the binding affin-
ities of the ligands. If the error bars are large, EGSITE
quickly finds a satisfactory site model involving very few
regions. As the error bars are decreased, more and more
regions are required, involving ever-increasing computer
time. Eventually for very small error bars, there may be
no site model that explains the input. This can even occur
when the given binding data are entirely correct, due to
approximations in the model such as imperfect and non-
additive physicochemical parameters. Conceptually, it
would seem most straightforward to work with actual
experimental error values, but the original experimental
papers for this study do not give realistic estimates. Com-
paring the results for the few compounds treated by two

different laboratories leads to an estimate of 0.5 (see the
section on predictions for affinities of other compounds
below).

Hence, it is in practice more expedient to initially run
EGSITE with a rather wide error interval for the binding
affinities, such as G, * 1.5. The error interval can sub-
sequently be reduced if the calculation of a more detailed
site model is desired and computationally feasible. The
specified error intervals for the steroid—protein system in
this study are always given in the following sections in
connection with the results of a given run. Much of this
study is concerned with the effect of error bars on the
number of required regions, rather than the single model
that results from error bars deduced from an error analy-
sis of the experiments.

In the majority of runs, the training set was the first 21
molecules 1-21, and the test set the remaining molecules
22-31. Some site models were constructed with all 31
molecules 1-31 included in the training set. The construc-
tion of a two- or three-region site model, for a training
set of 21 molecules and with 7 to 10 superatoms and up
to three conformations per molecule, will typically take
some 5-10 h on a 150 MHz Silicon Graphics workstation.
A corresponding prediction run for the remaining 10
molecules adds to this a few more hours.

Binding site models for corticosteroid-binding globu-
lin

The steroid—protein system most extensively bench-
marked before [3,4,6,7] is for a set of 21 training mol-
ecules and an additional set of 10 test molecules binding
to corticosteroid-binding globulin (CBG). Subsequently,
we will describe the CBG binding site models that are
found with EGSITE, compare their predictive power with
those of the previous methods, and draw some prelimi-
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TABLE 1

EXPERIMENTAL AFFINITIES FOR THE BINDING OF CBG
WITH MOLECULES 1-21 AND PREDICTED BINDING IN-
TERVALS (VIA 21-FOLD HOLD-ONE-OUT CROSS-VALIDA-
TION) FOR MODELS C2.1 AND C3.1

Steroid CBG TBG
Gob< Gpred Gob<
Cc2.1 C3.1*
1 6.279 [6.93,7.10] [7.67,7.73] 5.322
2 5.000 [5.31,5.49] [6.08,6.19] 9.114
3 5.000 [5.23,5.41] [5.65,5.91] 9.176
4 5.763 [6.55,6.68] [5.82,5.85] 7.462
5 5.613 [5.90,5.97] [5.43,5.97] 7.146
6 7.881 [5.26,5.46] [7.12,7.34] 6.342
7 7.881 [7.13,7.30] [7.12,7.25] 6.204
8 6.892 [8.31,8.33] [7.10,7.17] 6.431
9 5.000 [6.04,6.26] [4.64,5.04] 7.819
10 7.653 [6.58,6.67] [6.73,6.74] 7.380
11 7.881 [6.75,6.91] [6.87,6.91] 7.204
12 5.919 [5.97,6.02] [5.16,5.51] 9.740
13 5.000 [4.93,5.13] [5.72,5.77] 8.833
14 5.000 [5.21,5.29] [8.57,8.65] 6.633
15 5.000 [5.52,5.60] [4.46,4.49] 8.176
16 5.225 [5.90,5.97] [5.46,5.90] 6.146
17 5.225 [5.64,5.85] [5.49,5.86] 7.146
18 5.000 [6.50,6.52] [6.35,6.38] 6.362
19 7.380 [6.35,6.40] [6.58,6.67] 6.944
20 7.740 [6.58,6.68] [6.97,7.01] 6.996
21 6.724 [5.99,6.05] [5.92,5.98] 9.204
? [+0.23,40.35]  [+0.20,+0.28]
()* [+0.57,40.71]  [+0.63,+0.79]
(r?)** [+0.33,4+0.49]  [+0.50,+0.61]

The r? values describe the correlation between all 21 data points from

experiment and binding site models. As described in the text, (r*)* and

(r?)** refer to certain subsets of 18 and 17 data points, respectively.

* The three-region cross-validation of molecules 14, 17, and 19 was
carried out with error intervals for G,,, of £0.95, £1.05, and £1.05,
respectively, and for all other molecules with an error interval of
+0.9.

nary conclusions concerning the general significance of
the results. In addition, we will study the sensitivity of
EGSITE results towards three important specifications,
namely the choice of physicochemical parameters, the
choice of united atoms or ‘superatoms’, and the represen-
tation (or neglect) of conformational flexibility.

Two- and three-region binding site models

For a given training set of molecules, EGSITE models
become successively more detailed if the binding affinities
are specified with higher accuracy. Conversely, models
will generally also become more detailed if, at a given
binding constant accuracy, the size of the training set is
increased. We will first illustrate the former by discussing
the site models that are found if the training set consists
of molecules 1-21, with binding constants as given in
Table 1.

