Skip to main content
Log in

Abstract

In this paper PAPRICA, a massively parallel coprocessor devoted to the analysis of bitmapped images is presented considering first the computational model, then the architecture and its implementation, and finally the performance analysis. The main goal of the project was to develop a subsystem to be attached to a standard workstation and to operate as a specialized processing module in dedicated systems. The computational model is strongly related to the concepts of mathematical morphology, and therefore the instruction set of the processing units implements basic morphological transformations. Moreover, the specific processor virtualization mechanism allows to handle and process multiresolution data sets. The actual implementation consists of a mesh of 256 single bit processing units operating in a SIMD style and is based on a set of custom VLSI circuits. The architecture comprises specific hardware extensions that significantly improved performances in real-time applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Unger, “A computer oriented toward spatial problems,” Proceedings IRE, Vol. 46, pp. 1744-1750, 1958.

    Article  Google Scholar 

  2. T. Fountain, Processor Arrays: Architectures and applications, Academic-Press, London, 1987.

    Google Scholar 

  3. I.N. Robinson and W.R. Moore, “A parallel processor array architecture and its implementation in silicon,” Proceedings of IEEE Custom Integrated Circuits Conference, Rochester, New York, pp. 41-45, 1982.

  4. Geometric Arithmetic Parallel Processor, NCR Corporation, Dayton, Ohio, 1984.

  5. Connection Machine CM-200 Series–Technical Summary, Thinking Machines Corporation, Cambridge, MA, 1991.

  6. T. Sudo, T. Nakashima, M. Aoki, and T. Kondo, “An LSI adaptive array processor,” Proceedings IEEE International Solid-State Circuits Conference, pp. 122, 123, 307, 1982.

  7. T. Fountain and K. Matthews, “The CLIP 7A image processor,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 10 No.3, pp. 310-319, May 1988.

    Article  Google Scholar 

  8. MP-1 Family Data-Parallel Computers, MasPar Computer Corporation, Sunnyvale, California, 1990.

  9. G. Conte, F. Gregoretti, L. Reyneri, and C. Sansoé, “PAPRICA: A parallel architecture for VLSI CAD,” in CAD accelerators, A.P. Ambler, P. Agrawal, and W.R. Moore (Eds.), North Holland, Amsterdam, pp. 177-189, 1991.

    Google Scholar 

  10. A. Broggi, G. Conte, F. Gregoretti, C. Sansoé, and L.M. Reyneri, “The PAPRICA massively parallel processor,” Proceedings MPCS–IEEE International Conference on Massively Parallel Computing Systems, IEEE Computer Society–EuroMicro, Ischia, Italy, pp. 16-30, May 1994.

    Google Scholar 

  11. J. Serra, Image Analysis and Mathematical Morphology, Academic Press, London, 1982.

    MATH  Google Scholar 

  12. M. Bertozzi and A. Broggi, “GOLD: A parallel real-time stereo vision system for generic obstacle and lane detection,” IEEE Transactions on Image Processing, 1997, Vol. 7, pp. 62-81, 1998.

    Article  Google Scholar 

  13. A. Broggi and S. Bertè, “Vision-based road detection in automotive systems: A real-time expectation-driven approach,” Journal of Artificial Intelligence Research, Vol. 3, pp. 325-348, Dec. 1995.

    Google Scholar 

  14. F. Gregoretti and C. Passerone, “Using a massively parallel architecture for integrated circuits testing,” Proceedings 3rd EuroMicroWorkshop onParallel and Distributed Processing, IEEE Computer Society–EuroMicro, Sanremo, Italy, pp. 332-338, Jan. 1995.

    Chapter  Google Scholar 

  15. R.M. Haralick, S.R. Sternberg, and X. Zhuang, “Image analysis using mathematical morphology,” IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol. 9 No.4, pp. 532-550, 1987.

    Article  Google Scholar 

  16. V. Cantoni and M. Ferretti, Pyramidal Architectures for Computer Vision, Plenum Press, London, 1993.

    MATH  Google Scholar 

  17. A. Rosenfeld, Multiresolution Image Processing and Analysis, Springer Verlag, Berlin, 1984.

    Book  MATH  Google Scholar 

  18. S.L. Tanimoto, T.J. Ligocki, and R. Ling, “A prototype pyramid machine for hierarchical cellular logic,” Parallel Computer Vision, Academic Press, London, 1987.

    Google Scholar 

  19. C. Arcelli, L. Cordella, and S. Levialdi, “Parallel thinning of binary pictures,” Electronics Letters, Vol. 11, pp. 148-149, July 1975.

    Article  Google Scholar 

  20. A. Rosenfeld, “A characterization of parallel thinning algorithms,” Information Control, Vol. 29, pp. 286-291, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Broggi, “Word Parallelism vs. Spatial Parallelism: A performance optimization technique on the PAPRICA system,” Proceedings 3rd EuroMicro Workshop on Parallel and Distributed Processing, IEEE Computer Society–EuroMicro, Sanremo, Italy, pp. 236-243, Jan. 1995.

    Chapter  Google Scholar 

  22. K. Preston, “The abingdon cross benchmark survey,” Computer, pp. 9-18, July 1989.

  23. G. Adorni, A. Broggi, G. Conte, and V. D'Andrea. “Real-time image processing for automotive applications,” in Real-Time Imaging: Theory, Techniques, and Applications, P.A. Laplante and A.D. Stoyenko (Eds.), IEEE Press, pp. 161-194, 1996.

  24. M. Bertozzi and A. Broggi, “Real-time lane and obstacle detection on the GOLD system,” in Proceedings IEEE Intelligent Vehicles'96, I. Masaky (Ed.), Tokyo, Japan, IEEE Computer Society, pp. 213-218, Sept. 1996.

    Chapter  Google Scholar 

  25. A. Broggi, “A novel approach to lossy real-time image compression: Hierarchical data reorganization on a low-cost massively parallel system,” Real-Time Imaging Journal, Vol. 1 No.5, pp. 339-354, Nov. 1995.

    Article  Google Scholar 

  26. F. Gregoretti, L.M. Reyneri, C. Sansoé, A. Broggi, and G. Conte, “The PAPRICA SIMD array: Critical reviews and perspectives,” in Proceedings ASAP'93–IEEE Computer Society International Conference on Application Specific Array Processors, L. Dadda and B. Wah (Eds.), IEEE Computer Society– EuroMicro, Venezia, Italy, pp. 309-320, Oct. 1993.

    Chapter  Google Scholar 

  27. A. Broggi, G. Conte, G. Burzio, L. Lavagno, F. Gregoretti, C. Sansoé, and L.M. Reyneri, “PAPRICA-3: A real-time morphological image processor,” Proceedings ICIP–First IEEE International Conference on Image Processing, IEEE Computer Society, Austin, TX, pp. 654-658, Nov. 1994.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Broggi, A., Conte, G., Gregoretti, F. et al. Design and Implementation of the PAPRICA Parallel Architecture. The Journal of VLSI Signal Processing-Systems for Signal, Image, and Video Technology 19, 5–18 (1998). https://doi.org/10.1023/A:1008095714465

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008095714465

Keywords

Navigation