Skip to main content
Log in

Epipolar Geometry and Linear Subspace Methods: A New Approach to Weak Calibration

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

This paper addresses the problem of estimating the epipolar geometry from point correspondences between two images taken by uncalibrated perspective cameras. It is shown that Jepson's and Heeger's linear subspace technique for infinitesimal motion estimation can be generalized to the finite motion case by choosing an appropriate basis for projective space. This yields a linear method for weak calibration. The proposed algorithm has been implemented and tested on both real and synthetic images, and it is compared to other linear and non-linear approaches to weak calibration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnard, S. and Thompson, W. 1980. Disparity analysis of images, IEEE Trans. Patt. Anal. Mach. Intell. 2(4), 333-340.

    Google Scholar 

  • Boufama, B. and Mohr, R. 1995. Epipole and fundamental matrix estimation using virtual parallax, Proc. Int. Conf. Comp. Vision, Boston, MA, pp. 1030-1036.

  • Carlsson, S. 1993. The double algebra: An effective tool for computing invariants in computer vision, Applications of Invariance in Computer Vision, Vol. Lecture Notes in Computer Science vol 825, Springer-Verlag, pp. 145-164.

  • Chasles, M. 1855. Question no. 296, Nouv. Ann. Math. 14(50).

  • Ciarlet, P. and Lions, J. 1990. Handbook of Numerical Analysis: Volume 1, North Holland, Amsterdam.

  • Couapel, B. 1994. Stéréovision par Ordinateur, Géométrie et Expérimentation, PhD thesis, Université de Rennes 1.

  • Demey, S., Zisserman, A. and Beardsley, P. 1992. Affine and projective structure from motion, inD. Hogg (ed.), Proc. British Machine Vision Conference, Springer-Verlag, Leeds, pp. 49-58.

  • Deriche, R. and Giraudon, G. 1993. A computational approach for corner and vertex detection, Int. J. of Comp. Vision 10(2), 101-124.

    Google Scholar 

  • Deriche, R., Zhang, Z., Luong, Q.-T. and Faugeras, O. 1994. Robust recovery of the epipolar geometry for an uncalibrated stereo rig, inJ.-O. Eklundh (ed.), Proc. European Conf. Comp. Vision, Vol. 800 of Lecture Notes in Computer Science, Springer-Verlag, pp. 567-576.

  • Dongarra, J., Bunch, J., Moler, C. and Stewart, G. 1979. LINPACK User’s Guide, Philadelphia.

  • Dreschler, L. and Nagel, H. 1982. On the selection of critical points and local curvature extrema of region boundaries for interframe matching, International Conference on Pattern Recognitio, Munich, Germany, pp. 542-544.

  • Faugeras, O. 1992. What can be seen in three dimensions with an uncalibrated stereo rig?, inG. Sandini (ed.), Proc. European Conf. Comp. Vision, Vol. 588 of Lecture Notes in Computer Science, Springer-Verlag, Santa Margherita, Italy, pp. 563-578.

    Google Scholar 

  • Faugeras, O. 1993. Three-Dimensional ComputerVision, MITPress.

  • Faugeras, O., Luong, Q.-T. and Maybank, S. 1992. Camera selfcalibration: theory and experiments, inG. Sandini (ed.), Proc. European Conf. Comp. Vision, Vol. 588 of Lecture Notes in Computer Science, Springer-Verlag, Santa Margherita, Italy, pp. 321-334.

    Google Scholar 

  • Faugeras, O. and Lustman, F. 1988. Motion and structure from motion in a piecewise-planar environment, Journal of Pattern Recognition and Artificial Intelligence 2(3), 485-508.

    Google Scholar 

  • Fua, P. 1993. A parallel stereo algorithm that produces dense depth maps and preserves image features, Machine Vision and Applications 6(1).

  • Gennery, D. 1980. Modelling the environment of an exploring vehicle by means of stereo vision, PhD thesis, Stanford University, Stanford, CA.

    Google Scholar 

  • Gros, P. and Quan, L. 1992. Projective invariants for vision, Technical Report RT 90-IMAG 15-LIFIA, LIFIA-IRIMAG.

  • Harris, C. and Stephens, M. 1988. A combined edge and corner detector, 4th Alvey Vision Conference, Manchester, UK, pp. 189-192.

  • Hartley, R. 1992. Estimation of relative camera positions for uncalibrated cameras, inG. Sandini (ed.), Proc. European Conf. Comp. Vision, Vol. 588 of Lecture Notes in Computer Science, Springer-Verlag, Santa Margherita, Italy, pp. 579-587.

    Google Scholar 

  • Hartley, R. 1993a. Cheirality invariants, Proc. DARPA Image Understanding Workshop, Washington, D.C., pp. 745-753.

  • Hartley, R. 1993b. Invariants of lines in space, Proc. DARPA Image Understanding Workshop, Washington, D.C., pp. 737-744.

  • Hartley, R. 1994. An algorithm for self calibration from several views, Proc. IEEE Conf. Comp. Vision Patt. Recog., Seattle,WA, pp. 908-912.

