Skip to main content
Log in

Major versus minor groove DNA binding of a bisarginylporphyrin hybrid molecule: A molecular mechanics investigation

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

On the basis of theoretical computations, we have recently synthesised [Perrée-Fauvet, M. and Gresh, N., Tetrahedron Lett., 36 (1995) 4227] a bisarginyl conjugate of a tricationic porphyrin (BAP), designed to target, in the major groove of DNA, the d(GGC GCC)2 sequence which is part of the primary binding site of the HIV-1 retrovirus site [Wain-Hobson, S. et al., Cell, 40 (1985) 9]. In the theoretical model, the chromophore intercalates at the central d(CpG)2 step and each of the arginyl arms targets O6/N7belonging to guanine bases flanking the intercalation site. Recent IR and UV-visible spectroscopic studies have confirmed the essential features of these theoretical predictions [Mohammadi, S. et al., Biochemistry, 37 (1998) 6165]. In the present study, we compare the energies of competing intercalation modes of BAP to several double-stranded oligonucleotides, according to whether one, two or three N- methylpyridinium rings project into the major groove. Correspondingly, three minor groove binding modes were considered, the arginyl arms now targeting N3, O2 sites belonging to the purine or pyrimidine bases flanking the intercalation site. This investigation has shown that: (i) in both the major and minor grooves, the best-bound complexes have the three N-methylpyridinium rings in the groove opposite to that of the phenyl group bearing the arginyl arms; (ii) major groove binding is preferred over minor groove binding by a significant energy (29 kcal/mol); and (iii) the best-bound sequence in the major groove is d(GGC GCC)2 with two successive guanines upstream from the intercalation. On the other hand, due to the flexibility of the arginyl arms, other GC-rich sequences have close binding energies, two of them being less stable than it by less than 8 kcal/mol. These results serve as the basis for the design of derivatives of BAP with enhanced sequence selectivities in the major groove.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steitz, T.A., Q. Rev. Biophys., 23 (1990) 205.

    Google Scholar 

  2. Brennan, R.G., Curr. Opin. Struct. Biol., 2 (1992) 100.

    Google Scholar 

  3. Harrison, S., Nature, 353 (1991) 715.

    Google Scholar 

  4. Seeman, N., Rosenberg, J. and Rich, A., Proc. Natl. Acad. Sci. USA, 73 (1976) 804.

    Google Scholar 

  5. Hélène, C., FEBS Lett., 74 (1977) 10.

    Google Scholar 

  6. Pavletich, N.P. and Pabo, C.O., Science, 252 (1991) 809.

    Google Scholar 

  7. Pavletich, N.P. and Pabo, C.O., Science, 261 (1993) 1701.

    Google Scholar 

  8. Marmorstein, R., Carey, M., Ptashne, M. and Harrison, S.C., Nature, 356 (1992) 408.

    Google Scholar 

  9. Konig, P., Giraldo, R., Chapman, L. and Rhodes, D., Cell, 85 (1996) 125.

    Google Scholar 

  10. Baleja, J.D., Marmorstein, R., Harrison, S.C. and Wagner, G., Nature, 356 (1992) 450.

    Google Scholar 

  11. Desjarlais, J.R. and Berg, J.M., Proteins Struct. Funct. Genet., 12 (1992) 101.

    Google Scholar 

  12. Desjarlais, J.R. and Berg, J.M., Proc. Natl. Acad. Sci. USA, 89 (1992) 7345.

    Google Scholar 

  13. Choo, Y. and Klug, A., Proc. Natl. Acad. Sci. USA, 91 (1994) 11163 and 11168.

    Google Scholar 

  14. Jamieson, A.C., Kim, S.-H. and Wells, J.A., Biochemistry, 33 (1994) 5689.

    Google Scholar 

  15. Lustig, M. and Jernigan, R.L., Nucleic Acids Res., 23 (1995) 4707.

    Google Scholar 

  16. Rebar, E.J. and Pabo, C.O., Science, 263 (1994) 671.

    Google Scholar 

  17. Suzuki, M., Gerstein, M. and Yagi, N., Nucleic Acids Res., 22 (1994) 3397.

    Google Scholar 

  18. Wu, H., Yang, W.R. and Barbas III, C.F., Proc. Natl. Acad. Sci. USA, 92 (1995) 344.

    Google Scholar 

  19. Gresh, N. and Kahn, P.H., J. Biomol. Struct. Dyn., 7 (1990) 1141.

    Google Scholar 

  20. Gresh, N. and Kahn, P.H., J. Biomol. Struct. Dyn., 8 (1991) 827.

    Google Scholar 

  21. Gresh, N., René, B., Hui, X., Barsi, M.-C., Roques, B.P. and Garbay, C., J. Biomol. Struct. Dyn., 12 (1994) 91.

    Google Scholar 

  22. Perrée-Fauvet, M. and Gresh, N., Tetrahedron Lett., 36 (1995) 4227.

    Google Scholar 

  23. Gresh, N., J. Biomol. Struct. Dyn., 14 (1996) 255.

    Google Scholar 

  24. Tsimanis, A., Bichko, V., Dreilina, D., Meldrais, J., Lozha, V., Kukaine, R. and Gren, E., Nucleic Acids Res., 11 (1983) 6079.

