Skip to main content
Log in

Use of electron-electron repulsion energy as a molecular descriptor in QSAR and QSPR studies

Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Electron-electron repulsion energy (〈 Vee〉) is presented as a new molecular descriptor to be employed in QSAR and QSPR studies. Here it is shown that this electronic energy parameter is connected to molecular quantum similarity measures (MQSM), and as a consequence can be considered as a complement to steric and electronic parameters in description of molecular properties and biological responses of organic compounds. The present strategy considers the molecule as a whole, thus there is no need to employ contributions of isolated fragments as in many calculations of molecular descriptors, like log P or the Free–Wilson analysis. The procedure has been tested in a widespread set of molecules: alcohols, alkanamides, indole derivatives and 1-alkylimidazoles. Molecular properties, as well as toxicity, are correlated using 〈 Vee〉 as a parameter, and extensions to the method are given for handling difficult systems. In almost all studied cases, satisfactory linear relationships were finally obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Hansch, C. and Fujita, T., J. Am. Chem. Soc., 86 (1964) 1616.

    Google Scholar 

  2. Free, S.M., Jr and Wilson, J.W., J. Med. Chem., 7 (1964) 395.

    Google Scholar 

  3. Ramsden, C.A. (Ed.), Comprehensive Medicinal Chemistry, Vol. 4, Pergamon, Oxford, 1990.

    Google Scholar 

  4. Kubinyi, H., QSAR: Hansch Analysis and Related Approaches, VCH, Weinheim, 1993.

    Google Scholar 

  5. Hansch, C. and Leo, A., Exploring QSAR. Fundamentals and Applications in Chemistry and Biology, American Chemical Society, Washington, DC, 1995.

    Google Scholar 

  6. Hansch, C., Leo, A. and Hoekman, D., Exploring QSAR. Hydrophobic, Electronic and Steric Constants, American Chemical Society, Washington, DC, 1995.

    Google Scholar 

  7. Van de Waterbeemd, H. (Ed.), Chemometric Methods in Molecular Design, VCH, Weinheim, 1995.

    Google Scholar 

  8. Van de Waterbeemd, H. (Ed.), Advanced Computer-Assisted Techniques in Drug Discovery, VCH, Weinheim, 1995.

    Google Scholar 

  9. Kubinyi, H., In Wolff, M.E. (Ed.) Burger's Medicinal Chemistry, 5th edn., Vol I, Wiley, New York, NY, 1995.

    Google Scholar 

  10. Sanz, F., Giraldo, J. and Manaut, F. (Eds), QSAR and Molecular Modelling: Concepts, Computational Tools and Biological Applications, Proc. 10th European Symp. on Quantitative Structure-Activity Relationships, Barcelona, 1994, Prous Science, Barcelona, 1995.

    Google Scholar 

  11. Pliska, V., Testa, B. and Van de Waterbeemd, H. (Eds), Lipophilicity in Drug Action and Toxicology, VCH, Weinheim, 1996.

    Google Scholar 

  12. Van de Waterbeemd, H. (Ed.), Structure-Activity Correlations in Drug Research, Academic, R.G. Landes Company, Austin, TX, 1996.

    Google Scholar 

  13. Van de Waterbeemd, H., In Wermuth, C.G. (Ed.) The Practice of Medicinal Chemistry, Academic, London, 1996.

    Google Scholar 

  14. Böhm, H.-J., Klebe, G. and Kubinyi, H., Wirkstoffdesign, Spektrum Akademischer Verlag, Heidelberg, 1996.

    Google Scholar 

  15. Van de Waterbeemd, H., Testa, B. and Folkers, G. (Eds), Computer-Assisted Lead Finding and Optimization, Proc. 11th European Symp. on Quantitative Structure-Activity Relationships, Lausanne, 1996, Verlag Helvetica Chimica Acta, Basel, and VCH, Weinheim, 1997.

    Google Scholar 

  16. Wiener, H., J. Am. Chem. Soc., 69 (1947) 17.

    Google Scholar 

  17. Hosoya, H., Bull. Chem. Soc. Jpn., 44 (1971) 2332.

    Google Scholar 

  18. Kier, L.B. and Hall, L.H., Molecular Connectivity in Chemistry and Drug Research, Academic, New York, NY, 1976.

    Google Scholar 

  19. Kier, L.B. and Hall, L.H., Molecular Connectivity in Structure-Activity Analysis, Research Studies Press, Letchworth, 1986.

