Skip to main content
Log in

A genetic algorithm for the automated generation of small organic molecules: Drug design using an evolutionary algorithm

Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Rational drug design involves finding solutions to large combinatorial problems for which an exhaustive search is impractical. Genetic algorithms provide a novel tool for the investigation of such problems. These are a class of algorithms that mimic some of the major characteristics of Darwinian evolution. LEA has been designed in order to conceive novel small organic molecules which satisfy quantitative structure-activity relationship based rules (fitness). The fitness consists of a sum of constraints that are range properties. The algorithm takes an initial set of fragments and iteratively improves them by means of crossover and mutation operators that are related to those involved in Darwinian evolution. The basis of the algorithm, its implementation and parameterization, are described together with an application in de novo molecular design of new retinoids. The results may be promising for chemical synthesis and show that this tool may find extensive applications in de novo drug design projects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Walters, W.P., Stahl, M.T. and Murcko, M.A., Drug Des. Today, 3 (1998) 160.

    Google Scholar 

  2. Ghose, A.K., Viswanadhan, V.N. and Wendoloski, J.J., J. Comb. Chem., 1 (1999) 55.

    Google Scholar 

  3. Lewis, R.A., Mason, J.S. and McLay, I.M., J. Chem. Inf. Comput. Sci., 37 (1997) 599.

    Google Scholar 

  4. Darwin, C., The Origin of Species, Dent Gordon, London, 1973.

    Google Scholar 

  5. Fogel, L.J., Owens, A.J. and Walsh, M.J., Artificial Intelligence through Simulated Evolution, John Wiley & Sons, New York, NY, 1966.

    Google Scholar 

  6. Rechenberg, I., Cybernetic solution path of an experimental problem, Royal Aircraft Establishment Transl., No 1122, B.F. Toms, Transl. (Ministry of Aviation, Royal Aircraft Establishment), Farnborough, Hants., U.K., 1965.

    Google Scholar 

  7. Clark, D.E. and Westhead, D.R., J. Comput.-Aided Mol. Design, 10 (1996) 337.

    Google Scholar 

  8. Hibbert, D.B., Chemomet. Intell. Lab. Syst., 31 (1996) R5.

    Google Scholar 

  9. Schneider, G. and Schrödl, W., Proc. Natl. Acad. Sci. USA, 95 (1998) 12179.

    Google Scholar 

  10. Parrill, A.L., Drug Des. Today, 1 (1996) 12.

    Google Scholar 

  11. Holland, J., Adaptation in Natural and Artificial Systems (second edition), M.I.T. Press, Cambridge, MA, 1992.

    Google Scholar 

  12. Forrest, S., Science, 261 (1993) 872.

    Google Scholar 

  13. Goldberg, D.E., Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Reading, MA, 1989.

    Google Scholar 

  14. Glen, R.C. and Payne, A.W.R., J. Comput.-Aided Mol. Design, 9 (1995) 181.

    Google Scholar 

  15. LeapFrog, Tripos Inc., St Louis, MO, U.S.A.

  16. Westhead, D.R., Clark, D.E., Frenkel, D., Li, J., Murray, C.W., Robson, B. and Waszkowycz, B., J. Comput.-Aided Mol. Design, 9 (1995) 139.

    Google Scholar 

  17. Blaney, J.M., Dixon, J.S. and Weininger, D., Molecular Graphics Society Meeting on Binding Sites: Characterising and Satisfying Steric and Chemical Restraints, York, U.K., March 1993. Weininger, D., WO95/01606.

  18. Weininger, D., J. Chem. Inf. Comput. Sci., 30 (1990) 237.

    Google Scholar 

  19. Bemis, G.W. and Murcko, M.A., J. Med. Chem., 39 (1996) 2887.

    Google Scholar 

  20. Lucasius, C.B. and Kateman, G., Chemometr. Intell. Lab. Syst., 19 (1993) 1.

    Google Scholar 

  21. Davis, L., In J.D. Schaffer (Ed.), Proceedings of the Third International Conference on Genetic Algorithms and Their Applications, San Mateo, CA, Morgan Kaufmann, 1989, pp. 61–69.

