Skip to main content
Log in

Image Registration for Digital Subtraction Angiography

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

In clinical practice, Digital Subtraction Angiography (DSA) is a powerful technique for the visualization of blood vessels in the human body. The diagnostic relevance of the images is often reduced by artifacts which arise from the misalignment of successive images in the sequence, due to patient motion. In order to improve the quality of the subtraction images, several registration techniques have been proposed. However, because of the required computation times, it has never led to algorithms that are fast enough so as to be acceptable for integration in clinical applications. In this paper, a new approach to the registration of digital angiographic images is proposed. It involves an edge-based selection of control points for which the displacement is computed by means of template matching, and from which the complete displacement vector field is constructed by means of interpolation. The final warping of the images according to the calculated displacement vector field is performed real-time by graphics hardware. Experimental results with several clinical data sets show that the proposed algorithm is both effective and very fast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aggerwal, J.K. and Nandhakumar, N. 1988. On the computation of motion from sequences of images — A review. Proceedings of the IEEE, 76(8): 917–935.

    Article  Google Scholar 

  • Althof, R., Wind, M.G.J. and Dobbins, J.T. 1997. A rapid and automatic image registration algorithm with subpixel accuracy. IEEE Transactions on Medical Imaging, 16(1): 308–316.

    Article  Google Scholar 

  • Barnea, D.I. and Silverman, H.F. 1972. A class of algorithms for fast digital image registration. IEEE Transactions on Computers, 21(2): 179–186.

    Google Scholar 

  • Beier, T. and Neely, S. 1992. Feature-based image metamorphosis. Computer Graphics (SIGGRAPH' 92 Conference Proceedings), 26(2): 35–42.

    Google Scholar 

  • Brody, W.R. 1981. Hybrid subtraction for improved arteriography. Radiology, 141(3): 828–831.

    Google Scholar 

  • Brody, W.R. 1982. Digital subtraction angiography. IEEE Transactions on Nuclear Science, 29(3): 1176–1180.

    Google Scholar 

  • Brody, W.R., Enzmann, D.R., Deutsch, L.-S., Hall, A. and Pelc, N. 1981. Intravenous carotid arteriography using line-scanned digital radiography. Radiology, 139(2): 297–300.

    Google Scholar 

  • Brown, L.G. 1992. A survey of image registration techniques. ACM Computing Surveys, 24(4): 325–376.

    Article  Google Scholar 

  • Buzug, T.M., Lorenz, C. and Weese, J. 1997. Improvement of vessel segmentation by elastically compensated patient motion in digital subtraction angiography images. In G. Sommer, K. Daniilidis and J. Pauli (eds), Computer Analysis of Images and Patterns (CAIP' 97), volume 1296 of Lecture Notes in Computer Science, Springer-Verlag: Berlin, Germany, pp. 106–113.

    Google Scholar 

  • Buzug, T.M. and Weese, J. 1996. Improving DSA images with an automatic algorithm based on template matching and an entropy measure. In H.U. Lemke, M.W. Vannier, K. Inamura and A.G. Farman (eds), Computer Assisted Radiology (CAR' 96), volume 1124 of International congress series, Elsevier Science: Amsterdam, The Netherlands, pp. 145–150.

    Google Scholar 

  • Buzug, T.M., Weese, J., Fassnacht, C. and Lorenz, C. 1997. Image registration: Convex weighting functions for histogram-based similarity measures. In J. Troccaz, E. Grimson and R. Mösges (eds), CVRMed-MRCAS' 97, volume 1205 of Lecture Notes in Computer Science, Springer-Verlag: Berlin, Germany, pp. 203–212.

    Google Scholar 

  • Canny, J.F. 1986. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(6): 679–698.

    Google Scholar 

  • Chiang, J.Y. and Sullivan, B.J. 1993. Coincident bit counting — A new criterion for image registration. IEEE Transactions on Medical Imaging, 12(1): 30–38.

