Skip to main content
Log in

Molecular basis of quantitative structure-properties relationships (QSPR): A quantum similarity approach

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Since the dawn of quantitative structure-properties relationships (QSPR), empirical parameters related to structural, electronic and hydrophobic molecular properties have been used as molecular descriptors to determine such relationships. Among all these parameters, Hammett σ constants and the logarithm of the octanol- water partition coefficient, log P, have been massively employed in QSPR studies. In the present paper, a new molecular descriptor, based on quantum similarity measures (QSM), is proposed as a general substitute of these empirical parameters. This work continues previous analyses related to the use of QSM to QSPR, introducing molecular quantum self-similarity measures (MQS-SM) as a single working parameter in some cases. The use of MQS-SM as a molecular descriptor is first confirmed from the correlation with the aforementioned empirical parameters. The Hammett equation has been examined using MQS-SM for a series of substituted carboxylic acids. Then, for a series of aliphatic alcohols and acetic acid esters, log P values have been correlated with the self-similarity measure between density functions in water and octanol of a given molecule. And finally, some examples and applications of MQS-SM to determine QSAR are presented. In all studied cases MQS-SM appeared to be excellent molecular descriptors usable in general QSPR applications of chemical interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hammett, L. P., Trans. Faraday Soc., 34 (1938) 96.

    Google Scholar 

  2. Taft, R. W., J. Am. Chem. Soc., 75 (1953) 4231.

    Google Scholar 

  3. Shorter, J., Chem. Brit., 5 (1969) 269.

    Google Scholar 

  4. Kubinyi, H. (Ed.) 3D QSAR in Drug Design: Theory Methods and Applications, ESCOM, Leiden, 1993.

    Google Scholar 

  5. Dean, P. M. (Ed.) Molecular Similarity in Drug Design, Blackie Academic & Professional, London, 1995.

    Google Scholar 

  6. Hansch, C. and Leo, A., Exploring QSAR. Fundamentals and Applications in Chemistry and Biology, ACS Professional Reference Book, Washington, DC, 1995.

    Google Scholar 

  7. Ponec, R. and Chvalovský, V., Collect. Czech. Chem. Commun., 39 (1974) 3091.

    Google Scholar 

  8. Ponec, R., Collect. Czech. Chem. Commun., 45 (1980) 1646.

    Google Scholar 

  9. Krygowski, T.M. and Perjessy, A., Bull. Acad. Sci. Polon., 22 (1974) 437.

    Google Scholar 

  10. Carbó, R., Leyda, L. and Arnau, M., Int. J. Quantum Chem., 17 (1980) 1185.

    Google Scholar 

  11. Carbó, R. (Ed.) Molecular Similarity and Reactivity: From Quantum Chemical to Phenomenological Approaches, Kluwer, Amsterdam, 1995.

    Google Scholar 

  12. Carbó-Dorca, R. and Mezey, P. G. (Eds.) Advances in Molecular Similarity, JAI Press Inc., Greenwich, CT, 1996, Vol. 1.

    Google Scholar 

  13. Cooper, D. L. and Allan, N. L., J. Comput.-Aided Mol. Design, 3 (1989) 253.

    Google Scholar 

  14. Cooper, D. L. and Allan, N. L., J. Am. Chem. Soc., 114 (1992) 4773.

    Google Scholar 

  15. Cioslowski, J. and Fleischmann, E. D., J. Am. Chem. Soc., 113 (1991) 64.

    Google Scholar 

  16. Cioslowski, J. and Nanayakkara, A., J. Am. Chem. Soc., 115 (1993) 11213.

    Google Scholar 

  17. Burt, C., Richards, W. G. and Huxley, P., J. Comput. Chem., 10 (1990) 1139.

    Google Scholar 

  18. Good, A. C., So, S. S. and Richards, W. G., J. Med. Chem., 36 (1993) 433.

    Google Scholar 

  19. Ponec, R. and Strnad, M., Int. J. Quantum Chem., 42 (1992) 501.

    Google Scholar 

  20. Ponec, R., J. Chem. Inf. Comput. Sci., 33 (1993) 805.

    Google Scholar 

  21. Mezey, P. G., J. Chem. Inf. Comput. Sci., 32 (1992) 650.

    Google Scholar 

  22. Luo, X. and Mezey, P. G., Int. J. Quantum Chem., 41 (1992) 557.

    Google Scholar 

  23. Carbó, R., BesalÚ, E., Amat, L. and Fradera, X., J. Math. Chem., 18 (1995) 237.

    Google Scholar 

  24. Fradera, X., Amat, L., BesalÚ, E. and Carbó-Dorca, R., Quant. Struct.-Act. Relat., 16 (1997) 25.

    Google Scholar 

  25. Lobato, M., Amat, L., BesalÚ, E. and Carbó-Dorca, R., Quant. Struct.-Act. Relat., 16 (1997) 465.

    Google Scholar 

  26. von Neumann, J., Mathematical Foundations of Quantum Mechanics, Princeton University Press, Princeton, NJ, 1955.