    Google Scholar 

  22. Rishton, G.M., Drug Des. Today, 2 (1997) 382.

    Google Scholar 

  23. Weber, L., Wallbaum, S., Broger, C. and Gubernator, K., Angew. Chem. Int. Ed. Engl., 34 (1995) 2280.

    Google Scholar 

  24. Singh, J., Ator, M.A., Jaeger, E.P., Allen, M.P., Whipple, D.A., Soloweij, J.E., Chowdhary, S. and Treasurywala, A.M., J. Am. Chem. Soc., 118 (1996) 1669.

    Google Scholar 

  25. Grassy, G., Fagart, J., Calas, B., Adenot, M., Rafestin-Obelin, M.E. and Auzou, G., Eur. J. Med. Chem., 32 (1997) 869.

    Google Scholar 

  26. Grassy, G., Trappe, P., Bompart, J., Calas, B. and Auzou, G., J. Mol. Graphics, 13 (1995) 356.

    Google Scholar 

  27. Grassy, G., Yasri, A., Buelow, R., Kaczorek, M. and Calas, B., Actualités de Chimie Thérapeutique, 24, 1998.

  28. Grassy, G., Calas, B., Yasri, A., Lahana, R., Woo, J., Lyer, S., Kaczorek, M., Floc'h, R. and Buelow, R., Nat. Biotech., 16 (1998) 748.

    Google Scholar 

  29. McFarland, J.W. and Gans, D.J., J. Med. Chem., 29 (1986) 505.

    Google Scholar 

  30. Douguet, D., Thoreau, E. and Grassy, G., Quant. Struct.-Act. Relat., 18 (1999) 107.

    Google Scholar 

  31. Chambon, P., Faseb J., 10 (1996) 940.

    Google Scholar 

  32. Klaholz, B.P., Renaud, J.P., Mitschler, A., Zusi, C., Chambon, P., Gronemeyer, H. and Moras, D., Nat. Struct. Biol., 5 (1998) 199.

    Google Scholar 

  33. Ostrowski, J., Roalsvig, T., Hammer, L., Marinier, A., Starrett, J.E. Jr, Yu, K.-L. and Reczek, P.R., J. Biol. Chem., 273 (1998) 6, 3490.

    Google Scholar 

  34. DeJong, K., Machine Learning, 3 (1988) 121.

    Google Scholar 

  35. Sammon, J.W., IEEE Trans. Comput., C-18 (1969) 401.

    Google Scholar 

  36. Wall, L., Christiansen, T. and Schwartz, R.L., Programming Perl, O'Reilly.

  37. RasMol v2.5, Sayle, R., Biomolecular Structure, Glaxo Research and Development, Greenford, Middlesex, U.K., 1994.

  38. InsightII, Molecular Simulations Inc., San Diego, CA.

  39. VAMP, Oxford Molecular Ltd, Oxford, U.K.

  40. CORINA, Oxford Molecular Ltd, Oxford, U.K.

  41. Sybyl, Tripos Associates, St. Louis, MO.

  42. Silla, E., Tunon, I. and Pascual-Ahuir, J.L., J. Comput. Chem., 12 (1991) 1077. QCPE #554.

    Google Scholar 

  43. Suzuki, T., J. Comput.-Aided Mol. Design, 4 (1990) 155. QCPE #608. CHEMICALC-2.

    Google Scholar 

  44. Tuson, A. and Ross, P., Evol. Comput., 6 (1998) 161.

    Google Scholar 

  45. Hibbert, D.B., Chemometr. Intell. Lab. Syst., 19 (1993) 277.

    Google Scholar 

  46. Venkatasubramanian, V., Chan, K. and Caruthers, J.M., J. Chem. Inf. Comput. Sci., 35 (1995) 188.

    Google Scholar 

  47. Sundaram, A. and Venkatasubramanian, V., J. Chem. Inf. Comput. Sci., 38 (1998) 1177.

    Google Scholar 

  48. Brodmeier, T. and Pretsch, E., J. Comput. Chem., 15 (1994) 588.

    Google Scholar 

  49. Schwefel, H., Evolution and Optimum Seeking, Wiley, New York, NY, 1995.

    Google Scholar 

  50. Osman, I.H., Operational Research Tutorial Papers, Operational Research Society Press, Birmingham, U.K., 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Douguet, D., Thoreau, E. & Grassy, G. A genetic algorithm for the automated generation of small organic molecules: Drug design using an evolutionary algorithm. J Comput Aided Mol Des 14, 449–466 (2000). https://doi.org/10.1023/A:1008108423895

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008108423895

Navigation