    Article  Google Scholar 

  • Chilcote, W.A., Modic, M.T., Pavlicek, W.A., Little, J.R., Furian, A.J., Duchesneau, P.M. and Weinstein, M.A. 1981. Digital subtraction angiography of the carotid arteries: A comparitive study in 100 patients. Radiology, 139(2): 287–295.

    Google Scholar 

  • Cox, G.S. 1995. Review: Template matching and measures of match in image processing. University of Cape Town, Department of Electrical Engineering, South Africa, Technical report.

    Google Scholar 

  • Cox, G.S. and de Jager, G. 1994. Automatic registration of temporal image pairs for digital subtraction angiography. Image Processing, volume 2167 of Proceedings of SPIE, The International Society for Optical Engineering: Bellingham,Washington, USA, pp. 188–199.

    Google Scholar 

  • Davis, L.S., Wu, Z. and Sun, H. 1983. Contour-based motion estimation. Computer Vision, Graphics and Image Processing, 23(3): 313–326.

    Google Scholar 

  • Fitzpatrick, J.M. 1988. The existence of geometrical density-image transformations corresponding to object motion. Computer Vision, Graphics and Image Processing, 44(2): 155–174.

    Google Scholar 

  • Fitzpatrick, J.M., Grefenstette, J.J., Pickens, D.R., Mazer, M. and Perry, J.M. 1988. A system for image registration in digital subtraction angiography. In C.N. de Graaf and M.A. Viergever (eds), Image Processing in Medical Imaging, Plenum Press, New York, USA, pp. 415–435.

    Google Scholar 

  • Flusser, J. 1992. An adaptive method for image registration. Pattern Recognition, 25(1): 45–54.

    Article  Google Scholar 

  • Fogel, S.V. 1991. The estimation of velocity vector fields from time-varying image sequences. CVGIP: Image Understanding, 53(3): 253–287.

    Article  Google Scholar 

  • Foley, J., van Dam, A., Feiner, S.K. and Hughes, J.F. 1990. Computer Graphics: Principles and Practice. Systems Programming Series, 2nd edn, Addison-Wesley: Reading, Massachusetts, USA.

    Google Scholar 

  • Goshtasby, A. 1986. Piecewise linear mapping functions for image registration. Pattern Recognition, 19(6): 459–466.

    Article  Google Scholar 

  • Goshtasby, A. 1987. Piecewise cubic mapping functions for image registration. Pattern Recognition, 20(5): 525–533.

    Article  Google Scholar 

  • Goshtasby, A., Stockman, G.C. and Page, C.V. 1986. A region based approach to digital image registration with subpixel accuracy. IEEE Transactions on Geoscience and Remote Sensing, 24(3): 390–399.

    Google Scholar 

  • Heckbert, P.S. 1986. Survey of texture mapping. IEEE Computer Graphics and Applications, 6(11): 56–67.

    Google Scholar 

  • Hildreth, E.C. 1983. The detection of intensity changes by computer and biological vision systems. Computer Vision, Graphics and Image Processing, 22(1): 1–27.

    Google Scholar 

  • Hildreth, E.C. 1984. The computation of the velocity field. Proceedings of the Royal Society of London, Series B, 221: 189–220.

    Google Scholar 

  • Hillman, B.J., Ovitt, T.W., Nudelman, S., Fischer, H.D., Frost, M.M., Capp, P., Roehrig, H. and Seeley, G. 1981. Digital video subtraction angiography of renal vascular abnormalities. Radiology, 139(2): 277–280.

    Google Scholar 

  • Horn, B.K.P. and Schunck, B.G. 1981. Determining optical flow. Artificial Intelligence, 17: 185–203.

    Article  Google Scholar 

  • Hua, P. and Fram, I. 1993. Feature-based image registration for digital subtraction angiography. In M.H. Loew (ed.), Image Processing, volume 1898 of Proceedings of SPIE, The International Society for Optical Engineering: Bellingham, Washington, USA, pp. 24–31.