If the binding constant accuracy is specified as £1.1,

the site models of minimum complexity consist of two
regions. For two-region models, an exhaustive search of
the solution space of EGSITE is easily carried out, and
we find that in this case there is a total of two such mo-
dels. They are listed in Table 2 as C2.1 and C2.2. The site
description is of course extremely vague, but it is still
useful as will be seen below. The first region is always the
solvent region, which by construction is of infinite extent,
i.e., it has a diameter from the interval [o0,00]. The second
of the two regions is the genuine binding site region. The
diameter of this region is between 13.4 A and o for the
first one of the two models, and between 12.4 and 13.1 A
for the second model. The site and solvent regions may
be at any distance from each other, as the intervals for
the corresponding interregion distance in Table 2 are [0,00]
for both models.

The physicochemical parameters w of the regions m,
together with the corresponding parameters v of the
atoms a in the molecule, lead to the binding energy G
according to

G = Z (Vhp,a.whp,a - m + er,a. er,a ~m Vch,a : Wch,a - m) (1)
alm

where hp refers to hydrophobicity, mr to molar refrac-
tivity, and ch to partial charge. Larger positive values of
G correspond to stronger binding, and the notation a —
m indicates the atom-onto-region mapping of the best
binding mode (EGSITE does an exhaustive scan of all
binding modes and then counts the best one found). The
negative sign in the last term simply accounts for the fact
that it is unlike charges that attract each other. Note that
the significance of the absolute values of the region para-
meters w is not obvious since the binding energy G is
given in some arbitrary logarithmic units and since we do
not try to specify prefactors of the sums in Eq. 1. For
example, while we take in Eq. 1 the atomic partial
charges v, in multiples of the unit charge, we do not
know the unit of the corresponding region parameters
W, The same is true for the region parameters w,, and
w,. Also note that all site interactions are taken relative
to interactions with the solvent. For example, an either
positive or negative molar refractivity parameter w,,
indicates that the site—molecule interaction is either favor-
able or unfavorable, respectively, relative to polarizabil-
ity-induced site—solvent interactions.

It can be seen in Table 2 that the physicochemical
parameters of both two-region models are indistinguish-
able within the accuracy stated. In either case, the genu-
ine binding site region has a negative hydrophobicity
parameter of —0.2, i.e., it is hydrophilic, and interacts
favorably with polarizable parts of the ligands as the
molar refractivity parameter is positive with a value of
+0.07. The charge parameter is +2.4, suggesting favorable
interactions with negative partial charges of the ligands.



The optimal binding modes of the 21 training mol-
ecules (not shown) are also the same for both two-region
models. The fused ring system in the middle of the mol-
ecule always binds to the site, and only superatoms at-
tached to either one or both ‘ends’ of the molecule are
exposed to the solvent. Thus, in 14 of the 21 cases hy-
droxy- or oxo-groups from both ends of the molecule
remain unbound, while in the remaining seven cases this
is only true for the group labelled f. Note that although
the energetic parameters and the binding modes of the
training molecules are the same for both two-region mo-
dels, the geometric parameters are nevertheless somewhat
different, and hence the predictions of the two models for
the binding affinities of other compounds may still differ
(see below).

If the error interval of the binding affinities on input
drops below 1.1, the number of regions even in the least
complex site models increases from two to three. In Table
2, we list the first three of the three-region models that are
found with an error interval of £0.9, namely models C3.1,
C3.2, and C3.3. We actually identified five such models.
We do not list the fourth and fifth models in Table 2,
however, because they seem to be rather similar to C3.2
and C3.3. It is well possible that there are even more
three-region models, but an exhaustive search of the sol-
ution space for models of this complexity can be compu-
tationally demanding, and was not attempted in this case.

Models C3.1 and C3.2 in Table 2 are very different
from each other, and this now extends not only to the
geometric but also to the energetic parameters. Thus, for

TABLE 2
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the first model both site regions are hydrophilic, while
they are both hydrophobic for the second model. The sign
also differs for the molar refractivity parameter of one of
the regions. For both models, there is one positively and
one negatively charged region, but the magnitudes of the
charge parameters again differ significantly. Although
C3.2 in Table 2 is very different from C3.1, C3.3 qualitat-
ively resembles C3.2. As mentioned above, the fourth and
fiftth models (not listed) also seem to be of the same type.

In reflection of the vastly different properties of C3.1
and C3.2, the optimum binding modes also differ con-
siderably. These are shown in Figs. 2 and 3. Sometimes
the entire molecule binds to the site, and sometimes only
a very few superatoms. Most striking is the fact, however,
that not a single molecule shows the same binding pattern
for the two models. Furthermore, even within a given
model there is a large variation in the apparent orienta-
tion of the molecule relative to the binding site. There is
clearly no trivial alignment rule for either model. As can
be anticipated on the basis of the similarities in the site
properties mentioned above, the optimum binding modes
of the third to fifth three-region model (not shown) re-
semble those of the second model. For example, 18 out of
21 binding modes for the third model are the same as for
the second model, only molecules 1 and 12 bind with an
opposite orientation, and molecule 3 binds in its entirety
to one of the genuine site regions.