    Google Scholar 

  20. Van de Waterbeemd, H. and Testa, B., Adv. Drug. Res., 16 (1987) 85.

    Google Scholar 

  21. Purcell, W.P., Bass, G.E. and Clayton, J.M., Strategy of Drug Design, Wiley, New York, NY, 1973.

    Google Scholar 

  22. Karelson, M., Lobanov, V.S. and Katritzky, A.R., Chem. Rev., 96 (1996) 1027.

    Google Scholar 

  23. Carbó , R., Martin, M. and Pons, V., Afinidad, 34 (1977) 348.

    Google Scholar 

  24. Brown, R.D. and Martin, Y.C., J. Chem. Inf. Comput. Sci., 36 (1996) 572.

    Google Scholar 

  25. Brown, R.D. and Martin, Y.C., J. Chem. Inf. Comput. Sci., 37 (1997) 1.

    Google Scholar 

  26. Doman, T.N., Cisulskis, J.M., Cisulskis, M.J., McCray, P.D. and Spangler, D.P., J. Chem. Inf. Comput. Sci., 36 (1996) 1195.

    Google Scholar 

  27. Klopman, G., Balthasar, D.M. and Rosenkranz, H.S., Environ. Toxicol. Chem., 12 (1990) 231.

    Google Scholar 

  28. Rosenkranz, H.S. and Klopman, G., Mutation Res., 228 (1990) 105.

    Google Scholar 

  29. Randic, M., J. Am. Chem. Soc., 97 (1975) 6609.

    Google Scholar 

  30. Bondi, A., J. Phys. Chem., 68 (1964) 441.

    Google Scholar 

  31. Pearlman, R.S., In Yalkowsky, S.H., Sikula, A.A. and Valvani, S.C. (Eds) Physical Chemical Properties of Drugs, Vol. 10, Marcel Dekker, New York, NY, 1980.

    Google Scholar 

  32. Pearlman, R.S., Quantum Chem. Prog. Exchange Bull., 1 (1981) 15.

    Google Scholar 

  33. Pearlman, R.S., In Dunn, W.J., Block J.H. and Pearlman, R.S. (Eds) Partition Coefficient Determination and Estimation, Pergamon, New York, NY, 1986.

    Google Scholar 

  34. Camilleri, P., Watts, A. and Boraston, J.A., J. Chem. Soc., Perkin. Trans. 2, (1988) 1699.

    Google Scholar 

  35. Lee, B. and Richards, F.M., J. Mol. Biol., 55 (1971) 379.

    Google Scholar 

  36. Hermann, R.B., J. Phys. Chem., 76 (1972) 2754.

    Google Scholar 

  37. Pearlman, R., SAREA, Quantum Chemistry Program Exchange, University of Indiana, Bloomington, IN, Program Number 432.

  38. Grigoras, S., J. Comput. Chem., 11 (1990) 493.

    Google Scholar 

  39. Howel, J., Rossi, A., Wallace, D., Hiraki, K. and Hoffman, R., FORTICON 8, Quantum Chemistry Program Exchange, University of Indiana, Bloomington, IN, Program Number 469.

  40. Hammett, L.P., J. Am. Chem. Soc., 59 (1937) 96.

    Google Scholar 

  41. Hammett, L.P., Physical Organic Chemistry, McGraw-Hill, New York, NY, 1940.

    Google Scholar 

  42. Unger, S.H. and Hansch, C., J. Med. Chem., 16 (1973) 745.

    Google Scholar 

  43. Streitweiser, A., Molecular Orbital Theory for Organic Chemists, Wiley, New York, NY, 1961.

    Google Scholar 

  44. Taft, R.W., J. Am. Chem. Soc., 86 (1968) 5175.

    Google Scholar 

  45. Taft, R.W., In Newman, M.S. (Ed.) Steric Effects in Organic Chemistry, Wiley, New York, NY, 1956.

    Google Scholar 

  46. Swain, C.G. and Lupton Jr., E.C., J. Am. Chem. Soc., 90 (1968) 4328.

    Google Scholar 

  47. Cramer III, R.D., Patterson, D.E. and Bunce, J.D., J. Am. Chem. Soc., 110 (1988) 5959.

    Google Scholar 

  48. Bravi, G., Gancia, E., Mascagni, P., Pegna, M., Todeschini, R. and Zalianni, A., J. Comput.-Aided Mol. Design, 11 (1997) 79.

    Google Scholar 

  49. Kellogg, G.E., Kier, L.B., Gaillard, P. and Hall, L.H., J. Comput.-Aided Mol. Design, 10 (1996) 513.

    Google Scholar 

  50. Carbó , R., Leyda, L. and Arnau, M., Int. J. Quant. Chem., 17 (1980) 1185.

    Google Scholar 

  51. Carbó , R. and Domingo, Ll., Int. J. Quant. Chem., 23 (1987) 517.

    Google Scholar 

  52. Besalú , E., Carbó , R., Mestres, J. and Solà, M., Top. Curr. Chem., 173 (1995) 31.

    Google Scholar 

  53. Carbó , R., Calabuig, B., Vera, L. and Besalú , E., Adv. Quant. Chem., 25 (1994) 253.

    Google Scholar 

  54. Carbó , R. (Ed.), Molecular Similarity and Reactivity: From Quantum Chemical to Phenomenological Approaches, Kluwer, Amsterdam, 1995.

