Skip to main content
Log in

Computerised Auto-Scoring System Based Upon Feature Extraction and Neural Network Technologies

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents an application of pattern recognition for the shooting target paper image. This is a two-stage approach. First, essential features of local images are properly defined and extracted from the target paper image. Then the Fuzzy C-Means clustering is carried out for determining the initial parameters and structure of the RBF classifier, which is further enhanced by the hybrid leaning algorithm. Experimental results show that the system achieves satisfactory performance both in terms of error rates of classification and learning efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bezdek, J. C.: Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum, New York, 1981.

    Google Scholar 

  2. Bezdek, J. C., Hathaway, R. J., Sabin, M. J., and Tucker, W. T.: Convergence theory for fuzzy C-means: Counterexamples and repairs, IEEE Trans. Systems Man Cybernet. 17 (1987), 873-877.

    Google Scholar 

  3. Bishop, C. M.: Neural Networks for Pattern Recognition, Oxford Univ. Press, New York, 1995.

    Google Scholar 

  4. Borgefors, G.: Distance transformation in digital images, Comput. Vision Graphics Images Proc. 34 (1986), 344-371.

    Google Scholar 

  5. Bors, G. and Gabbouj, M.: Minimal topology for a radial basis functions neural networks for pattern classification, Digital Processing 4 (1994), 173-188.

    Google Scholar 

  6. Freeman, H.: On the encoding of arbitrary geometric configurations, IRE Trans. Electronic Computers 10 (June 1961), 260-268.

    Google Scholar 

  7. Girosi, F. and Poggio, T.: Networks and the best approximation property, Biological Cybernetics 63 (1990), 169-176.

    Google Scholar 

  8. Goldberg, D. E.: Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Reading, MA, 1989.

    Google Scholar 

  9. Gori, M. and Tesi, A.: On the problem of local minima in backpropagation, IEEE Trans. Pattern Anal. Mach. Intelligence 14 (1992), 76-86.

    Google Scholar 

  10. Hathaway, R. J. and Bezdek, J. C.: NERF c-means non-Euclidean relational fuzzy clustering, Pattern Recognition 27, 429-437.

  11. Hilditch, J. and Rutovitz, D.: Chromosome recognition, Ann. New York Acad. Sci. 157 (1969), 339-364.

    Google Scholar 

  12. Huang, D. S.: The local minima-free condition of feedforward neural networks for outersupervised learning, IEEE Trans. Systems Man Cybernet. B 28 (1998), 477-480.

    Google Scholar 

  13. Jain, A. K.: Fundamentals of Digital Image Processing, Prentice-Hall, Englewood Clifs, NJ, 1989.

    Google Scholar 

  14. Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P.: Optimization by stimulated annealing, Science 220 (1983), 671-680.

    Google Scholar 

  15. Knerr, S., Personnaz, L., and Dreyfus, G.: Handwritten digit recognition by neural networks with single-layer training, IEEE Trans. Neural Networks 3(6) (1992), 962-968.

    Google Scholar 

  16. Lawrence, S., Giles, C. L., Tsoi, A. C., and Back, A. D.: Face recognition: A convolutional neural networks approach, IEEE Trans. Neural Networks (Special Issue on Neural Networks and Pattern Recognition) 8(1) (1997), 98-113.

    Google Scholar 

  17. Lee, S. and Kil, R. M.: A Gaussian potential function network with hierarchically selforganizing learning, Neural Networks 4 (1991), 207-224.

    Google Scholar 

  18. Lee, S.-W.: Multilayer cluster neural networks for totally unconstrained handwritten numeral recognition, Neural Networks 8(5) (1995), 783-792.

    Google Scholar 

  19. Mitra, S., Kuncheva, L., and Ludmila, I.: Improving classification performance using MLP and two-level selective partitioning of the feature space, Fuzzy Set Systems 70 (1995), 1-13.

    Google Scholar 

  20. Mokris, I., Barath, J., and Semancik, L.: Image recognition by means of singular value decomposition and multilayered percepton, Neural Networks World 5 (1995), 191-197.

    Google Scholar 

  21. Moody, J.: A fast learning algorithm for parsimonious fuzzy neural systems, in: Proc. of the 5th European Control Conf., Karlsruhe, Germany, 1999.

  22. Moody, J. and Darken, C. J.: Fast learning in network of locally-tuned processing units, Neural Computation 1 (1989), 281-294.

    Google Scholar 

  23. Musavi, T. et al.: On the training of radial basis function classifiers, Neural Networks 5 (1992), 595-603.

    Google Scholar 

  24. Park, J. and Wsandberg, J.: Universal approximation using radial basis functions network, Neural Computation 3 (1991), 246-257.

    Google Scholar 

  25. Pedrycz,W.: conditional fuzzy clustering in the design of radial basis function neural networks, IEEE Trans. Neural Networks 9(4) (1998), 601-612.

    Google Scholar 

  26. Yu, X. H. and Chen, G. A.: On the local minima free condition of backpropagation learning, IEEE Trans. Neural Networks 6 (1995), 1300-1303.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, D.J., Song, Q. & Soh, Y.C. Computerised Auto-Scoring System Based Upon Feature Extraction and Neural Network Technologies. Journal of Intelligent and Robotic Systems 29, 335–347 (2000). https://doi.org/10.1023/A:1008107924617

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008107924617

Keywords

Navigation