Skip to main content
Log in

Evaluation of a method for controlling molecular scaffold diversity in de novo ligand design

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

We describe an algorithm for the automated generation of molecular structures subject to geometric and connectivity constraints. The method relies on simulated annealing and simplex optimization of a penalty function that contains a variety of conditions and can be useful in structure-based drug design projects. The procedure controls the diversity and complexity of the generated molecules. Structure selection filters are an integral part and drive the algorithm. Several procedures have been developed to achieve reliable control. A number of template sets can be defined and combined to control the range of molecules which are searched. Ring systems are predefined. Normally, the ring-system complexity is one of the most elusive and difficult factors to control when fusion-, bridge- and spiro-structures are built by joining templates. Here this is not an issue; the decision about which systems are acceptable, and which are not, is made before the run is initiated. Queries for inclusion and exclusion spheres are incorporated into the objective function, and, by using a flexible notation, the structure generation can be directed and more focused. Simulated annealing is a reliable optimizer and converges asymptotically to the global minimum. The objective functions used here are degenerate, so it is likely that each run will produce a different set of good solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dean, P.M., Barakat, M.T. and Todorov, N.P., In Dean, P.M., Jolles, G. and Newton, C.G. (Eds.) New Perspectives in Drug Design, Academic Press, London, U.K., 1995, pp. 155–184.

    Google Scholar 

  2. Barakat, M.T. and Dean, P.M., J. Comput.-Aided Mol. Design, 9 (1995) 341.

    Google Scholar 

  3. Martin, Y.C., J. Med. Chem., 35 (1992) 145.

    Google Scholar 

  4. Blaney, J.M. and Dixon, J.S., Perspect. Drug Discov. Design, 1 (1993) 301.

    Google Scholar 

  5. Slater, P.E. and Timms, D., J. Mol. Graphics, 11 (1993) 248.

    Google Scholar 

  6. Verlinde, C.L.M.J. and Hol, W.G.J., Structure, 2 (1994) 577.

    Google Scholar 

  7. Lewis, R.A. and Leach, A.R., J. Comput.-Aided Mol. Design, 8 (1994) 467.

    Google Scholar 

  8. Lewis, R.A. and Dean, P.M., Proc. R. Soc. London, B236 (1989) 125.

    Google Scholar 

  9. Lewis, R.A. and Dean, P.M., Proc. R. Soc. London, B236 (1989) 141.

    Google Scholar 

  10. Lewis, R.A., J. Comput.-Aided Mol. Design, 4 (1990) 205.

    Google Scholar 

  11. Lewis, R.A., Poe, D.C., Huang, C., Ferrin, T.E., Langridge, R. and Kuntz, I.D., J. Mol. Graphics, 10 (1992) 66.

    Google Scholar 

  12. Lewis, R.A., J. Mol. Graphics, 10 (1992) 131.

    Google Scholar 

  13. Böhm, H.-J., J. Comput.-Aided Mol. Design, 6 (1992) 593.

    Google Scholar 

  14. Pearlman, D.A. and Murcko, M.A., J. Comp. Chem., 14 (1993) 1184.

    Google Scholar 

  15. Leach, A.R. and Kilvington, S.R., J. Comput.-Aided Mol. Design, 8 (1994) 283.

    Google Scholar 

  16. Tschinke, V. and Cohen, N.C., J. Med. Chem., 36 (1993) 3863.

    Google Scholar 

  17. Nishibata, Y. and Itai, A., Tetrahedron, 47 (1991) 8985.

    Google Scholar 

  18. Moon, J.B. and Howe, W.J., Protein Struct. Funct. Genet., 3 (1991) 681.

    Google Scholar 

  19. Gillet, V., Johnson, A.P., Mata, P., Sike, S., Zsoldos, Z. and Johnson, A.P., J. Comput.-Aided Mol. Design, 7 (1993) 127.