  • Hartley, R. 1995. In defence of the 8-point algorithm, Proc. Int. Conf. Comp. Vision, Boston, MA, pp. 1064-1070.

  • Hartley, R. and Gupta, R. 1993. Computing matched-epipolar projections, Proc. IEEE Conf. Comp. Vision Patt. Recog., New York City, NY, pp. 549-555.

  • Hartley, R., Gupta, R. and Chang, T. 1992. Stereo from uncalibrated cameras, Proc. IEEE Conf. Comp. Vision Patt. Recog., Champaign, IL, pp. 761-764.

  • Heeger, D. and Jepson, A. 1992. Subspace methods for recovering rigid motion I: Algorithm and implementation, Int. J. of Comp. Vision 7(2), 95-117.

    Google Scholar 

  • Hesse, O. 1863. Die cubische Gleichung, von welcher die Lösung des Problems der Homographie von M. Chasles abhängt, J. Reine Angew. Math. 62, 188-192.

    Google Scholar 

  • Horaud, R. and Skordas, T. 1989. Stereo correspondences through feature grouping and maximal cliques, IEEE Trans. Patt. Anal. Mach. Intell. 11(11), 1168-1180.

    Article  Google Scholar 

  • Horn, B. 1986. Computer Vision, MIT Press, Cambridge, Mass.

    Google Scholar 

  • Huang, T. and Faugeras, O. 1989. Some properties of the E-matrix in two-view motion estimation, IEEE Trans. Patt. Anal. Mach. Intell. 11(12), 1310-1312.

    Article  Google Scholar 

  • Jepson, A. and Heeger, D. 1991. A fast subspace algorithm for recovering rigid motion, IEEE Workshop on Visual Motion, Princeton, NJ, pp. 124-131.

  • Jepson, A. and Heeger, D. 1992. Linear subspace methods for recovering translational direction, inL. Harris and M. Jenkin (eds), Spatial Vision in Humans and Robots, Cambridge University Press, pp. 39-62.

  • Koenderink, J. and Doorn, A. V. 1990. Affine structure from motion, J. Opt. Soc. Am. A8, 377-385.

    Google Scholar 

  • Laveau, S. and Faugeras, O. 1994. 3D scene representation as a collection of images and fundamental matrices, Technical Report 2205, INRIA Sophia-Antipolis.

  • Lawn, J. and Cipolla, R. 1996. Reliable extraction of the camera matrix using constraint on the epipole, inB. B. and R. Cipolla (eds), Proc. 4rd ECCV, LNCS 1065, Springer-Verlag, Cambridge, pp. 161-173.

  • Longuet-Higgins, H. 1981. A computer algorithm for reconstructing a scene from two projections, Nature 293, 133-135.

    Google Scholar 

  • Luong, Q.-T. 1992. Matrice fondamentale et calibration visuelle sur l’environnement: vers une plus grande autonomie des systèmes robotiques, PhD thesis, University of Paris XI, Orsay, France.

    Google Scholar 

  • Luong, Q.-T., Deriche, R., Faugeras, O. and Papadopoulo, T. 1993. On determining the fundamental matrix: analysis of different methods and experimental results, Technical Report 1894, INRIA Sophia-Antipolis.

  • Luong, Q.-T. and Faugeras, O. 1993. Determining the fundamental matrix with planes: instability and new algorithms, Proc. IEEE Conf. Comp. Vision Patt. Recog., New York City, NY, pp. 489-494.

  • Luong, Q.-T. and Faugeras, O. 1994. A stability analysis of the fundamental matrix, inJ.-O. Eklundh (ed.), Proc. European Conf. Comp. Vision, Vol. 800 of Lecture Notes in Computer Science, Springer-Verlag, pp. 577-588.

  • Luong, Q.-T. and Faugeras, O. 1996. The fundamental matrix: theory, algorithms, and stability analysis, Int. J. of Comp. Vision 17(1), 43-76.

    Google Scholar 

  • Maybank, S. 1992. Theory of reconstruction from image motion, Springer-Verlag.

  • Maybank, S. and Faugeras, O. 1992. A theory of self-calibration of a moving camera, Int. J. of Comp. Vision 8(2), 123-151.

    Google Scholar 

  • Mohr, R., Quan, L., Veillon, F. and Boufama, B. 1992. Relative 3D reconstruction using multiple uncalibrated images, Technical Report RT 84-IMAG 12-LIFIA, LIFIA-IRIMAG.

  • Moravec, H. 1977. Toward automatic visual obstacle avoidance, Proc. International Joint Conference on Artificial Intelligence, Cambridge, MA, p. 584.

  • Moré, J., Garbow, B. and Hillstrom, K. 1980. User guide for MINPACK-1, ANL-80-74, Argonne National Laboratories.

  • Nishihara, H. 1984. PRISM, a practical real-time imaging stereo matcher, AI Memo 780, MIT.

  • Nishimura, E., Xu, G. and Tsuji, S. 1993. Motion segmentation and correspondence using epipolar constraint, First Asian Conference on Computer Vision, Osaka, Japan, pp. 199-204.

  • Noble, J. 1988. Finding corners, Image and Vision Computing 6(2), 121-128.