    Google Scholar 

  25. Hong, F.D., Huang, H.-J.S., To, H., Young, L.-J.S., Oro, A., Bookstein, R., Lee, E.Y.-H.P. and Lee, W.-H., Proc. Natl. Acad. Sci. USA, 86 (1989) 5502.

    Google Scholar 

  26. Dvorak, M., Urbanek, P., Bartunek, P., Paces, V., Vlach, J., Pecenka, V., Arnold, L., Travnicek, M. and Riman, J., Nucleic Acids Res., 17 (1989) 5651.

    Google Scholar 

  27. Smith, S., Baker, D. and Jardines, L., Biochem. Biophys. Res. Commun., 160 (1989) 1397.

    Google Scholar 

  28. Timsit, Y. and Moras, D., J. Mol. Biol., 251 (1995) 629.

    Google Scholar 

  29. Wain-Hobson, S., Sonigo, P., Danos, O., Cole, S. and Alizon, M., Cell, 40 (1985) 9.

    Google Scholar 

  30. Ratner, L., Haseltine, W., Patarca, R., Livak, K.J., Starcich, B., Josephs, S.F., Doran, E.R., Rafalski, J.A., Whitehorn, E.A., Baumeister, K., Ivanoff, L., Petteway Jr., S.R., Peaerson, M.L., Lautenberger, J.A., Papas, T.S., Ghrayeb, J., Chang, N.T., Gallo, R.C. and Wong-Staal, F., Nature, 313 (1985) 277.

    Google Scholar 

  31. Mohammadi, S., Perrée-Fauvet, M., Gresh, N., Hillairet, K. and Taillandier, E., Biochemistry, 37 (1998) 6165.

    Google Scholar 

  32. Fiel, R.J., Howard, J.C., Mark, E.H. and Datta Gupta, N., Nucleic Acids Res., 6 (1979) 3093.

    Google Scholar 

  33. Pasternack, R.F. and Gibbs, E.J., In Tullius, T. (Ed.) Metal DNA Chemistry, American Chemical Society, Washington, DC, 1989, pp. 59–73.

    Google Scholar 

  34. Pasternack, R.F. and Gibbs, E.J., In Sigel, A. and Sigel, H. (Eds.) Metal Ions in Biological Systems, Vol. 33, Marcel Dekker, New York, NY, 1996, pp. 367–397.

    Google Scholar 

  35. Moser, H.E. and Dervan, P.B., Science, 238 (1987) 645.

    Google Scholar 

  36. Le Doan, T., Perrouault, L., Praseuth, D., Habhoub, N., Decout, J.-L., Thuong, N.T., Lhomme, J. and Hélène, C., Nucleic Acids Res., 15 (1987) 7749.

    Google Scholar 

  37. Hélène, C. and Toulmé, J.J., Biochim. Biophys. Acta, 1049 (1990) 99.

    Google Scholar 

  38. De Mesmaeker, A., Häner, R., Martin, P. and Moser, H.E., Acc. Chem. Res., 28 (1995) 366.

    Google Scholar 

  39. Escudé, C., Nguyen, C.H., Mergny, J.L., Sun, J.S., Bisagni, E., Garestier, T. and Hélène, C., J. Am. Chem. Soc., 117 (1995) 10212.

    Google Scholar 

  40. Hyrup, B. and Nielsen, P.E., Bioorg. Med. Chem., 4 (1996) 5.

    Google Scholar 

  41. Park, C., Campbell, J.L. and Goddard III, W.A., J. Am. Chem. Soc., 117 (1995) 6287.

    Google Scholar 

  42. Cuenoud, B. and Schepartz, A., Science, 259 (1993) 510.

    Google Scholar 

  43. Terbrueggen, R.H. and Barton, J.K., Biochemistry, 34 (1995) 8227.

    Google Scholar 

  44. Arcamone, F., Doxorubicin, Anticancer Antibiotics, Academic Press, New York, NY, 1981.

    Google Scholar 

  45. Lee, S.H. and Goldberg, I.H., Biochemistry, 28 (1989) 1019.

    Google Scholar 

  46. Zein, N., Poncin, M., Nilakantan, R. and Ellestad, G.A., Science, 244 (1989) 697.

    Google Scholar 

  47. Ho, S.N., Boyer, S.H., Schreiber, S.L., Danishefshky, S.J. and Crabtree, G.R., Proc. Natl. Acad. Sci. USA, 91 (1994) 9203.