    Google Scholar 

  20. Rotstein, S.H. and Murcko, M.A., J. Comput.-Aided Mol. Design, 7 (1993) 23.

    Google Scholar 

  21. Rotstein, S.H. and Murcko, M.A., J. Med. Chem., 36 (1993) 1700.

    Google Scholar 

  22. Bohacek, R.S. and McMartin, C., J. Am. Chem. Soc., 116 (1994) 5560.

    Google Scholar 

  23. Clark, D.E., Frenkel, D., Levy, S.A., Li, J., Murray, C.W., Robson, B., Waszkowycz, B. and Westhead, D.R., J. Comput.-Aided Mol. Design 9 (1995) 13.

    Google Scholar 

  24. Glen, R.C. and Payne, A.W.R., J. Comput.-Aided Mol. Design, 9 (1995) 181.

    Google Scholar 

  25. Goodford, P.J., J. Med. Chem., 28 (1985) 849.

    Google Scholar 

  26. Danziger, D.J. and Dean, P.M., Proc. R. Soc. London, B236 (1989) 101.

    Google Scholar 

  27. Miranker, A. and Karplus, M., Protein Struct. Funct. Genet., 11 (1991) 29.

    Google Scholar 

  28. Dean, P.M. (Ed.) Molecular Similarity in Drug Design, Blackie, London, U.K., 1995.

    Google Scholar 

  29. Nilsson, N.J., Principles of Artificial Intelligence, Springer, Berlin, Germany, 1982.

    Google Scholar 

  30. Kirkpatrick, S., Gellatt Jr., C.D. and Vecchi, M.P., Science, 220 (1983) 671.

    Google Scholar 

  31. Goldberg, D.E., Genetic Algorithms, Search, Optimization and Machine Learning, Addison-Wesley, Reading, MA, U.S.A., 1989.

    Google Scholar 

  32. Morley, S.D., Abraham, R.J., Haworth, I.S., Jackson, D.E., Saunders, M.R. and Vinter, J.G., J. Comput.-Aided Mol. Design, 5 (1991) 475.

    Google Scholar 

  33. Van Laarhoven, P.J.M. and Aarts, E.H.L., Simulated Annealing: Theory and Applications, Reidel, Dordrecht, The Netherlands, 1987.

    Google Scholar 

  34. Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T., Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge, U.K., 1986.

    Google Scholar 

  35. Bolin, J.T., Filman, D.J., Matthews, D.A., Hamlin, R.C. and Kraut, J., J. Biol. Chem., 257 (1982) 13650.

    Google Scholar 

  36. Gillet, V., Newel, W., Mata, P., Myatt, G., Sike, S., Zsoldos, Z. and Johnson, A.P., J. Chem. Inf. Comput. Sci., 34 (1994) 207.

    Google Scholar 

  37. Böhm, H.-J., J. Comput.-Aided Mol. Design, 8 (1994) 243.

    Google Scholar 

  38. Leach, A.R. and Lewis, R.A., J. Comput. Chem., 15 (1994) 233.

    Google Scholar 

  39. Meng, E.C., Shoichet, B.K. and Kuntz, I.D., J. Comput. Chem., 13 (1991) 505.

    Google Scholar 

  40. Morgan, H.L., J. Chem. Doc., 5 (1965) 107.

    Google Scholar 

  41. Barnard, J.M., In Ash, J.E., Warr, W.A. and Willet, P. (Eds.) Chemical Structure Systems. Computational Techniques for Representation, Searching, and Processing of Structural Information, Ellis Horwood, New York, NY, U.S.A., 1991, pp. 9–56.

    Google Scholar 

  42. Perkins, T.D.J. and Pean, P.M., J. Comput.-Aided Mol. Design, 7 (1993) 155.

    Google Scholar 

  43. Oshiro, C.M., Kuntz, I.D. and Dixon, J.S., J. Comput-Aided Mol. Design, 9 (1995) 113.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Todorov, N., Dean, P. Evaluation of a method for controlling molecular scaffold diversity in de novo ligand design. J Comput Aided Mol Des 11, 175–192 (1997). https://doi.org/10.1023/A:1008042711516

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008042711516

Navigation