    Google Scholar 

  • Olsen, S. 1992. Epipolar line estimation, inG. Sandini (ed.), Proc. European Conf. Comp. Vision, Vol. 588 of Lecture Notes in Computer Science, Springer-Verlag, Santa Margherita, Italy, pp. 307-311.

    Google Scholar 

  • Ponce, J., Marimont, D. and Cass, T. 1994. Analytical methods for uncalibrated stereo and motion reconstruction, inJ.-O. Eklundh (ed.), Proc. European Conf. Comp. Vision, Vol. 800 of Lecture Notes in Computer Science, Springer-Verlag, pp. 463-470.

  • Robert, L. and Faugeras, O. 1993. Relative 3D positioning and 3D convex hull computation from a weakly calibrated stereo pair, Proc. Int. Conf. Comp. Vision, Berlin, Germany, pp. 540-544.

  • Rohr, K. 1992. Modelling and identification of characteristic intensity variations, Image and Vision Computing 10(2), 66-76.

    Article  Google Scholar 

  • Seitz, S. and Dyer, C. 1995a. Complete scene structure from four point correspondences, Proc. Int. Conf. Comp. Vision, Boston, MA, pp. 330-337.

  • Seitz, S. and Dyer, C. 1995b. Physically-valid view synthesis by image interpolation, Workshop on Representations of Visual Scenes, Boston, MA.

  • Shapiro, L. and Brady, M. 1993. Rejecting outliers and estimating errors in an orthogonal regression framework, Technical Report OUEL 1974/93, Dept. of Engineering Science, Oxford University.

  • Shapiro, L. and Haralick, R. 1981. Structural descriptions and inexact matching, IEEE Trans. Patt. Anal. Mach. Intell. 3, 514-519.

    Google Scholar 

  • Shashua, A. 1993. Projective depth: a geometric invariant for 3D reconstruction from two perspective/orthographic views and for visual recognition, Proc. Int. Conf. Comp. Vision, Berlin, Germany, pp. 583-590.

  • Sinclair, D., Blake, A., Smith, S. and Rothwell, C. 1992. Planar region detection and motion recovery, Proc. British Machine Vision Conference, pp. 59-68.

  • Sturm, R. 1869. Das Problem der Projektivität und seine Anwendung auf die Flächen zweiten Grades, Math. Annal. 1, 533-574.

    Google Scholar 

  • Todd, J.: 1946, Projective and Analytical Geometry, Pitman Publishing Corporation, New York - Chicago.

    Google Scholar 

  • Tomasi, C. 1994. Pictures and trails: a new framework for the computation of shape and motion from perspective image sequences, Proc. IEEE Conf. Comp. Vision Patt. Recog., Seattle, WA, pp. 913-918.

  • Tomasi, C. and Kanade, T. 1992. Shape and motion from image streams under orthography: a factorization method, Int. J. of Comp. Vision 9(2), 137-154.

    Google Scholar 

  • Torr, P. and Murray, D. 1993. Outlier detection and motion segmentation, inP. Schenker (ed.), Sensor Fusion VI, SPIE Volume 2059, Boston, pp. 432-443.

  • Torr, P., Zisserman, A. and Maybank, S. 1995. Robust detection of degenerate configurations for the fundamental matrix, Proc. Int. Conf. Comp. Vision, Boston, MA, pp. 1037-1042.

  • Tsai, R. and Huang, T. 1984. Uniqueness and estimation of 3D motion parameters of rigid bodies with curved surfaces, IEEE Trans. Patt. Anal. Mach. Intell. 6, 13-27.

    Google Scholar 

  • Viéville, T. and Faugeras, O. 1995. Motion analysis with a camera with unknown, and possibly varying intrinsic parameters, Proc. Int. Conf. Comp. Vision, Boston, MA, pp. 750-756.

  • Weng, J., Ahuja, N. and Huang, T. 1992. Matching two perspective views, IEEE Trans. Patt. Anal. Mach. Intell. 14(8), 806-825.

    Article  Google Scholar 

  • Wilkinson, J. and Reinsch, C. 1971. Linear Algebra-Vol. II of Handbook for Automatic Computation, Springer-Verlag, New York. Chapter I.10 by G.H. Golub and C. Reinsch.

    Google Scholar 

  • Xu, G., Nishimura, E. and Tsuji, S. 1993. Image correspondences and segmentation by epipolar lines: theory, algorithm and applications, Technical report, Dept. of Systems Engineering, Osaka University, Japan.

    Google Scholar 

  • Zhang, Z. 1994. Token tracking in a cluttered scene, Int. J. of Comp. Vision 12(2), 110-120.

    Google Scholar 

  • Zhang, Z., Deriche, R., Faugeras, O. and Luong, Q.-T. 1995. A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry, Artificial Intelligence Journal 78, 87-119.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ponce, J., Genc, Y. Epipolar Geometry and Linear Subspace Methods: A New Approach to Weak Calibration. International Journal of Computer Vision 28, 223–243 (1998). https://doi.org/10.1023/A:1008053620575

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008053620575

Navigation