    Google Scholar 

  • Kruger, R.A., Miller, F.J., Nelson, J.A., Liu, P.Y. and Bateman, W. 1982. Digital subtraction angiography using a temporal bandpass filter: Associated patient motion properties. Radiology, 145(2): 315–320.

    Google Scholar 

  • Kruger, R.A., Mistretta, C.A., Crummy, A.B., Sackett, J.F., Goodsitt, M.M., Riederer, S.J., Houk, T.L., Shaw, C.-G. and Flemming, D. 1977. Digital K-edge subtraction radiography. Radiology, 125(1): 243–245.

    Google Scholar 

  • Kruger, R.A., Nelson, J.A., Roy, D.G., Miller, F.J., Anderson, R.E. and Liu, P. 1983. Dynamic tomographic digital subtraction angiography using temporal filtration. Radiology, 147(3): 863–867.

    Google Scholar 

  • Kruger, R.A., Sedaghati, M., Roy, D.G., Liu, P., Nelson, J.A., Kubal, W. and Rio, P. Del 1984. Tomosynthesis applied to digital subtraction angiography. Radiology, 152(3): 805–808.

    Google Scholar 

  • Lawson, C.L. 1977. Software for C1 surface interpolation. In J.R. Rice (ed.), Mathematical Software III, Academic Press: New York, USA, pp. 161–194.

    Google Scholar 

  • Lee, D.T. and Schachter, B.J. 1980. Two algorithms for constructing a Delaunay triangulation. International Journal of Computer and Information Sciences, 9(3): 219–242.

    Google Scholar 

  • Maintz, J.B.A. and Viergever, M.A. 1998. Asurvey of medical image registration. Medical Image Analysis, 2(1): 1–36.

    Article  Google Scholar 

  • Mandava, V.R., Fitzpatrick, J.M. and Pickens, D.R. 1989. Adaptive search space scaling in digital image registration. IEEE Transactions on Medical Imaging, 8(3): 251–262.

    Article  Google Scholar 

  • Marr, D. and Hildreth, E.C. 1980. Theory of edge detection. Proceedings of the Royal Society of London, Series B, 207: 187–217.

    Google Scholar 

  • Mistretta, C.A., Ort, M.G., Kelcz, F., Cameron, J.R., Sieband, M.P. and Crummy, A.B. 1973. Absorption edge fluoroscopy using quasimonoenergetic X-ray beams. Investigative Radiology, 8(6): 402–412.

    Google Scholar 

  • Neider, J., Davis, T. and Woo, M. 1995. Open GL Programming Guide. Addison-Wesley: Reading, Massachusetts, USA.

    Google Scholar 

  • Oung, H. and Smith, A.M. 1984. Real time motion detection in digital subtraction angiography. In A. Deurinckx, M.H. Loew and J.M.S Prewitt (eds), Proceedings of the International Symposium on Medical Images and Icons, IEEE Computer Society Press: Silver Spring, USA, pp. 336–339.

    Google Scholar 

  • Ousterhout, J.K. 1994. Tcl and the Tk Toolkit. Professional Computing Series, Addison-Wesley: Reading, Massachusetts, USA.

    Google Scholar 

  • Potel, M.J. and Gustafson, D.E. 1983. Motion correction for digital subtraction angiography. IEEE Frontiers of Engineering and Computing in Health Care: Proceedings of the 5th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 166–169.

  • Powell, M.J.D. 1964. An efficient method for finding the minimum of a function of several variables without calculating derivatives. The Computer Journal, 7: 155–162.

    Google Scholar 

  • Pratt, W.K. 1974. Correlation techniques of image registration. IEEE transactions on Aerospace and Electronic Systems, 10: 353–358.

    Google Scholar 

  • Ruprecht, D. 1994. Geometrische Deformationen als Werkzeug in der Graphischen Datenverarbeitung. PhD thesis, Universität Dortmund, Fachbereich Informatik, Lehrstuhl VII-Graphische Systeme, Germany.