Increasing the size of the training set by 10 molecules
so as to encompass molecules 1-31 also leads to increased
model complexity. With an error interval for the binding

GEOMETRIC AND ENERGETIC PROPERTIES OF TWO- AND THREE-REGION* SITE MODELS FOR THE BINDING OF CBG

WITH MOLECULES 1-21

Site model Region geometry (A) Region energetics
Hydrophobicity Molar refractivity Charge

21 [o.00 [0.] 0 0 0
[13.4,00] -0.2 0.07 24

2.2 [o0.00] [0.] 0 0 0
[12.4,13.1] -0.2 0.07 2.4

C3.1 [00,00] [0,00] [0,00] 0 0 0
[4.0,00] [0,00] 0.2 0.19 5.3

[11.0,00] -0.1 0.07 -5.4

C3.2 [c0,00] [0,00] [1.6,00] 0 0 0
[11.2,00] [0,00] 3.3 -0.41 21.2

[13.1,00] 0.1 0.06 -9.6

C33 [00,00] [0,00] [1.6,00] 0 0 0
[11.2,00] [0,00] 42 -0.50 23.7
0.1 0.06 -10.4

[12.6,12.9]

Interregion distance intervals are shown as upper triangular matrices, and the physicochemical parameters associated with each region’s row are

given at the right.

* Two other models were also found that are of the same qualitative type as C3.2 and C3.3; it is possible that there are more three-region models,

even of a completely new type.
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Fig. 2. Optimum binding modes of the 21 steroids in the training set and the 10 steroids in the test set to site model C3.1. Atoms binding in regions
1 =solvent, 2, and 3 are indicated, corresponding to region ordering in Table 2.
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affinities of +1.1, the site model must become a three-
region model, rather than a two-region model as seen
with the previous training set of 21 molecules. The first
model found is somewhat similar to C3.1, with site hy-
drophobicity parameters of —0.4 and —0.5, molar refrac-
tivity parameters of +0.19 and +0.09, and charge parame-
ters of +4.6 and —2.0. The binding modes are similar too,
except that there are now more molecules (10 out of 31,
as opposed to previously 2 out of 21) where all super-
atoms bind to the two site regions. Naturally, one expects
that a more complete search with this new training set
would again lead to the identification of additional site
models.

Internal validation of binding site models

In the previous studies of the same system [3,6,7],
‘hold-one-out’ cross-validation was used to evaluate the
found structure—activity relationships. However, this kind
of analysis cannot uncritically be applied to the kind of
binding site models found here. As EGSITE does not do
any ‘fitting’ of the data points, its conceptual basis is
fundamentally different from that of the more traditional
methods, regardless of the fitting technique used by the
latter, be it partial least squares [3] or a nonlinear, neural-
network-based algorithm [6,7,15]. In the traditional
methods, outlying points that are of crucial importance
for the construction of the site model just contribute with
some small weight to the total result, with the weight
basically depending on the number of data points in-
volved. Thus, the omission of any one point will have
slight, but not necessarily dramatic, consequences. In
EGSITE, however, the significance of crucial outlying
points is fully retained in the construction of the site
model; hence, even if any one of those points is left out,
the binding site model is expected to change greatly. The
net effect is that cross-validation should lead to seemingly

bad results for a few outlying data points. Conversely, the
failure of cross-validation for a particular molecule actu-
ally provides a very interesting piece of information,
namely it indicates the crucial importance of this molecule
for the construction of the site model.

Thus, while there are no formal problems with the
calculation of cross-validated r* values [29] also in our
case, the results have to be interpreted very carefully.
Specifically, we expect a strong increase in the calculated
r? value if some molecules are removed from the analysis,
namely those that are effectively outliers. Note that this
has nothing to do with the removal of ‘bad’ points, i.e.,
points that are obviously beyond the reach of the model,
that is often carried out while calculating correlation
coefficients [3,6,7]. In our case, outlying points in the
cross-validation analysis arise because of the crucial im-
portance of the corresponding molecules for the model
construction, and not necessarily because of inadequacies
of the method. If there are any inadequacies of the
method as such, the corresponding consequences will
show up superimposed on the effect just described.

These expectations are borne out by the data. For
models C2.1 and C3.1, the predicted binding intervals via
cross-validation are given in Table 1, and in the case of
C3.1 also in Fig. 4. Correlation of the predicted and
experimental affinities, under inclusion of all 21 data
points, leads to 1* values of +0.23 to +0.35 for C2.1 and
+0.20 to +0.28 for C3.1, depending on which points with-
in the predicted intervals are chosen. As expected, this
performance is worse than that reported for the similar-
ity matrix (0.53), CoMFA (0.69), and Compass (0.89)
methods [3,6,7]. However, on removing the three seem-
ingly worst data points (molecules 6, 8, and 18 for the
two-region model, and 1, 14, and 18 for the three-region
model), the correlation coefficient rises quickly, with new
cross-validated (1?)* values of +0.57 to +0.71 and +0.63 to
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Fig. 3. The same as in Fig. 2, except for site model C3.2.
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+0.79, respectively. Since we are all so used to dealing
with data fitting methods analogous to least squares, this
looks like some kind of trick to make EGSITE look
good. In fact, as explained above, this is really telling us
that these extremely simple site models depend critically
on a small subset of the training set, but only slightly on
the rest. Given this critical subset upon which the unusual
fitting methodology of EGSITE is so dependent, it pro-
duces models having 5 to 10 adjustable parameters that
give cross-validation scores as good as those for methods
involving thousands of adjustable parameters.

