Skip to main content
Log in

Investigation of classification methods for the prediction of activity in diverse chemical libraries

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Classification methods based on linear discriminant analysis, recursive partitioning, and hierarchical agglomerative clustering are examined for their ability to separate active and inactive compounds in a diverse chemical database. Topology-based descriptions of chemical structure from the Molconn-X and ISIS programs are used in conjunction with these classification techniques to identify ACE inhibitors, β-adrenergic antagonists, and H_2 receptor antagonists. Overall, discriminant analysis misclassifies the smallest number of active compounds, while recursive partitioning yields the lowest rate of misclassification among inactives. Binary structural keys from the ISIS package are found to generally outperform the whole-molecule Molconn-X descriptors, especially for identification of inactive compounds. For all targets and classification methods, sensitivity toward active compounds is increased by making repetitive classifications using training sets that contain equal numbers of actives and inactives. These balanced training sets provide an average numerical class membership score which may be used to select subsets of compounds that are enriched in actives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Salemme, F.R., Spurlino, J. and Bone, R., Structure, 5 (1997) 319.

    Google Scholar 

  2. Martin, Y.C., Brown, R.D. and Bures, M.G., In Kerwin, J.F. and Gordon, E.M. (Eds.) Combinatorial Chemistry and Molecular Diversity in Drug Discovery, Wiley, New York, NY, 1998, pp. 369–385.

    Google Scholar 

  3. Ferguson, A.M., Patterson, D.E., Garr, C. and Underiner, T., J. Biomol. Screen., 1 (1996) 65.

    Google Scholar 

  4. Patterson, D.E., Cramer, R.D., Ferguson, A.M., Clark, R.D. and Weinberger, L.E., J. Med. Chem., 39 (1996) 3049.

    Google Scholar 

  5. Chapman, D., J. Comput.-Aided Mol. Design, 10 (1996) 501.

    Google Scholar 

  6. Martin, E.J., Blaney, J.M., Siani, M.A., Spellmeyer, D.C., Wong, A.K. and Moos, W.H., J. Med. Chem., 38 (1995) 1431.

    Google Scholar 

  7. Shemtulskis, N.E., Dunbar, J.B., Dunbar, B.W., Moreland, D.W. and Humblet, C., J. Comput.-Aided Mol. Design, 9 (1995) 407.

    Google Scholar 

  8. Dean, P.M. (Ed.) Molecular Similarity in Drug Design, Chapman and Hall, London, 1995.

    Google Scholar 

  9. Barnard, J.M. and Down, G.M., J. Chem. Inf. Comput. Sci., 32 (1992) 644.

    Google Scholar 

  10. Johnson, M.A. and Maggiora, G.M., Concepts and Applications of Molecular Similarity, Wiley, New York, NY, 1990.

    Google Scholar 

  11. Willett, P., Similarity and Clustering in Chemical Information Systems, Research Studies Press, Letchworth, 1987.

    Google Scholar 

  12. Dillon, W.R. and Goldstein, M., Multivariate Analysis, Methods and Applications, Wiley, New York, NY, 1984.

    Google Scholar 

  13. Van de Waterbeemd, H., In van de Waterbeemd, H. (Ed.) ChemometricMethods in Molecular Design, VCH, New York, NY, 1995, pp. 283–293.

    Google Scholar 

  14. McFarland, J.W. and Gans, D.J., In Hansch, C., Sammes, P.G. and Taylor, J.B. (Eds.) Comprehensive Medicinal Chemistry, Vol. 4, Pergamon, New York, NY, 1990, pp. 667–689.

    Google Scholar 

  15. Breiman, L., Friedman, J.H., Olshen, R.A. and Stone, C.J., Classification and Regression Trees, Wadsworth International Group, Belmont, CA, 1984.

    Google Scholar 

  16. Hawkins, D.M. and Kass, G.V., In Hawkins, D.H. (Ed.) Topics in Applied Multivariate Analysis, Cambridge University Press, Cambridge, 1982, pp. 269–302.

    Google Scholar 

  17. Young, S.S. and Hawkins, D.M., J. Med. Chem., 38 (1995) 2784.

    Google Scholar 

  18. Murtagh, F., Multidimensional Clustering Algorithms, Vol. 4, Physica-Verlag, Heidelberg, 1985.

    Google Scholar 

  19. CMC database, MDL Information Systems, Inc., San Leandro, CA.

  20. Molconn-X 2.0., Hall Associates Consulting, Quincy, MA.

  21. ISISTM/Base 2.1.3, MDL Information Systems Inc., San Leandro, CA.

  22. S-PLUS 3.4, StatSci Division, MathSoft Inc., Seattle, WA.

  23. Brown, R.D. and Martin, Y.C., J. Chem. Inf. Comput. Sci., 36 (1996) 572.

    Google Scholar 

  24. S-Plus Guide to Statistical and Mathematical Analysis, Version 3.3, MathSoft Inc., Seattle, WA, 1995.

  25. Banfield, J.D. and Raftery, A.E., Biometrics, 49 (1992) 803.

    Google Scholar 

  26. MACCS-II Menu Reference Version 2.2, MDL Information Systems, San Leandro, CA, 1994.

  27. Sutter, J.M., Dixon, S.L. and Jurs, P.C., J. Chem. Inf. Comput. Sci., 35 (1995) 77.

    Google Scholar 

  28. Furnival, G. and Wilson, R., Technometrics, 16 (1974) 499.

    Google Scholar 

  29. Bravi, G., Gancia, E., Zaliani, A. and Pegna, M., J. Comput. Chem., 18 (1997) 1295.

    Google Scholar 

  30. Hall, L.H. and Kier, L.B., Molconn-X User' Guide, Hall Associates Consulting, Quincy, MA, 1993.

    Google Scholar 

  31. Dixon, S.L. and Villar, H.O., J. Chem. Inf. Comput. Sci., 38 (1998) 1192.

    Google Scholar 

  32. Willett, P. and Winterman, V.A., Quant. Struct.–Act. Relatsh., 5 (1986) 18.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dixon, S.L., Villar, H.O. Investigation of classification methods for the prediction of activity in diverse chemical libraries. J Comput Aided Mol Des 13, 533–545 (1999). https://doi.org/10.1023/A:1008061017938

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008061017938

Navigation