    Google Scholar 

  • Ruprecht, D. and Müller, H. 1995. Image warping with scattered data interpolation. IEEE Computer Graphics and Applications, 15(2): 37–43.

    Article  Google Scholar 

  • Shi, J. and Tomasi, C. 1994. Good features to track. IEEE Conference on Computer Vision and Pattern Recognition, pp. 593–600.

  • Stockman, G.C., Kopstein, S. and Benett, S. 1982. Matching images to models for registration and object detection via clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 4(3): 229–241.

    Google Scholar 

  • Stroustrup, B. 1991. The C++ Programming Language. 2nd edn, Addison-Wesley: Reading, Massachusetts, USA.

    Google Scholar 

  • Szeliski, R. and Coughlan, J. 1997. Spline-based image registration. International Journal of Computer Vision, 22(3): 199–218.

    Article  Google Scholar 

  • Tomasi, C. and Kanade, T. 1991. Shape and motion from image streams: A factorization method-Part 3. Detection and tracking of point features. Carnegie Mellon University, School of Computer Science, Pittsburgh, USA, Technical Report CMU-CS–91–132.

    Google Scholar 

  • van den Elsen, P.A., Pol, E.-J.D. and Viergever, M.A. 1993. Medical image matching—A review with classification. IEEE Engineering in Medicine and Biology, 12(1): 26–39.

    Article  Google Scholar 

  • van Tran, L. and Sklansky, J. 1992. Flexible mask subtraction for digital angiography. IEEE Transactions on Medical Imaging, 11(3): 407–415.

    Article  Google Scholar 

  • Venot, A., Lebruchec, J.F. and Roucayrol, J.C. 1984. A new class of similarity measures for robust image registration. Computer Vision, Graphics and Image Processing, 28(2): 176–184.

    Google Scholar 

  • Venot, A. and Leclerc, V. 1984. Automated correction of patient motion and gray values prior to subtraction in digitized angiography. IEEE Transactions on Medical Imaging, 3(4): 179–186.

    Google Scholar 

  • Venot, A., Pronzato, L. and Walter, E. 1994. Comments about the coincident bit counting (CBC) criterion for image registration. IEEE Transactions on Medical Imaging, 13(3): 565–566.

    Article  Google Scholar 

  • Verhoeven, L.A.J. 1985. Digital Subtraction Angiography. The technique and an analysis of the physical factors influencing the image quality. PhD thesis, Delft University of Technology, The Netherlands.

    Google Scholar 

  • Watson, D.F. 1981. Computing the n-dimensional Delaunay tessellation with application to Voronoi polytopes. The Computer Journal, 24(2): 167–172.

    Google Scholar 

  • Watson, D.F. and Philip, G.M. 1984. Survey: Systematic triangulations. Computer Vision, Graphics and Image Processing, 26(2): 217–223.

    Google Scholar 

  • Wolberg, G. 1990. Digital Image Warping. IEEE Computer Society Press: Washington, USA.

    Google Scholar 

  • Yanagisawa, M., Shigemitsu, S. and Akatsuka, T. 1984. Registration of locally distorted images by multiwindow pattern matching and displacement interpolation: The proposal of an algorithm and its application to digital subtraction angiography. In M.D. Levine (ed.), Proceedings of the Seventh International Conference on Pattern Recognition, volume 2, IEEE Publishing Services: New York, USA, pp. 1288–1291.

    Google Scholar 

  • Zuiderveld, K.J., ter Haar Romeny, B.M. and Viergever, M.A. 1989. Fast rubber sheet masking for digital subtraction angiography. In M.A. Viergever (ed.), Science and Engineering of Medical Imaging, volume 1137 of Proceedings of SPIE, The International Society for Optical Engineering: Bellingham, Washington, USA, pp. 22–30.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meijering, E.H., Zuiderveld, K.J. & Viergever, M.A. Image Registration for Digital Subtraction Angiography. International Journal of Computer Vision 31, 227–246 (1999). https://doi.org/10.1023/A:1008074100927

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008074100927

Navigation