Alternatively, on examining the properties of the
models generated by the cross-validation procedure we
can eliminate those which do not seem to map onto the
original site model for the complete 21-molecule training
set. Such a lack of mapping may be due to two reasons.
First, the site model may genuinely change because of the
omission of a very crucial data point, as explained above.
In addition, there is the problem that the predicted affin-
ities for the ‘hold-one-out’ models in Table 1 are always
those for the first site model found. The algorithm with
which EGSITE explores the geometric search tree of site
models [14] is, although arbitrary, well defined, making it
likely that a given first model will ‘map’ onto another
first model that is found with a very similar training set
of mostly the same molecules in the same order. How-
ever, there is no rigorous requirement for such a map-
ping, and any violations introduce additional noise into
the data presented in Table 2, noise that is related to the
true multiplicity of site models. In any case, upon examin-
ation of the physicochemical region parameters, one finds
the largest deviations for molecules 8, 9, 18, and 20 for
the two-region models, and for molecules 2, 14, 17, and
19 for the three-region models. After removal of the cor-
responding data points, the cross-validated (1?)** values
are +0.33 to +0.49 and +0.50 to +0.61, respectively.

Thus, we find that the cross-validation analysis of the
CBG-steroid system indicates a respectable performance
of EGSITE, comparable to that of any of the other
methods. As a by-product of the analysis, we have also
learned something regarding the identity of the molecules
that are of crucial relevance for the construction of the
binding site model. Traditional fitting methods do not
provide equivalent information in an equally direct way.

Predictions for affinities of other compounds

To assess the predictive power of our very simple 21-
molecule binding site models, we also calculated binding
affinities for molecules 22-31, as shown in Table 3 and
Fig. 5. It should be kept in mind that there is a consider-
able uncertainty associated with the experimental refer-
ence values. Because of the scarcity of independent
studies from different laboratories, we will not try to
quantify the uncertainty. Based on the little evidence that
is available [18,19], we estimate that for some compounds
the experimental error bar may be as large as +0.5.

For the two-region models, most of the prediction
ranges are within 0.7 log units of the experimental value.
The only clear failure of model C2.1 (Fig. 5a) is the pre-
diction of the fluoride-containing molecule 31 that has
also consistently been mispredicted by the other methods
[3,6,7]. The failures of C2.2 are the predictions of mol-
ecules 23 and 25. Particularly noteworthy is the fact that
while the difference of almost 2 orders of magnitude in
the affinities of the very similar molecules 30 and 31 is
not reproduced by C2.1, it is reproduced by C2.2, in
contrast to all the methods in the literature [3,6,7]. Since
the physicochemical parameters of both two-region models
are virtually the same (see Table 2), this must have to do
with steric requirements related to the finite region diam-
eter of the second model. Of course, the effect may be
fortuitous and we caution against overinterpreting the
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result. Its main significance is in illustrating what can be
accomplished even with a primitive two-region model.

The performance of the three-region models is also
good, with the qualification that the pronounced differ-
ence between the affinities of compounds 30 and 31 is not
correctly reproduced by any of the models. Also mol-
ecules 27 and 28 are significantly mispredicted by model
C3.1 (Fig. 5b), and molecule 27 is somewhat mispredicted
by C3.2 (Fig. 5¢) and C3.3. Interestingly enough, C3.2
and C3.3 lead to very similar predictions even though
their properties differ more than those of the two two-
region models. Apparently, the similarity or dissimilarity
of site models does not always indicate in a straightfor-
ward way whether predictions are going to resemble each
other or not.

As already emphasized by Jain et al. [7], one would
also like to evaluate the overall quality of the predictions
with a measure that directly relates to the usefulness of a
QSAR method in drug design where the central problem
is in deciding on which compound to study next. A non-
parametric correlation coefficient that quantifies the rank
correlation of experimental and calculated values [30] is
an adequate tool for this purpose, and we follow the
example of Jain et al. [7] and calculate Kendall’s T
measure. The interpretation of Kendall’s T is particularly
straightforward since it has a value of +1 for perfect
correlation between the rankings of experimental and
calculated values, and a value of —1 for complete anti-
correlation [30]. Usually T is calculated for two lists of
numbers, G, versus G4, but in our case the latter are
intervals. If we think of the G, for each molecule as
three possible numbers (the lower bound of the interval,
the upper bound, and the midpoint), then for the 10

molecules in the test set, the 10 G,,, are compared with
all 3'°=159 049 lists of different possible combinations of
G,q values, resulting in a range of T’s. Therefore we
report T intervals corresponding to the minimum and
maximum of the 59 049 T values.

Using the predicted affinity intervals from Table 3, we
find 1 =[+0.24,40.42] for C2.1 and T =[+0.07,+0.38] for
C2.2. For the three-region models, the ranges are [+0.02,
+0.24] for C3.1, [-0.11,+0.38] for C3.2, and [-0.16,+0.69]
for C3.3. All these figures are well within the range of
performance of the CoMFA (+0.28) and Compass (+0.46)
methods [3,7], illustrating the practical value of EGSITE
for drug design purposes.