    Google Scholar 

  27. Bohm, D., Quantum Theory, Dover Pub. Inc., New York, NY, 1989.

    Google Scholar 

  28. Constans, P., Amat, L. and Carbó-Dorca, R., J. Comput. Chem., 18 (1997) 826.

    Google Scholar 

  29. Constans, P. and Carbó, R., J. Chem. Inf. Comput. Sci., 35 (1995) 1046.

    Google Scholar 

  30. Amat, L. and Carbó-Dorca, R., J. Comput. Chem., 18 (1997) 2023.

    Google Scholar 

  31. Carbó-Dorca, R., J. Mat. Chem., 22 (1997) 143; 23 (1998) 353; 23 (1998) 365.

    Google Scholar 

  32. ASA coefficients and exponents can be seen and downloaded from the WWW site: http://iqc.udg.es/cat/similarity/ASA/funcset.html

  33. See for example: Saunders, V. R., Computational Techniques in Quantum Chemistry and Molecular Physics, D. Reidel Publ. Co., Dordrecht, Holland, 1975, pp. 347–424.

    Google Scholar 

  34. Dewar, M. J. S., Zoebisch, E. G., Healy, E. F. and Stewart, J. J. P., J. Am. Chem. Soc., 107 (1985) 3902.

    Google Scholar 

  35. Stewart, J. J. P. MOPAC6, QCPE 455, Indiana University, Bloomington, IN, 1993.

    Google Scholar 

  36. Exner, O. and Simon, W., Collect. Czech. Chem. Commun., 29 (1964) 2016.

    Google Scholar 

  37. Fringuelli, F., Mario, G. and Taticchi, A., J. Chem. Soc. Perkin Trans. II (1972) 1738.

  38. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Gill, P. M. W., Johnson, B. G., Robb, M. A., Cheeseman, J. R., Keith, T. A., Petersson, G. A., Montgomery, J. A., Raghavachari, K., Al-Laham, M. A., Zakrzewski, V. G., Ortiz, J. V., Foresman, J. B., Cioslowski, J., Stefanov, B. B., Nanayakkara, A., Challacombe, M., Peng, C. Y., Ayala, P. Y., Chen, W., Wong, M. W., Andres, J. L., Replogle, E. S., Gomperts, R., Martin, R. L., Fox, D. J., Binkley, H. S., Defrees, D. J., Baker, H., Stewart, J. J. P., Head-Gordon, M., Gonzalez, C. and Pople, J. A., GAUSSIAN 94, Revision A.1, Gaussian, Inc.: Pittsburgh, PA, 1995.

    Google Scholar 

  39. Kirkwood, J. G., J. Chem. Phys., 2 (1934) 351.

    Google Scholar 

  40. Miertus, S., Scrocco, E. and Tomasi, J., Chem. Phys., 55 (1981) 117.

    Google Scholar 

  41. Miertus, S. and Tomasi, J., Chem. Phys., 65 (1982) 239.

    Google Scholar 

  42. Hansch, C., Leo, A. and Hoekman, D., Exploring QSAR. Hydrophobic, Electronic, and Steric Constants, ACS Professional Reference Book, Washington, DC, 1995.

    Google Scholar 

  43. Vlachová, D. and Drobnica, L., Collect. Czech. Chem. Commun., 31 (1966) 997.

    Google Scholar 

  44. Lipnick, R.L. In Suter II, G. W. and Lewis, M. A. (Eds.) Aquatic Toxicology and Environmental Fate, vol. II, ASTM, 1989, p. 468.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ponec, R., Amat, L. & Carbó-dorca, R. Molecular basis of quantitative structure-properties relationships (QSPR): A quantum similarity approach. J Comput Aided Mol Des 13, 259–270 (1999). https://doi.org/10.1023/A:1008059505361

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008059505361

Navigation