    Google Scholar 

  48. Zimmer, C. and Wahnert, U., Prog. Biophys. Mol. Biol., 41 (1986) 31.

    Google Scholar 

  49. Mrksich, M., Wade, W.S., Dwyer, T.J., Geierstanger, B.H., Wemmer, D.E. and Dervan, P.B., Proc. Natl. Acad. Sci. USA, 89 (1992) 7586.

    Google Scholar 

  50. Dwyer, T.J., Geierstanger, B.H., Bathini, Y., Lown, J.W. and Wemmer, D.E., J. Am. Chem. Soc., 114 (1992) 5911.

    Google Scholar 

  51. Nikolaev, V.A., Grokhovsky, S.L., Surovaya, A.N. and Gursky, G.V., J. Biomol. Struct. Dyn., 14 (1996) 31.

    Google Scholar 

  52. Bailly, C., Helbecque, N., Hénichart, J.-P., Colson, P., Houssier, C., Rao, K.E., Shea, R.G. and Lown, J.W., J. Mol. Recog., 3 (1990) 26.

    Google Scholar 

  53. Bailly, C. and Hénichart, J.-P., Bioconj. Chem., 2 (1991) 379.

    Google Scholar 

  54. Anneheim-Herbelin, G., Perrée-Fauvet, M., Gaudemer, A., Hélissey, P., Giorgi-Renault, S. and Gresh, N., Tetrahedron Lett., 34 (1993) 7263.

    Google Scholar 

  55. Goulaouic, H., Carteau, S., Subra, F., Mouscadet, J.-F., Auclair, C. and Sun, J.-S., Biochemistry, 33 (1994) 1412.

    Google Scholar 

  56. Bourdouxhe-Housiaux, C., Colson, P., Houssier, C., Waring, M.J. and Bailly, C., Biochemistry, 35 (1996) 4251.

    Google Scholar 

  57. Hélissey, P., Bailly, C., Vishwakarma, J.N., Auclair, C., Waring, M.J. and Giorgi-Renault, S., Anti-Cancer Drug Des., 11 (1996) 527.

    Google Scholar 

  58. Hui, X. and Gresh, N., J. Biomol. Struct. Dyn., 11 (1993) 333.

    Google Scholar 

  59. Perrée-Fauvet, M. and Gresh, N., J. Biomol. Struct. Dyn., 11 (1994) 1203.

    Google Scholar 

  60. Lavery, R., In Wells, R.D. and Harvey, S.C. (Eds.), Unusual DNA Structures, Springer, New York, NY, 1988, pp. 189–206.

    Google Scholar 

  61. Lavery, R., Adv. Comput. Biol., 1 (1994) 69.

    Google Scholar 

  62. Pullman, B. and Pullman, A., Q. Rev. Biophys., 14 (1981) 289.

    Google Scholar 

  63. Flatters, D., Zakrzewska, K. and Lavery, R., J. Comput. Chem., 18 (1997) 1043.

    Google Scholar 

  64. Jones, K.A., Kadonaga, J.T., Luciw, P.A. and Tjian, R., Science, 232 (1986) 755.

    Google Scholar 

  65. Murdock, K.C., Child, R.C., Fabio, P.F., Angier, R.B., Wallace, R.E., Durr, F.E. and Citarella, R.V., J. Med. Chem., 22 (1979) 1024.

    Google Scholar 

  66. Wallace, R.E., Murdock, K.C., Angier, R.B. and Durr, F.E., Cancer Res., 39 (1979) 1570.

    Google Scholar 

  67. Garbay-Jaureguiberry, C., Esnault, C., Delepierre, M., Laugaa, P., Laalami, S., Le Pecq, J.-B. and Roques, B.P., Drugs Exp. Clin. Res., XIII (1987) 353.

    Google Scholar 

  68. Garbay-Jaureguiberry, C., Barsi, M.-C., Jacquemin-Sablon, A., Le Pecq, J.-B. and Roques, B. P., J.Med. Chem., 35 (1992) 72.

    Google Scholar 

  69. Langlet, J., Claverie, P., Caillet, J. and Pullman, A., J. Phys. Chem., 92 (1988) 1631.

    Google Scholar 

  70. Langlet, J., Gresh, N. and Giessner-Prettre, C., Biopolymers, 36 (1995) 765.

    Google Scholar 

  71. Gresh, N. and Roques, B.P., Biopolymers, 47 (1997) 145.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gresh, N., Perrée-fauvet, M. Major versus minor groove DNA binding of a bisarginylporphyrin hybrid molecule: A molecular mechanics investigation. J Comput Aided Mol Des 13, 123–137 (1999). https://doi.org/10.1023/A:1008033219724

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008033219724

Navigation