General significance of prediction results

The evident value of EGSITE as a predictive tool is
naturally most welcome. However, there are two other
conclusions concerning the nature of QSAR methods in
general, whose significance cannot be overemphasized.
First, we recall that the number of adjustable parameters
in our models is almost negligible compared to that used
by any of the other methods, be it CoOMFA, Compass, or
the similarity matrix method. The extreme case is pro-
vided by the two-region models which may be somewhat
inferior to the three-region models, but are still valuable,
and if nothing else they vividly illustrate what could lit-
erally be called the austerity of the method. The two-
region models contain no more than six parameters (the
three physicochemical parameters of the site region, the
lower and upper bounds of the site diameter, and the
lower bound of the site-solvent distance) whose values
are determined by the algorithm (the few remaining para-
meters are fixed at values of either 0 or o). This has to be

G pred

G obs

Fig. 4. Measured CBG binding affinities for molecules 1-21 versus binding intervals (vertical bars) as predicted by model C3.1 via 21-fold cross-

validation.
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EXPERIMENTAL AFFINITIES FOR THE BINDING OF CBG WITH MOLECULES 22-31 AND PREDICTED BINDING INTER-
VALS FROM VARIOUS TWO- AND THREE-REGION BINDING SITE MODELS (SEE TABLE 2) THAT WERE OBTAINED WITH

MOLECULES 1-21 AS THE TRAINING SET

Steroid Gps Gorea
C2.1 C2.2 C3.1 C3.2 C33

22 7.512 [7.21,7.37] [7.20,7.39] [7.34,7.41] [7.09,7.44] [7.05,7.63]
23 7.553 [7.71,7.87] [5.79,6.16] [7.23,7.31] [7.57,7.87] [7.59,7.89]
24 6.779 [7.26,7.45] [7.26,7.45] [6.95,7.03] [6.83,7.02] [6.80,7.00]
25 7.200 [7.00,7.09] [5.26,5.46] [7.09,7.16] [7.00,7.21] [6.99,7.20]
26 6.114 [5.75,5.81] [5.75,5.80] [6.65,6.71] [6.46,6.56] [6.46,6.59]
27 6.247 [6.93,7.00] [6.93,7.01] [7.37,7.45] [7.05,7.48] [7.08,7.95]
28 7.120 [6.53,6.61] [6.54,6.61] [5.23,5.63] [7.17,7.47] [7.14,7.43]
29 6.817 [6.09,6.14] [6.09,6.14] [6.52,6.58] [6.57,6.86] [6.55,6.88]
30 7.688 [7.41,7.51] [7.37,7.52] [6.25,6.68] [6.65,7.06] [6.66,7.21]
31 5.797 [7.39,7.48] [5.71,5.87] [6.23,6.62] [7.57,8.13] [7.07,8.11]
T [0.29,0.42] [0.07,0.38] [0.02,0.24] [-0.11,0.38] [-0.16,0.69]

compared with the several parameter values that are
associated with each of the hundreds (Compass, similarity
method) or even thousands (CoMFA) of grid points or
matrix elements that are present in the traditional fitting
algorithms. We are led to conclude that the detailed site
models generated by the other methods may be vastly
overdetermined, in ways that their statistical tools, such
as partial least squares, are unable to counteract. For
example, partial least squares in a CoMFA analysis can
select a very low dimensional, statistically significant sub-
space out of the whole parameter space, but even this
outlines a rather detailed spatial picture of regions and
substituents that appears to determine binding affinity.
Second, we have found that the first and second of the
three-region models for the CBG system are very different
and still have comparable predictive power. We have no
reason to doubt that this is a typical result: for a training
set of just one or two dozen compounds, there are a
multitude of site models that are all ‘true’ in the sense that
none of them can be eliminated without access to addi-
tional information. This is an aspect that all too easily
gets lost in the presentation and application of the sophis-
ticated traditional methods where, for whatever reasons,
there is only one outcome of the algorithm, and accord-
ingly only one binding site model. The conceptual or
algorithmic limitations of a given method should not be
confused with the suggestion that there is only one model
that is compatible with the experimental information.

Dependence on the choice of physicochemical parameters

The identification of the actually relevant physicochem-
ical parameters is a crucial step in the formulation of any
QSAR model. For example, the importance of the steric,
electrostatic, and other fields in CoMFA has been studied
in several steroid—protein systems [4—6], and systematic
studies along these lines have also been carried out for
the Compass and similarity matrix methods [6,7].

In our approach, each binding site model is associated
with a polyhedron in the space of physicochemical para-
meters, as mentioned above and described elsewhere [14].
If there are any redundant parameters, this polyhedron
will have a large diameter in some directions. Even if
there are no redundant parameters, the issue of possible
weighting factors in Eq. 1 still arises. The latter unfortu-
nately requires deciding on the factors that convert from
physicochemical parameters to absolute energies, and this
intricate problem will not be addressed here. The more
basic redundancy problem, however, can easily be studied
by calculating binding site models under systematic omis-
sion of one or several of the physicochemical parameters.

While we generally find that all three parameters —
molar refractivity, Gasteiger partial charge [27], and hy-
drophobicity — are relevant, omission of the molar refrac-
tivity parameter clearly has the most pronounced effect.
If we search for a CBG site model with only the partial
charge and hydrophobicity parameters (as before with
molecules 1-21 as the training set; the error interval for
the binding affinities is +1.5), a rather strange two-region
site model with a hydrophobicity parameter of —5.6 and
a charge parameter of —18.4 is found. Only a single super-
atom of each training molecule binds to the site region.
The model is practically useless for the prediction of the
affinities of molecules 22-31.