    Google Scholar 

  55. Carbó-Dorca, R. and Mezey, P.G. (Eds), Advances in Molecular Similarity, Vol. 1, JAI Press, Greenwich, CT, 1996.

    Google Scholar 

  56. Carbó-Dorca, R. and Mezey, P.G. (Eds), Advances in Molecular Similarity, Vol. 2, JAI Press, Greenwich, CT, 1998.

    Google Scholar 

  57. Cioslowski, J. and Fleischmann, E.D., J. Am. Chem. Soc., 113 (1991) 64.

    Google Scholar 

  58. Burt, C., Richards, W.G. and Huxley, P., J. Comput. Chem., 10 (1990) 1139.

    Google Scholar 

  59. Mezey, P.G., Top. Curr. Chem., 173 (1995) 63.

    Google Scholar 

  60. Allan, N.L. and Cooper, D.L., Top. Curr. Chem., 173 (1995) 85.

    Google Scholar 

  61. Ponec, R., Top. Curr. Chem., 174 (1995) 1.

    Google Scholar 

  62. Carbó-Dorca, R. and Besalú , E., J. Mol. Struct., 451 (1998) 11.

    Google Scholar 

  63. Fradera, X., Amat, L., Besalú , E. and Carbó-Dorca, R., Quant. Struct.-Act. Relat., 16 (1997) 25.

    Google Scholar 

  64. Lobato, M., Amat, L., Besalú , E. and Carbó-Dorca, R., Quant. Struct.-Act. Relat., 16 (1997) 465.

    Google Scholar 

  65. Amat, L., Robert, D., Besalú , E. and Carbó-Dorca, R., J. Chem. Inf. Comput. Sci., 38 (1998) 624.

    Google Scholar 

  66. Robert, D., Amat, L. and Carbó-Dorca, R., J. Chem. Inf. Comput. Sci., 39 (1999) 333.

    Google Scholar 

  67. Ponec, R., Amat, L. and Carbó-Dorca, R., J. Comput.-Aided Mol. Design, 13 (1999) 259.

    Google Scholar 

  68. Amat, L., Carbó-Dorca, R. and Ponec, R., J. Comput. Chem., 19 (1998) 1575.

    Google Scholar 

  69. Ponec, R., Amat, L. and Carbó-Dorca, R., J. Phys. Org. Chem., 12 (1999) 447.

    Google Scholar 

  70. Amat, L., Carbó-Dorca, R. and Ponec, R., Simple Linear QSAR Models based on Quantum Similarity Measures, J. Med. Chem., 42 (1999) 5169.

    Google Scholar 

  71. Robert, D. and Carbó-Dorca, R., SAR QSAR Environ. Res., 10 (1999) 401.

    Google Scholar 

  72. Carbó , R., Besalú , E., Amat, L. and Fradera, X., J. Math. Chem., 18 (1995) 237.

    Google Scholar 

  73. Roothaan, C.C.J., Rev. Mod. Phys., 23 (1951) 69.

    Google Scholar 

  74. Ampac 6.01, 1994, Semichem, Schawnee, KS.

  75. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Gill, P.M.W., Johnson, B.G., Robb, M.A., Cheeseman, J.R., Keith, T., Petersson, G.A., Montgomery, J.A., Raghavachari, K., Al-Laham, M.A., Zakrzewski, V.G., Ortiz, J.V., Foresman, J.B., Cioslowski, J., Stefanov, B.B., Nanayakkara, A., Challacombe, M., Peng, C.Y., Ayala, P.Y., Chen, W., Wong, M.W., Andres, J.L., Replogle, E.S., Gomperts, R., Martin, R.L., Fox, D.J., Binkley, J.S., Defrees, D.J., Baker, J., Stewart, J.P., Head-Gordon, M., Gonzalez, C. and Pople, J.A., Gaussian-94 (Revision E.2), Gaussian, Inc., Pittsburgh, PA, 1995.

    Google Scholar 

  76. Allen, D.M., Technometrics, 16 (1974) 125.

    Google Scholar 

  77. Lide, D.R., Handbook of Chemistry and Physics, 76th Edition, CRC Press, Boca Raton, FL, 1995.

  78. Sinks, G.D., Carver, T.A. and Schultz, W., SAR QSAR Envir. Res., 9 (1998) 217.

    Google Scholar 

  79. Hadjipavlou-Litina, D. and Hansch, C., Chem. Rev., 94 (1994) 1483.

    Google Scholar 

  80. Hansch, C., Kim, D., Leo, A.J., Novellino, E., Silipo, C. and Vittoria, A., CRC Crit. Rev. Toxicol., 19 (1989) 185.

    Google Scholar 

  81. Wilkinson, WC.F., Hetnarsky, K., Cantwell, P. and di Carlo, F. J., Biochem. Pharmacol., 23 (1974) 2377.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gironés, X., Amat, L., Robert, D. et al. Use of electron-electron repulsion energy as a molecular descriptor in QSAR and QSPR studies. J Comput Aided Mol Des 14, 477–485 (2000). https://doi.org/10.1023/A:1008136520396

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008136520396

Navigation