In CoMFA studies of the CBG system, hydrophobic
interactions were found to be unimportant and leaving
out the electrostatics was actually seen to improve the
performance of the method [4,6]. Our corresponding
observations with EGSITE are not quite that pro-
nounced, but they also do not literally contradict the
older findings. Thus even under removal of either the
partial charge or the hydrophobicity from the original list
of parameters, useful site models can still be identified,
and their predictive power is not noticeably diminished.
In the first case, without the Gasteiger partial charge and
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Fig. 5. Measured CBG binding affinities for molecules 22-31 versus binding intervals (vertical bars) predicted from (a) site model C2.1; (b) site

model C3.1; and (c) site model C3.2.

with a binding affinity uncertainty of £1.25, we find a
plausible three-region site model with hydrophobicity
parameters of +1.6 and —0.8 and molar refractivity para-
meters of +0.06 and +0.10. The binding modes of the
training molecules are rather diverse, and the affinities of
compounds 22-31 are predicted with a Kendall’s T =
[-0.16,+0.42]. Similarly, omission of the hydrophobicity
parameter (with an affinity error interval of £1.25) leads
to a two-region site model with a molar refractivity para-
meter of +0.06 and a charge parameter of +1.9. In this
case, the affinities of molecules 22-31 are at least satisfac-
torily predicted with t=[+0.11,+0.29].

These findings are underlined if we attempt to con-
struct site models employing a single physicochemical
parameter. The molar refractivity is by far the best
choice. With it as the only descriptor and with an affinity
uncertainty of £1.25, a three-region site model with para-
meters of +0.05 and +0.08 and a surprisingly high predic-
tive power can be identified (the affinities of molecules
22-31 are predicted with 1=[+0.29,+0.38]). No compar-
able success is seen when the only parameter is either the
partial charge or the hydrophobicity. With affinity error
intervals of +1.35 and #1.5, respectively, three-region site
models are found with charge parameters of +8.1 and +26
in the first case and hydrophobicity parameters of +4.1
and -1.3 in the second case. The affinities of molecules
22-31 are predicted with T values of only [-0.56,+0.07]
and [-0.02,+0.07], respectively.

It should be pointed out, however, that the affinities of
the most and the least active of the training molecules
1-21 are separated by no more than about 3 log units.
Hence with fairly large affinity error intervals, such as
+1.25 or xl1.5, there is a certain lack of separation into
active and inactive compounds, and site models may exist
that have a more or less constant energy term for all
training molecules. This is more easily accomplished with
simple one-parameter models if the given atomic physico-
chemical parameter always has the same sign (and does

not vary too widely). This is precisely the case for the
molar refractivity parameter, and may partly explain the
observations described above.

In general it should be kept in mind that previous
studies suggest a great variation of the parameter depend-
ence from one steroid—protein system to another. In sys-
tematic COMFA studies, for example, it was seen that use
of a steric field only gives the best results with the CBG
and progesterone receptors [5,6], while use of an electro-
static field only works best with TBG [6] and the andro-
gen receptor [5]. Kellogg et al. [4] find that for the CBG
system basically any combination of fields works well as
long as it includes a steric and/or electrostatic field. Re-
gardless of the validity of these old results, it seems pru-
dent to be wary of generalizations regarding the relevance
of selected physicochemical parameters in steroid—protein
systems.

Dependence on the choice of superatoms

Most of the site models in this paper were calculated
with a grouping of the atoms in molecules 1-31 into
either seven (16 cases), eight (seven cases), nine (seven
cases), or 10 (molecule 31 only) superatoms. Since the
computational requirements of EGSITE grow rapidly
with the number of molecular centers, it is clearly of
interest to determine if a smaller number of superatoms
could possibly suffice. We have therefore also undertaken
runs where all 31 molecules were grouped into either five,
three, two, or just one superatom(s). In the last case, the
molecules, of course, no longer have any internal struc-
ture, and finding a site model effectively corresponds to
a classic Free-Wilson analysis of the CBG system.

A minor complication is the fact that the inclusion of
the atomic partial charge among the physicochemical
parameters becomes increasingly meaningless if the num-
ber of superatoms becomes smaller and smaller, simply
because the net charges of the larger and larger molecular
fragments start to vanish. In practice, it is even worse as



the charges of the extended superatoms of the overall
electroneutral molecules essentially become random num-
bers, because of the arbitrariness of the algorithm by
which they are defined. We therefore left the partial
charge out in all runs with fewer than the original 7 to 10
superatoms.

It is seen that with five superatoms the performance of
EGSITE in the CBG system is somewhat worse than
before, but the results are not yet useless. With an accu-
racy of 1.1 for the affinities of molecules 1-21, already
a three-region site model is obtained, rather than a two-
region model as found with 7 to 10 superatoms. The hy-
drophobicity parameters are —0.2 and 0.0, and the molar
refractivity parameters are +0.01 and +0.12. The affinities
of molecules 22-31 are predicted with T =[-0.02,+0.20],
the main failure being the underpredicted affinity of com-
pound 30.

If only three superatoms are used to describe each of
the molecules, the performance is much worse. With an
affinity uncertainty of *1, again a three-region model is
found, but this model now mispredicts 4 of the 10 affin-
ities in the test set of molecules 22-31, and T for the pre-
dictions is [—0.24,-0.20].

With two superatoms and a binding affinity uncertain-
ty of %1, no binding site model with up to four regions
exists. Similarly, there is no site model with up to five
regions if the now structureless molecules consist of just
one superatom and the affinity uncertainty is again *1.

Dependence on accounting for conformational flexibility
Since steroids with their four fused rings are generally
rather rigid molecules, it is not immediately clear that
conformational flexibility is necessarily a very sensitive
issue for the CBG system studied here. It still has to be
recognized that some molecules have rotatable side

TABLE 4

107

chains, in particular steroid 23. In the sophisticated Com-
pass method, the so-called pose selection is the most
crucial step of the calculation, and it has thus been
claimed that the conformational selection of the molecules
is extremely important [7]. Unfortunately, Compass inter-
twines the two separate issues of binding site alignment
and conformational description. This is not the case in
EGSITE, where the alignment problem does not come up
at all, and where the conformational issue is addressed in
a very direct way by including as many conformations of
a given molecule as desired.

Up to this point, the construction of all site models
was undertaken with up to three conformations per mol-
ecule, and one of the multiple conformations was always
the lowest energy conformation. To examine the actual
importance of the issue of conformational flexibility, we
have also carried out a variety of runs with a sparser
description of the conformational space, namely by either
including only the lowest energy conformation for each
molecule or by essentially picking conformations at ran-
dom.

We find, perhaps not surprisingly, that it becomes
increasingly important to represent some molecules by
multiple conformations as the complexity of the site
model increases. Thus two-region models are less affected
than three-region models. If we only include the lowest
energy conformation for each molecule and work with a
binding affinity uncertainty of 1.1, we can calculate a
two-region model whose geometrical and physicochemical
parameters are almost the same as those for the first
model in Table 1. Kendall’s T for the predictions of mol-
ecules 22-31 even seems improved to [+0.33,+0.42], but
this may be a fortuitous result.

Even for two-region models, the situation gets some-
what worse if we replace the lowest energy conformation

GEOMETRIC AND ENERGETIC PROPERTIES OF SOME SITE MODELS THAT WERE FOUND FOR THE BINDING OF TBG

WITH MOLECULES 1-21

Site model Region geometry (A) Region energetics
Hydrophobicity Molar refractivity Charge
T2.1 [00,00] [0,00] 0 0 0
[7.0,9.4] 0.3 0.16 -2.9
T3.1 [00,00] [0,00] [0,00] 0 0 0
[4.0,00] [0,00] 3.8 0.90 2.5
[9.6,%] -1.4 -0.01 27.0
T3.2 [00,00] [2.7,00] [0,0] 0 0 0
[7.0,00] [0,00] 0.2 -0.01 -20.9
[5.6,00] 0.9 0.23 -17.4
3.3 [e0,00] [4.6.0] [0.c0] 0 0 0
[7.2,00] [0,0] L5 ~0.04 -26.7
[5.6,00] 1.0 0.22 ~18.7
T3.4 [00,00] [4.8,0] [0,00] 0 0 0
[6.2,00] [0,00] =52 -0.47 65.4
[6.6,0] 2.9 0.12 34.0
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TABLE 5
PREDICTED INTERVALS FOR THE BINDING OF TBG WITH MOLECULES 22-31, USING SITE MODELS FROM TABLE 4
Steroid Girea

T2.1 T3.1 T3.2 T3.3 T3.4
22 [7.06,7.22] [6.55,6.94] 6.45,7.53] [5.67,7.40] [7.06,7.11]
23 [5.83,5.86] [5.19,6.41] 6.30,7.54] [5.35,7.55] [6.76,6.81]
24 [8.71,8.79] [7.58,7.84] 4.99,6.93] [4.96,6.96] [10.87,10.96]
25 [5.83,5.86] [6.46,6.80] 6.65,7.82] [5.22,7.83] [6.76,6.81]
26 [8.04,8.09] [8.27,8.74] 8.25,8.43] [8.26,9.05] [9.04,9.16]
27 [8.66,8.71] [7.66,7.86] 8.06,9.96] [8.01,10.01] [6.67,6.72]
28 [8.66,8.71] [7.59,7.83] 5.36,5.72] [5.34,5.73] [10.14,10.22]
29 [6.43,6.46] [7.58,7.84] 7.82,8.33] [7.80,8.43] [8.23,8.28]
30 [7.06,7.22] [6.55,6.94] 6.45,7.54] [5.67,7.40] [4.71,5.86]
31 [6.16,6.53] [6.55,6.94] 6.37,7.42] [5.67,7.30] [5.51,6.43]

The compounds have not been assayed experimentally.

by one conformation picked at random from the inter-
mediate pool of conformations described in the Methods
section. The two-region site model now found (again with
an affinity error of +1.1) still has very similar geometric
and energetic parameters, but there are more mispredic-
tions for the affinities of molecules 22-31. The mispredic-
tions include molecule 23, and T drops to [-0.07,+0.16].
Once we represent each molecule by a set of several ran-
domly picked conformations, the predictive power of the
then found two-region model is again improved.

For three-region models, the predictions are already
dramatically worse if each molecule is given by only its
lowest energy conformation. Under the latter conditions
and with a binding affinity uncertainty of +1, we get a
three-region model that exhibits a huge hydrophobicity
parameter of +95 for one of the regions. The affinity of
compound 31 is mispredicted by 27 orders of magnitude,
and most of the predictions of the other compounds in
the test set are also very unsatisfactory.

Binding site models for testosterone-binding globulin

We have also determined some binding site models for
TBG, using the same training set of 21 steroid molecules
as in the previous section and experimental affinities as
listed in Table 1. Working with affinity error intervals of
+1.7 and %1.5, we found one two-region model and five
three-region models, respectively, listed in Table 4. Just as
in the CBG case, the search of the solution space for the
three-region models was not exhaustive, and thus there
may be additional unidentified site models. (The second
three-region model is not included in Table 4 because it
happens to be essentially the same as the first model, with
only the labels of the two genuine binding sites swapped.
What is shown are the remaining four three-region
models.)

An examination of the energetic region properties in
Table 4 shows that there seems to be even more variety
and fragmentation in the solution space of this system

than in the CBG case. In particular, there is no pair of
three-region models that would obviously be in the same
class. There is, on the other hand, less variation in the
binding modes (not shown) of the individual molecules in
the various site models. For all site models and for almost
all compounds, the middle part of the molecule (super-
atoms a, b, ¢, and d) is exposed to the solvent. It is al-
most always the ends of the molecule (superatom f and
superatom e, along with e’s substituents) that bind to the
genuine site regions.

The TBG binding affinities of molecules 22-31 have
not yet been assayed experimentally. The corresponding
EGSITE predictions in Table 5, calculated with the two-
and three-region models from Table 4, can thus not be
evaluated at this time. Since the aim of this work was
primarily to compare the performance of our method
with other approaches, we have focussed on the better-
studied CBG data. Therefore, cross-validation calcula-
tions for our TBG sites have not yet been performed.
Since the fitting of the TBG data caused no special diffi-
culties, we expect prediction results comparable to what
we found for CBG. For all three-region models, molecule
26 is predicted to bind more strongly than most of the
other test molecules, but there are also cases such as that
of molecule 24 which is at the same time the least active
compound for the third three-region model in the table
and the most active one for the fourth model. This is a
prime example of how drastic the ramifications of the
multiplicity of site models can be.

Conclusions

We have shown for a benchmark test case that binding
site models can be found without any form of subjective
molecular alignment. Superficially speaking, the same can
be said for Compass [7,15] with its automated pose selec-
tion, for example. The distinction is that EGSITE not
only calculates a predicted binding mode for each mol-
ecule, but ensures that this mode has a better calculated



binding strength than any other mode. This optimality
condition puts a great constraint on possible solutions
while retaining this aspect of physical reality in the
model. In contrast, an automated alignment procedure
must somehow make an equivalent choice without know-
ing whether the subsequently derived model really favors
its alignment.

Our approach to data fitting is more reminiscent of
linear programming than of linear regression. Our results
may depend critically on a few of the compounds, rather
than the more uniform weighting seen in other methods.
This has the disadvantage that a single erroneous com-
pound in the training set will lead to incorrect site
models. If, however, all the input data are correct, the
addition of a single new compound can lead to a dra-
matic change in the site models, just as one new observa-
tion sometimes leads to a dramatic shift in one’s thinking.
Stated this way, EGSITE’s behavior seems appropriate,
but it does make it difficult to assess our results with
traditional statistical measures, such as correlation coeffi-
cients and cross-validation.

The choice of physicochemical descriptors, the specifi-
cation of the superatoms, and the representation of the
conformational space remain as issues that need to be
approached with some care. Except for the need to use
superatoms, these problems of course also arise in any
other 3D QSAR method. With the specifications used
here, we obtain a very reasonable performance of the
method, but further optimization should certainly be
possible.

One shortcoming of the current implementation of
EGSITE is the fact that site models have to be identified
one at a time by a systematic exploration of the tree of
solutions. Although the ad hoc search algorithm is rather
sophisticated and puts strong emphasis on the exploration
of ‘promising’ branches of the search tree [14], the gener-
ation of multiple solutions can still be computationally
demanding. Ideally one would want to obtain in a direct
way a representative sample of all the existing binding site
models, rather than having to tediously explore the sol-
ution tree in a systematic manner. This could theoretically
be accomplished if the systematic exploration of the
search tree was replaced by a random walk in solution
space, preferably in a parallel sense along multiple strands
and using a genetic algorithm. An implementation of this
approach is currently being developed (Crippen, G.M.,
work in progress).

The most important lesson of this study is not so much
the quantitative performance of EGSITE versus other
methods on these standard test sets, but rather the fact
that relaxing some implicit assumptions reveals how dras-
tic these assumptions are:

(1) 3D QSAR methods generally focus on finding one
optimal superposition of the molecules. When we instead
consider all different binding modes, we find many differ-
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ent choices for a single site geometry leading to equally
good fits to the training set but sometimes quite different
predictions for test molecules. Having seen this in so
many different cases, we conclude this is a general phe-
nomenon that is of course never observed by methods
that assume there is only one best superposition.

(2) If an algorithm seeks the optimal explanation for
the given binding data, it will never explore alternative
explanations of equal quality. We, instead, find several
distinct site geometries that each explain the observed
binding, up to the given accuracy. It is disturbing that we
cannot choose among these different possibilities without
resorting to more experimental input, but that is better
than the false security of finding exactly one ‘best’ sol-
ution.

(3) We are aware of no other 3D QSAR method that
systematically explores different levels of geometric detail.
For example, a CoMFA analysis at a given grid spacing
carefully reduces the energetic degrees of freedom (and
hence detail) via PLS, but the fixed superposition deter-
mines once and for all the composite molecular envelope
at a rather high resolution. This is equivalent to a regres-
sion fitting of data that reduces one large set of (ener-
getic) variables to a single linear combination while leav-
ing hundreds of (geometric) variables in 10th-order poly-
nomials. Leaving one compound out of the training set
still gives a very complicated geometric picture having
energetic features sufficiently stable that the deleted com-
pound is reasonably predicted. However, even good cross-
validation results in a framework that always has great
geometric detail cannot prove that the detail is essential.
EGSITE demonstrates that all this careful alignment and
resulting protrusions and hollows are largely irrelevant,
since it can fit the same data to comparable accuracy with
the most primitive site shapes.
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